2 Сманцер, А. П. Гуманизация педагогического процесса в современной школе: История и современность / А. П. Сманцер, Л. В. Кондрашова. – Минск : Бестпринт, 2001. - 308 c.

3 Новые педагогические и информационные технологии в системе образования : учеб. пособие для студ. пед. вузов и системы повыш. квалив. пед. кадров / Е. С. Полат [и др.]; под ред. Е. С. Полат. – Москва: Издательский центр «Академия», 1999. – 224 с. OBNHIP

УДК 572.087

Д. Г. Ничипоренко

ОЦЕНКА ПАРАМЕТРОВ ВНЕШНЕГО ДЫХАНИЯ У СТУДЕНТОВ

Статья посвящена оценке показателей дыхательных объемов студентов методом спирометрии. Результаты исследования показали, что у студентов факультета физической культуры и у студентов биологического факультета была отмечена разница в физиологических показателях дыхательной системы: функции респираторной системы у спортсменов соответствовали физиологическим закономерностям изменения, а у студентов, не занимающихся спортом, показатели дыхания соответствовали обычным значениям.

Физические нагрузки вызывают перестройки различных функций организма, особенности и степень которых зависят от характера двигательной деятельности, уровня здоровья, тренированности [1, с. 520]

В современных условиях интенсификации нагрузок при занятиях спортом необходимо разработать диагностические критерии оценки функционального состояния дыхательной системы спортсменов.

К факторам, негативно влияющим на состояние организма студентов, относятся несоответствие методик обучения возрасту и функциональным возможностям, стрессоры, нерациональная организация учебного процесса и питания [2, с. 496].

Организм тренирующегося спортсмена характеризуется специфическими состояниями, которые крайне редко испытывает человек, который не тренирует скоростно-силовые качества или выносливость. Для спортсменов характерно перенесение острого и хронического утомления, перетренированности, обусловленных избыточными физическими нагрузками [3, с. 64].

Целью данного исследования являлась оценка параметров внешнего дыхания у студентов биологического факультета и факультета физической культуры.

дыхания Параметры внешнего определялись методом спирометрии. Спирометрия – графической метод регистрации изменений объёмов легких во время дыхания, который позволяет получить ряд показателей, описывающих вентиляцию легких [4, с. 928].

В исследовании приняли участие студенты четвертого курса биологического факультета «ГГУ имени Ф. Скорины» в количестве 100 человек и студенты четвертого курса факультета физической культуры в количестве 100 человек в возрасте от 19 до 22 лет.

В таблице 1 представлены результаты сравнения показателей жизненной емкости легких у студентов разных факультетов.

Таблица 1 – Статистический анализ результатов исследования

Критерий	Среднее, мл	Стандартная ошибка, мл	Стандартное отклонение, мл	Мин, мл	Макс,
ЖЕЛ (вся выборка)	4500	70, 7	707, 2	2200	6500
ЖЕЛ (студенты биологического факультета)	3769	74, 3	742, 9	2200	4600
ЖЕЛ (студенты факультета физической культуры)	5192	67, 2	671, 6	4400	6500

Исходя из данных таблицы 1, можно говорить о следующих результатах:

- среднее значение жизненной емкости легких выше у студентов факультета физической культуры;
- стандартное отклонение от нормы выше у студентов биологического факультета, так как в исследуемой группе отсутствовали студенты, занимающиеся спортом;
- минимальное значение жизненной емкости легких (2200 мл) было получено у студентки биологического факультета, имеющей нарушения дыхательной системы. Максимальное значение (6500 мл) у студента факультета физической культуры.

В таблице 2 представлено сравнение ЖЕЛ студентов биологического факультета и факультета физической культуры.

Таблица 2 – Количество показателей, исследуемых с нормативными значениями

Критерий	Ниже нормы	Норма	Выше нормы
ЖЕЛ (студенты биологического факультета)	1	80	19
ЖЕЛ (студенты факультета физической культуры)	0	6	94

Таким образом, жизненная емкость легких у большинства студентов факультета физической культуры выше нормы, что свидетельствует об их хорошей физической подготовке. У большинства студентов биологического факультета значения жизненной емкости легких находятся в пределах нормы, однако у некоторых значения выходят за порог нормы в большую сторону. Это наблюдается у студентов, которые занимаются спортом около двух раз в неделю. У одной студентки из данной выборки значение жизненной емкости легких ниже нормы, что свидетельствует о проблемах с дыхательной системой.

На следующем этапе исследования нами был проведен сравнительный анализ значений жизненной емкости легких девушек и юношей, которые обучаются на разных факультетах.

В таблице 3 представлены результаты сравнения ЖЕЛ у девушек, обучающихся на биологическом факультете и факультете физической культуры.

