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Abstract
The aim of this work is to derive a symbol calculus on L2(ℝn) for multidimensional Hausdorff operators. 
Two aspects of this activity result in two almost independent parts. While throughout the perturbation matri-
ces are supposed to be self-adjoint and form a commuting family, in the second part they are additionally 
assumed to be positive definite. What relates these two parts is the powerful method of diagonalization of 
a normal Hausdorff operator elaborated earlier by the second named author.
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Introduction

Not diving too deep for the history of the modern Hausdorff operators on the Euclidean spaces, which usually starts 
with the reference to Hardy’s book [8], where accurate reference to independent pioneer works by Rogosinski can be 
found (in fact, the same results were independently obtained by Garabedian), we instead refer the reader to the survey 
papers [10] and [5]. Even more recent and relevant is [9], where an attempt is undertaken to figure out what the notion of 
Hausdorff operator in Euclidean spaces means. We will use a version of the definition given there.

Definition 1.1 Let K be a locally Lebesgue integrable function on ℝn and let (A(u)), with u ∈ ℝ
n , be a measurable family 

of real (n × n)-matrices almost everywhere defined in the support of K and satisfying detA(u) ≠ 0 there. We define the 
Hausdorff operator HK,A with kernel K by
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In the sequel, we shall assume that | detA(u)|−
1

2K(u) ∈ L1(ℝn) . This guarantees the boundedness of HK,A in L2(ℝn) and 
induces the introduction of the set

of bounded operators in L2(ℝn).
One more assumption throughout the paper will be that the matrices A(u) are self-adjoint and form a commut-
ing family. This implies that there is an orthogonal n × n-matrix C and a family of diagonal non-singular real 
matrices A�(u) = diag(a1(u), ..., an(u)) such that A�(u) = C−1A(u)C for all u ∈ ℝ

n , where A(u) is defined. By this, 
a(u) ∶= (a1(u), ..., an(u)) is the family of all the eigenvalues (with their multiplicities) of the matrix A(u).
It is known that in this case the Hausdorff operator HK,A in L2(ℝn) is normal [17].
The aim of this work is to extend the symbol calculus for one-dimensional Hausdorff operators on L2(ℝ) elaborated in 
[11] to the multivariate case. It is not a plain business, and in order to use the approach in [11], various constraints are 
posed on the matrices A(u). This leaves a room for further research in the cases where both the results and the methods 
of proof are questionable.
It is worth noting one more peculiarity of this work. In fact, a complete definition of Hausdorff operators in [9] suggests 
that (1.1) allows u ∈ ℝ

m , with m not necessarily equal to n. To this end, we mention [12], where in certain cases it is 
necessary that m > n . On the other hand, in some problems, the case m < n may also be meaningful (see, e.g., [1]).
There are three main results in this work: Theorems 2.3, 3.5, and 3.6. We formulate, prove, and discuss them and their 
consequences in the two following sections. All considerations are based on the diagonalization of a normal Hausdorff 
operator obtained in [17] and [16].

The algebra A
A

Prior to the formulation and proof of the result in this section, we need more preliminaries. We split ℝn into 2n hyper-
octants ℝn

i
 , fixing also an enumeration of this family. For every pair of the indices (i, j), i, j = 1,… , 2n , there is a unique 

�(i, j) ∈ {−1, 1}n such that

It is worth noting that �(i, j)ℝn
j
= ℝ

n
i
 and �(i, j)ℝn

l
∩ℝ

n
i
= � whenever l ≠ j . We put

For HK,A ∈ AA , assuming that

with

we define

Obviously, each �ij ∈ Cb(ℝ
n) and �ij = �ji.

(1.1)HK,Af (x) = ∫
ℝn

K(u)f (A(u)x)du, x ∈ ℝ
nis a column vector.

AA ∶=
{
HK,A ∶ | detA(u)|−

1

2K(u) ∈ L1(ℝn)
}

�(i, j)ℝn
i
∶= {(�(i, j)1 u1,… , �(i, j)nun) ∶ u ∈ ℝ

n
i
} = ℝ

n
j
.

Ωij ∶=
{
u ∈ ℝ

n ∶
(
sgn (a1(u)),… , sgn (an(u))

)
= �(i, j)

}
.

|a(u)|−
1

2
−�s ∶=

n∏

k=1

|ak(u)|
−

1

2
−�sk , s = (s1,… , sn) ∈ ℝ

n,

|ak(u)|
−

1

2
−�sk ∶= e

−(
1

2
+�sk) log |ak(u)|,

�ij(s) ∶= ∫Ωij

K(u) |a(u)|−
1

2
−�s

du.
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Following [17] (see also [16]), we are now in a position to define the matrix symbol of the Hausdorff operator HK,A ∈ AA 
by

By this, Φ is a symmetric element of the matrix algebra Mat2n

(
Cb(ℝ

n)
)
.

