

Общероссийский математический портал

А. П. Старовойтов, Н. В. Рябченко, О детерминантных представлениях многочленов Эрмита—Паде, Tp.~MMO, 2022, том 83, выпуск 1, 17–35

Использование Общероссийского математического портала Math-Net.Ru подразумевает, что вы прочитали и согласны с пользовательским соглашением http://www.mathnet.ru/rus/agreement

Параметры загрузки:

IP: 37.17.74.99

17 ноября 2023 г., 15:33:45

О детерминантных представлениях многочленов Эрмита—Паде

А. П. Старовойтов, Н. В. Рябченко

В работе введены новые понятия: слабо нормальный индекс, слабо совершенная система функций. С помощью этих понятий для произвольной системы степенных рядов сформулированы и доказаны критерии единственности решения двух задач Эрмита — Паде, получены явные детерминантные представления многочленов Эрмита — Паде 1-го и 2-го типов. Доказанные утверждения дополняют хорошо известные результаты в теории аппроксимаций Эрмита — Паде.

Библиография: 34 названия. УДК: 517.538.52+517.538.53+517.518.84. MSC2020: 41A21, 41A28. Ключевые слова и фразы: многочлены Эрмита — Паде, аппроксимации Эрмита — Паде, нормальный индекс, совершенная система, определители Адамара.

Введение

Повышенный интерес к многочленам и аппроксимациям Эрмита—Паде, наблюдаемый в последние годы (см., например, [4, 7, 11, 17, 30]), вызван в том числе их разнообразными приложениями в теории приближения аналитических функций [10, 21, 23] и аналитического продолжения [15, 16], в приложениях к случайным матрицам [2, 18, 22], теории операторов [5, 20], диофантовым приближениям [9, 24, 31, 34], а также при изучении броуновского движения [25] и в теории полиортогональных многочленов [19, 28, 29].

Конструкцию этих многочленов и аппроксимаций предложил Ш. Эрмит [27] в связи с исследованиями арифметических свойств числа e. С тех пор они привлекали внимание как классиков (Д. Гильберт, Ф. Клейн, Ф. Линдеман, К. Малер, О. Перрон, К. Зигель), так и многих известных современных математиков (см., например, монографию [6] и обзорные статьи [1, 15, 16]).

Некоторые предварительные итоги исследований в этой области подведены в монографиях [3, 8]. В [3, 8], кроме изложения основных положений теории, приведены ее многочисленные приложения, а также поставлен ряд важных и интересных задач, в том числе еще не до конца решенных к настоящему времени. Такими, в частности, являются задачи, связанные с нахождением необходимых и достаточных условий, при которых многочлены Эрмита — Паде определяются (с точностью до числового множителя) единственным образом. В монографии [8, гл. 4, § 1, § 3] поставлены четыре таких задачи — за-

Работа выполнена при финансовой поддержке Министерства образования Республики Беларусь в рамках Государственной программы научных исследований на 2016—2020 годы.

дачи А, В, С, D. В соответствии с терминологией работы [33] мы их называем задачами Эрмита — Паде. Задачи С, D напрямую связаны с проблемой единственности существования полиортогональных многочленов, ассоциированных с заданной системой степенных рядов лорановского типа (их полное решение получено нами в работах [13, 14]). Хорошо известно, что единственность решения указанных задач Эрмита — Паде имеет место для так называемых совершенных систем функций. Однако совершенность системы функций является лишь достаточным условием единственности решения. В данной работе установлены критерии существования и единственности решений двух других задач Эрмита — Паде (задач А и В).

Далее будем придерживаться терминологии, принятой в работах [1, 33].

§ 1. Многочлены Эрмита — Паде второго типа

1.1. Постановка задачи. Пусть $\mathbf{f} = (f_1, ..., f_k)$ — набор, вообще говоря, формальных степенных рядов

$$f_j(z) = \sum_{l=0}^{\infty} f_l^j z^l, \quad j = 1, 2, ..., k,$$
 (1.1)

с комплексными коэффициентами. Множество k-мерных мультииндексов (индексов), т.е. упорядоченных k целых неотрицательных чисел, обозначим \mathbb{Z}_+^k . Порядок мультииндекса $\vec{m} = (m_1, ..., m_k)$ — это сумма $m = m_1 + ... + m_k$. Зафиксируем индекс $n \in \mathbb{Z}_+^k$ и мультииндекс $\vec{m} = (m_1, ..., m_k) \in \mathbb{Z}_+^k$ и рассмотрим следующую задачу Эрмита — Паде (см. [1], [3], [8, гл. 4, § 1], [33]).