Таблица 3 — Соотношение показателей ЖЕЛ у девушек, обучающихся на биологическом факультете и факультете физической культуры

Критерий	Среднее, мл	Стандартная ошибка, мл	Стандартное отклонение, мл	Мин, мл	Макс, мл
ЖЕЛ (девушки биологического факультета)	3260	22, 5	506, 68	2200	4100
ЖЕЛ (девушки факультета физической культуры)	4858	16, 8	282, 90	4400	5300
ЖЕЛ (вся выборка)	4059	19, 65	394, 79	2200	5300

Исходя из данных таблицы 3, можно говорить о следующих результатах:

- среднее значение жизненной емкости легких выше у девушек, обучающихся на факультете физической культуры;
- стандартное отклонение от нормы выше у студенток биологического факультета, так как в исследуемой группе отсутствовали девушки, занимающиеся спортом;
- минимальное значение ЖЕЛ (2200 мл) было получено у студентки биологического факультета, имеющей нарушения дыхательной системы, максимальное значение (5300 мл) у студентки факультета физической культуры.

В таблице 4 представлены результаты сравнения ЖЕЛ у юношей, обучающихся на биологическом факультете и факультете физической культуры.

Таблица 4 – Соотношение показателей ЖЕЛ у юношей, обучающихся на биологическом факультете и факультете физической культуры

Критерий	Среднее,	Стандартная ошибка, мл	Стандартное отклонение, мл	Мин, мл	Макс, мл
ЖЕЛ (юноши биологического факультета)	4278	24	574	3500	5100
ЖЕЛ (юноши факультета физической культуры)	5526	27, 9	776, 91	4600	6500
ЖЕЛ (вся выборка)	4902	26	675, 5	3500	6500

Исходя из данных таблицы 4, можно говорить о следующих результатах:

- среднее значение жизненной емкости легких выше у юношей, обучающихся на факультете физической культуры;
- стандартное отклонение от нормы выше у студентов биологического факультета, так как в исследуемой группе отсутствовали юноши, занимающиеся спортом;
- минимальное значение ЖЕЛ (3500 мл) было получено у студента биологического факультета, максимальное значение (6500 мл) у студента факультета физической культуры.

Таким образом, полученные данные свидетельствуют о том, что повседневные физические нагрузки обеспечивают экономную функцию дыхательной системы. Физические нагрузки, как фактор адаптации обеспечивает повышение резистентности организма к экстремальным состояниям.

Литература

- 1 Агаджанян, Н. А. Нормальная физиология / Н. А. Агаджанян, В. М. Смирнов. Москва: Медицинское информационное агентство, 2009. 520 с.
- 2 Сапин, М. Р. Анатомия человека: учебник : в 3 т. / М. Р. Сапин, Г. Л. Билич Москва : ГЭОТАР-Медиа, 2008. Том 2. 496 с.
- 3 Мотузко, Н. С. Физиология дыхания. Учебное пособие / Н. С. Мотузко, В. В. Ковзов, В. К. Гусаков. Витебск : УО ВГАВМ, 2004. 64 с.
- 4 Нормальная физиология человека / под ред. Б. И. Ткаченко. 2-е изд. Москва : Медицина, 2005. 928 с.

УДК 546.47:574.5(476.2)

М. А. Пантелеенко

СОДЕРЖАНИЕ ЦИНКА В ДОННЫХ ОТЛОЖЕНИЯХ ВОДНЫХ ЭКОСИСТЕМ ГОРОДА ГОМЕЛЯ

В статье раскрываются вопросы загрязнения донных отложений водоемов города Гомеля соединениями цинка. За период исследований содержание тяжелого металла в донных отложениях водоемов значительно снизилось в сравнении с 2010 г., причем максимальное изменение определено для водоемов черты города. Это является следствием проведения природно-охранной политики Республики Беларусь.

Введение. К одним из основных загрязняющих веществ, поступающих в природные водные системы, относятся тяжелые металлы. Тяжелые металлы оказывают одно из наиболее отринательных влияний как на качество поверхностных вод, так и на водные экосистемы в целом. В зависимости от интенсивности техногенного воздействия на экосистемы и характера протекания процессов происходит либо их восстановление до фоновых состояний, либо экосистемы переходят к другому устойчивому состоянию (экологическому балансу), которое будет характеризоваться иными количественными и качественными показателями компонентов.

При формировании качества поверхностных вод существенную роль играют донные отложения. Выступая в качестве природных сорбентов, они способны накапливать большую часть поступающих в водные объекты органических и неорганических соединений, в том числе наиболее опасных и токсичных загрязняющих веществ, способствуя тем самым очищению водной среды.

Цинк попадает со сточными водами гальванических цехов, минеральных красок, вискозного волокна и другие. Попадание с растительной продукцией составляет около 20 %. Поступление с морскими солями, поднимаемыми ветром, незначительно, несмотря на их большие объемы. Значительное количество цинка поступает в водные объекты в результате техногенного загрязнения. Важные источники поступления цинка в водные объекты — рудниковые смывные воды и сточные воды гальванических цехов. В воде цинк существует главным образом в ионной форме или в форме его минеральных