We also need a property of the map defined above.

Lemma 2.2 The map Smb ∶ AA → Mat2n (C0(ℝ
n)), where C0(ℝ

n) stands for the algebra of continuous functions on ℝn 
vanishing at infinity, is an isometry, if we endow the algebra Mat2n (C0(ℝ

n)) with the norm ‖Φ‖ = sups∈ℝn ‖Φ(s)‖op.

Here, ‖ ⋅ ‖op stands for the operator norm of a matrix as the norm of the operator of multiplication by this matrix.

Proof Let MΦ denote the operator of multiplication by the matrix function Φ ∈ Mat2n(C0(ℝ
n)) in the space of vector valued 

functions L2(ℝn,ℂ2n) . It is known (see [16] and [17]) that the map HK,A ↦ MΦ is an isometry (with respect to operator 
norms) if Φ = Smb(HK,A) . On the other hand, ‖MΦ‖ = ‖Φ‖ by [17, Corollary 3].  ◻

In this section, we will assume that for each pair of indices i, j, the system of equations

has the unique solution u = (b1(t),… , bn(t)) ∈ Ωij , t = (t1, ..., tn) , for almost every tk ∈ ℝ . Hence, we have a measurable 
map ℝn

→ Ωij , t ↦ b(t) , which is almost bijective.
Finally, we are ready to formulate and prove our first main result.

Theorem 2.3 Under the above assumptions, the set AA is a non-closed commutative subalgebra without unit of the Banach 
algebra L(L2(ℝn)) of bounded operators on L2(ℝn).

Proof Straightforward calculations yield the commutativity of AA.
Putting |ak(u)| = etk , we get, since

that ( s ∈ ℝ
n)

where the “hat” stands for the Fourier transform, t = (t1, ..., tn),

and J(t) ∶= �(b1,…,bn)

�(t1,…,tn)
 is the Jacobian.

Since the map

is an isometry (and therefore, injective) and multiplicative (see [17] for details), to prove that AA is an algebra, it suffices 
to show that the product of two symbols is also a symbol. More precisely, it suffices to show that if Smb(HK,A) = Φ and 
Smb(HL,A) = Ψ , then ΦΨ = Smb(HQ,A) for some HQ,A ∈ AA.

(2.2)Φ =
(
�ij

)2n

i,j=1
.

(2.3)|ak(u)| = etk , k = 1,… , n,

� detA(u)� =
n�

k=1

�ak(u)� = e

n∑
k=1

tk
,

�ij(s) = ∫
ℝn

K(b1(t),… , bn(t))e
−

1

2

n∑
k=1

tk �J(t)�e−�s⋅t dt = K̂ij(s),

Kij(t) ∶= K(b1(t),… , bn(t))e
−

1

2

n∑
l=1

tl �J(t)�,

(2.4)Smb ∶ HK,A ↦ Φ, AA → Mat2n (C0(ℝ))
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Denoting �ij and Lij for Ψ similarly to �ij and Kij for Φ and replacing the notation ̂ for the Fourier transform by F  , 
we have

where �kj = L̂kj , Lkj ∈ L1(ℝn) , and ∗ denotes the convolution in L1(ℝn).
Defining the functions Qij on ℝn by

we arrive at

Let now Q be a function on ℝn satisfying

By this, ΦΨ = Smb(HQ,A) in accordance with the above arguments. Since Qij ∈ L1(ℝn) , we have | detA(u)|−
1

2Q(u) ∈ L1(ℝn) . 
Hence, HQ,A ∈ AA.

