Материалы XXVI Республиканской научной конференции студентов и аспирантов «Новые математические методы и компьютерные технологии в проектировании, производстве и научных исследованиях», Гомель, 20–22 марта 2023 г.

АНАЛИТИЧЕСКИЕ И ЧИСЛЕННЫЕ МЕТОДЫ ИССЛЕДОВАНИЯ В МАТЕМАТИКЕ

Алгебра и геометрия

Н. В. Артёменко, Е. В. Кисилюк

(БрГУ им. А. С. Пушкина, Брест, ГГУ им. Ф. Скорины, Гомель)

О НИЛЬПОТЕНТНОЙ π -ДЛИНЕ КОНЕЧНОЙ ГРУППЫ, ФАКТОРИЗУЕМОЙ π -РАЗРЕШИМЫМИ ВЗАИМНО ПЕРЕСТАНОВОЧНЫМИ ПОДГРУППАМИ

Рассматриваются только конечные группы. Пусть π — некоторое множество простых чисел, π' — дополнение к π . Пусть G — π -разрешимая группа. Тогда она обладает нормальным рядом, факторы которого являются либо π' -группами, либо нильпотентными π -группами. Наименьшее число нильпотентных π -факторов среди всех таких нормальных рядов группы G называется нильпотентной π -длиной [1] π -разрешимой группы G и обозначается через $l_{\pi}^{n}(G)$. Обзор результатов о нильпотентной π -длине π -разрешимой группы G с заданными ограничениями на подгруппы представлен в [2].

Напомним, что подгруппы A и B называются взаимно перестановочными, если A перестановочна с каждой подгруппой из B, а B перестановочна с каждой подгруппой из A.

В [3] установлена связь между нильпотентной длиной (π длиной) π -разрешимой группы и нильпотентной длиной (π -длиной) ее взаимно перестановочных сомножителей. В настоящей заметке результаты работы [3] дополнены оценками нильпотентной π -длины.

Доказана следующая теорема.

Теорема. Пусть G = AB — произведение взаимно перестановочных π -разрешимых подгрупп A и B . Тогда

$$l_{\pi}^{n}(G) \leq \max\{l_{\pi}^{n}(A), l_{\pi}^{n}(B)\} + 2.$$

Литература

- 1 Carter, R. Extreme Classes of finite soluble groups / R. Carter, B. Fischer, T. Hawkes // J. Algebra. 1968. Vol. 9, №3. P. 285–313.
- 2 Трофимук, А. А. Инварианты конечных групп и их связь с арифметическими и формационными свойствами структурных объектов / А. А. Трофимук. Минск : Издательский центр БГУ, 2019. 302 с.
- 3 Jabara, E. The Fitting length of a product of mutually permutable finite groups / E. Jabara // Acta Math. Hungar. 2019. Vol. 159. P. 206–210.

С. В. Балычев

(ГГУ им. Ф. Скорины, Гомель)

ОТНОСИТЕЛЬНЫЕ П₂-ФОРМАЦИИ КОНЕЧНЫХ ГРУПП

В данном сообщении все рассматриваемые группы считаются конечными. В обозначениях и определениях мы следуем монографии [1].

Группа G факторизуется попарно перестановочными подгруппами G_1, G_2, \ldots, G_n , если $G = G_1G_2 \cdots G_n$ и $G_iG_j = G_jG_i$ для всех натуральных чисел i и j с $1 \le i, j \le n$.

Замечание. В такой группе для любого набора индексов $1 \le i_1 \le \ldots \le i_k \le n$ произведение $G_{i_1}G_{i_2} \cdots G_k$ является подгруппой группы $G = G_1G_2 \cdots G_n$.

Определение [2]. Предположим, что F и X — классы групп и t — натуральное число. Класс F называется Π_t -классом в X, если F содержит каждую X-группу $G = G_1G_2 \cdots G_k$, у которой для любого набора индексов $1 \le i_1 \le \ldots \le i_t \le k$ произведение $A_{i_1}A_{i_2}\cdots A_k$ принадлежит F.

В работе [3] были описаны все разрешимые наследственные формации с условием Π_2 в классе всех групп.

Следствие [3]. Любая разрешимая S-замкнутая формация Шеметкова является Π_2 -формацией в классе всех групп.

Литература