Let us now proceed to the non-closedness. To this end, we choose a sequence of kernels K� satisfying 
| detA(u)|−

1

2K�(u) ∈ L1(ℝn) and such that the sequence of Fourier transforms K̂�,11 converges to a function in 
C0(ℝ

n) ⧵W0(ℝ
n) uniformly on ℝn . Here, W0(ℝ

n) denotes the Wiener algebra of Fourier transforms of functions in L1(ℝn) ; 
for a comprehensive survey, see [14]. Assume that the sequence of operators HK� ,A

 converges to an operator HL,A in AA in 
the operator norm. Then, by Lemma 2.2, the sequence of symbols Smb(HK� ,A

) converges in the norm ‖ ⋅ ‖op to Smb(HL,A) 
uniformly on ℝn . Since the convergence in the norm in a finite-dimensional space implies the coordinate-wise convergence, 
this implies that K̂�,11 converges (at least pointwise) to L̂11 ∈ W0(ℝ

n) on ℝn , and we arrive at a contradiction.
Finally, let HK,A = I , the identity operator for some HK,A ∈ AA . Then, Smb(HK,A) = E2n (the unit matrix of order 2n ). 

Therefore, K̂ii(s) = 1 , a contradiction. This completes the proof. 

Corollary 2.4 The normed algebra AA is not Banach.

The above treatment leads to the open

Problem What is the closure of AA in the uniform operator topology?

Functions of a Hausdorff operator

We begin with an assumption used throughout the preceding section. However, it is simplified here because of the positive 
definiteness condition posed on the matrices.
Let a(u) ∶= (a1(u),… , an(u)) be the family of eigenvalues (with their multiplicities) of a positive definite matrix A(u). We 
will assume in this section that the system of equations

ΦΨ = (�ij)(�ij) =

( 2n∑

k=1

�ik�kj

)2n

i,j=1

=

(
F

( 2n∑

k=1

Kik ∗ Lkj

))2n

i,j=1

,

Qij ∶=

2n∑

k=1

Kik ∗ Lkj,

ΦΨ =
(
Q̂ij

)2n

i,j=1
.

Qij(t) = Q(b1(t),… , bn(t))e
−

1

2

n∑
l=1

tl �J(t)�.

ak(u) = etk , k = 1,… , n

◻
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has the unique solution u = (b1(t),… , bn(t)) , t = (t1,… , tn) , for almost every tk ∈ ℝ . Again, we have a measurable map 
b ∶ ℝ

n
→ ℝ

n , which is almost bijective.

Holomorphic functions of a Hausdorff operator

The following theorem is a variant of functional calculus for Hausdorff operators.

Theorem 3.5 Let K and A satisfy the conditions listed above, and let each matrix A(u) be positive definite. If a function F 
is holomorphic in the neighborhood E of the spectrum �(HK,A) and F(0) = 0 , then F(HK,A) is also a Hausdorff operator 
of the form HKF ,A

 bounded in L2(ℝn).

Proof Let

stand for the symbol of the Hausdorff operator HK,A in L2(ℝn) [16, 17].
Recall that, by our definitions, a(u)−

1

2
−�s ∶= 

n∏
k=1

ak(u)
−

1

2
−�sk , where ak(u)

−
1

2
−�sk ∶= exp((− 1

2
− �sk) log ak(u)).

Note that

where

Putting ak(u) = etk , with t = (t1, ..., tn) ∈ ℝ
n , we get, since detA(u) =

n∏
k=1

ak(u) = e

n∑
k=1

tk , that

where

and J(t) ∶= �(b1,…,bn)

�(t1,…,tn)
 is the Jacobian.

According to [16, Theorem 1], [17], the Hausdorff operator HK,A in L2(ℝn) is unitary equivalent to the operator M�K,A
 of 

coordinate-wise multiplication by �K,A in the space L2(ℝn,ℂ2n) of ℂ2n-valued functions. More precisely, HK,A = V
−1M�K,A

V , 
where V is a unitary operator between L2(ℝn) and L2(ℝn,ℂ2n) independent of K. Moreover, the spectrum �(HK,A) is equal 
to the closure of the range of the symbol �K,A.

Then, as in [11, Theorem 2], we have

�K,A(s) ∶= ∫
ℝn

K(u)a(u)−
1

2
−�s
du, s = (s1,… , sn) ∈ ℝ

n,

�K,A(s) =∫
ℝn

K(u)

n∏

k=1

ak(u)
−

1

2 e−�sk log ak(u)du

=∫
ℝn

K(u)(detA(u))−
1

2 e−�s⋅log a(u)du,

s ⋅ log a(u) ∶=

n∑

k=1

sk log ak(u).

�K,A(s) = ∫
ℝn

K(b1(t),… , bn(t))e
−

1

2

∑n

k=1
tk �J(t)�e−�s⋅tdt = L̂(s),

L(t) ∶= K(b1(t),… , bn(t))e
−

1

2

n∑
k=1

tk �J(t)�,
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where Γ is the boundary of any open neighborhood of the set �(HK,A) such that E contains its closure.
Here, the identity

and properties of the Bochner integral are used.
To finish the proof, it remains to show that F(�K,A) is the symbol of some Hausdorff operator HKF ,A

 (this operator is 
bounded in L2(ℝn) by the holomorphic functional calculus [6]).

To this end, observe that F(�K,A) ≡ F(L̂) = Q̂F for some QF ∈ L1(ℝn) (see, e. g., [18, Theorem 6.2.4]; this theorem is 
applicable, since F is holomorphic on the open set E, which contains the closure of the range of �K,A ). Thus, if we denote 
log a(u) ∶= (log a1(u),… , log an(u)) and put

then

and

Therefore, by (3.5), we have F(HK,A) = HKF ,A
 , as desired.  ◻

Example 1 Let F(z) = zl, l ∈ ℕ, l ≥ 2 . Then, Hl
K,A

 equals to some Hausdorff operator HKl,A
 with a scalar symbol Q̂l = �l

K,A
 , 

by (3.7).

We now consider the averaging operator of Boyd [3, 4]

where P0 = C is the continuous Cesáro operator. For 𝛼 < 1

2
 , this is a bounded Hausdorff operator in L2(ℝ) with the kernel 

K(u) = �(0,1)(u)u
−� , where � stands for the indicator function of the set indicated as a subscript, and A(u) = a(u) = u . Its 

symbol is

(3.5)

F(HK,A) =
1

2�� ∫Γ

F(�)(� −HK,A)
−1d�

=
1

2�� ∫Γ

F(�)(� − V
−1M�K,A

V)−1d�

=V−1

(
1

2�� ∫Γ

F(�)(� −M�K,A
)−1d�

)
V

=V−1F(M�K,A
)V = V

−1MF(�K,A)
V,

(� − V
−1M�K,A

V)−1 = (V−1�V − V
−1M�K,A

V)−1 = V
−1(� −M�K,A

)−1V

(3.6)KF(u) ∶= (detA(u))
1

2

QF(log a(u))

|J(log a(u))|
,

KF(b1(t),… , bn(t)) = e

1

2

n∑
k=1

tk QF(t)

�J(t)�
,

(3.7)

�KF ,A
(s) =∫

ℝn

KF(u)a(u)
−

1

2
−�s
du

=∫
ℝn

KF(b1(t),… , bn(t))e
(−

1

2
)
∑n

k=1
tk �J(t)�e−�s⋅tdt

=Q̂F(s) = F(�K,A)(s).

P�f (x) = x�−1 ∫
x

0

t−�f (t)dt = ∫
1

0

u−�f (ux) du,
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As mentioned above,

Formula (3) in [2, Ch. III, §3.2] yields

Since in our case J(t) = et , formula (3.6) implies

Thus,

For x > 0 , this is a formula of Boyd [4, Lemma 2].1 As follows from our considerations, it is valid for all f ∈ L2(ℝ) if 
𝛼 < 1

2
 . Since for 𝛼 < 1 −

1

p
 , the operator P� is bounded in Lp(ℝ) with p ∈ (1,∞) , by the Minkowski inequality, for such � 

Boyd’s formula is valid for all f ∈ Lp(ℝ) , p ∈ (1,∞) , as well.

Fractional powers of a Hausdorff operator

Let Re 𝛼 > 0 . Since the function z� is not holomorphic in any neighborhood of zero, the approach of the previous 
subsection is not applicable to the case where 0 ∈ �(HK,A) and needs a special treatment.
For fractional power of a non-negative bounded operator B in the Hilbert space ℌ , we will make use of the following 
formula [15, Ch. 3, Proposition 3.1.1; Ch. 5, Definition 5.1.1]). For every positive integer m > Re  �,

Theorem 3.6 Let Re 𝛼 > 0 , A(u) satisfy the above conditions and let, in addition, each matrix A(u) be positive definite for 
a. e. u. Let the scalar symbol �K,A ≥ 0 and the fractional power ��

K,A
 be the Fourier transform of a function Q� ∈ L1(ℝn) . 

Then, the fractional power H�
K,A

 is also a Hausdorff operator of the form HK� ,A
 bounded in L2(ℝn).

Proof We first note that the Hausdorff operator HK,A is normal and its spectrum �(HK,A) equals to the closure of the range 
of �K,A [16, 17]. Since �K,A ≥ 0 , we conclude that the operator HK,A is non-negative in L2(ℝn) . Thus, for f ∈ L2(ℝn) and 
every positive integer m > Re � , we have

�P�
(s) = ∫

ℝ

�(0,1)(u)u
−�− 1

2
−�s
du =

1

(
1

2
− �) − �s

.

Q̂l(s) = �l
P�
(s) =

1

((
1

2
− �) − �s)l

.

Ql(t) =
(−1)l−1

(l − 1)!
tl−1e

(
1

2
−�)t�(−∞,0)(t).

Kl(u) =u
1

2

Ql(log u)

J(log u)

=
u

1

2

u

(−1)l

(l − 1)!
(log u)l−1e(

1

2
−�) log u�(−∞,0)(log u)

=
1

(l − 1)!

(
log

1

u

)l−1

u−��(0,1)(u).

Pl
�
f (x) =

1

(l − 1)! ∫
1

0

u−�
(
log

1

u

)l−1

f (ux)du.

B�f =
Γ(m)

Γ(�)Γ(m − �) ∫
∞

0

t�−1(B(t + B)−1)mfdt, f ∈ ℌ.

1 Boyd’s formula is important for the study of the dynamics of C , see, e. g., [7] and the bibliography therein.
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As in the proof of the previous theorem, HK,A = V
−1M�K,A

V , where V is a unitary operator taking L2(ℝn) onto L2(ℝn,ℂ2n) 
independent of K. Then,

Here, the identity

is used. Therefore, by [15, Example 3.3.1],

Since ��
K,A

= Q̂� for some Q� ∈ L1(ℝn) , we can proceed as in the proof of the previous theorem. Indeed, let

Then,

and

By virtue of (3.8), this yields H�
K,A

= HK� ,A
 , as desired.  ◻

Remark 1 As mentioned in [16, Corollary 4], under the assumptions of Theorem 3.6, the operator HK,A in L2(ℝn
+
) is 

unitary equivalent to the operator of multiplication by �K,A in L2(ℝn
+
) . It follows that Theorem 3.6 is valid for the space 

L2(ℝn
+
) as well.

Example 2 Consider the Calderón operator

H
�
K,A

f =
Γ(m)

Γ(�)Γ(m − �) ∫
∞

0

t�−1(HK,A(t +HK,A)
−1)mfdt.

(HK,A(t +HK,A)
−1)m = (V−1M�K,A

V(t + V
−1M�K,A

V)−1)m

= (V−1M�K,A
(t +M�K,A

)−1V)m

= V
−1(M�K,A

(t +M�K,A
)−1)mV.

V
−1M�K,A

V(t + V
−1M�K,A

V)−1 =V−1M�K,A
V(V−1(t +M�K,A

)V)−1

=V−1M�K,A
(t +M�K,A

)−1V

(3.8)

H
�
K,A

f =
Γ(m)

Γ(�)Γ(m − �) ∫
∞

0

t�−1V−1(M�K,A
(t +M�K,A

)−1)mVf dt

=V−1

(
Γ(m)

Γ(�)Γ(m − �) ∫
∞

0

t�−1(M�K,A
(t +M�K,A

)−1)mVf dt

)

=V−1M�
�K,A

Vf = V
−1M��

K,A
Vf .

(3.9)K�(u) ∶= (detA(u))
1

2

Q�(log a(u))

|J(log a(u))|
.

K�(b1(t),… , bn(t)) = e

1

2

n∑
k=1

tk Q�(t)

�J(t)�
,

�K� ,A
(s) = ∫

ℝn

K�(u)a(u)
−

1

2
−�s
du

= ∫
ℝn

K�(b1(t),… , bn(t))e
−

1

2

n∑
k=1

tk �J(t)�e−�s⋅tdt

= Q̂�(s) = ��
K,A

(s).
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in the space L2(ℝ+) . This is a Hausdorff operator with

It follows that the symbol of K is �(s) = 1

s2 +
1

4

 . Therefore, �(K) = [0, 4] . Furthermore, let Re 𝛼 > 0 . It is known (see, 

e. g., [2, Ch. 1, §1.12 (40)]) that ��(s) =
1

(s2 +
1

4
)�

 is the Fourier transform of the function

where K� is the function of Macdonald. Thus,

where the kernel K� is given by formula (3.9), with detA(u) = a(u) =
1

u
 , J(t) = −e−t , and the Q� mentioned above. In other 

words, K�(u) = u
−

3

2Q�(log u) for u > 0 . In particular,

and

Putting here v = 1

u
 and x = 1 , we arrive at the following index transform (for this class of integral transforms, see, e. g., 

[19])
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