Задача А. Найти такой тождественно не равный нулю многочлен $Q_m(z)=Q_{n,\vec{m}}(z;\mathbf{f}),\ \deg Q_m\leqslant m$ и такие многочлены $P_{n_j}^j(z)=P_{n,\vec{m}}^j(z;\mathbf{f}),\ \deg P_{n_j}^j\leqslant n_j,$ $n_j=n+m-m_j,$ чтобы для $j=1,\ldots,k$

$$R_{n,\vec{m}}^{j}(z) := Q_{m}(z)f_{j}(z) - P_{n_{j}}^{j}(z) = l_{j} z^{n+m+1} + \dots$$
 (1.2)

Если k=1, то ${\bf f}$ состоит из одного ряда f_1 . В этом случае решение поставленной задачи было получено Паде [32], который нашел явные детерминантные представления многочленов $Q_m(z)$, $P_n(z):=P^1_{n,m}(z;\,f_1)$ (их называют многочленами Паде). Например, если $c_l:=f_l^1,\;l=0,\,1,\,...$, то [8, гл. 1, § 1.1, теорема 1.1.1]

$$Q_{m}(z) = \begin{vmatrix} c_{n-m+1} & c_{n-m+2} & \dots & c_{n} & c_{n+1} \\ c_{n-m+2} & c_{n-m+3} & \dots & c_{n+1} & c_{n+2} \\ \dots & \dots & \dots & \dots & \dots \\ c_{n} & c_{n+1} & \dots & c_{n+m-1} & c_{n+m} \\ z^{m} & z^{m-1} & \dots & z & 1 \end{vmatrix} .$$
 (1.3)

Здесь и далее при l < 0 считаем, что $c_l = 0$ и $f_l^{\,j} = 0$.

В случае когда **f** является набором экспонент $\{e^{\lambda_j z}\}_{j=1}^k$, где λ_j — различные не равные нулю комплексные числа, решение задачи A найдено Эрмитом

в его известной работе [27], посвященной доказательству трансцендентности числа e. В [27] искомые многочлены представлены несобственными интегралами Римана.

Хорошо известно [8, гл. 4, § 1], что в общем случае решение задачи А существует, а соответствующие многочлены $Q_m(z)$, $P_{n_j}^j(z)$ находятся с точностью до числового множителя: если пара (Q_m,P) , где $P=(P_{n_1}^1,\ldots,P_{n_k}^k)$, удовлетворяет необходимым условиям, то для любого отличного от нуля комплексного числа λ новая пара $(\lambda Q_m,\lambda P)$, где $\lambda P:=(\lambda P_{n_1}^1,\ldots,\lambda P_{n_k}^k)$, также удовлетворяет необходимым условиям. Однако эта неединственность может быть и более существенной. Приведем соответствующий пример.

Пример 1.1. Пусть k = 1, n = 2, m = 2, а

$$f_1(z) = \frac{1}{2} + z + 2z^2 + 4z^3 + 8z^4 + \frac{z^5}{5!} + \frac{z^6}{6!} + \dots$$

Тогда любое решение задачи можно представить в виде: $(\lambda Q_2, \lambda P_2)$, где

$$Q_2(z) = a + bz - (4a + 2b)z^2, \quad P_2(z) = \frac{1}{2} + \left(a + \frac{1}{2}b\right)z,$$

а a и b — произвольные действительные числа, не равные нулю одновременно.

Определение 1. Будем говорить, что задача A имеет единственное решение, если для любых двух решений (Q'_m, P') и (Q''_m, P'') задачи A найдется такое комплексное число λ , что $(Q'_m, P') = (\lambda Q''_m, \lambda P'')$.

Определение 2. Если пара (Q_m, P) , где $P = (P_{n_1}^1, ..., P_{n_k}^k)$, — решение задачи A с индексом n и мультииндексом $\vec{m} = (m_1, ..., m_k)$, то многочлены $Q_m(z), P_{n_1}^1(z), ..., P_{n_k}^k(z)$ называют многочленами Эрмита — Паде второго типа (German type) для набора \mathbf{f} степенных рядов (1.1).

Центральными понятиями в теории таких многочленов являются понятия нормального индекса и совершенной системы (см. [1], [8, гл. 4, §1], [33]).

Определение 3. Индекс $(n, \vec{m}) = (n, m_1, ..., m_k) \in \mathbb{Z}_+^{k+1}$ называется нормальным для \mathbf{f} относительно задачи \mathbf{A} , если для любого решения (Q_m, P) задачи \mathbf{A} с индексом \vec{m}

$$\deg Q_m = m, \quad \deg P_{n_j}^j = n_j, \quad j = 1, ..., k.$$

Нормальный индекс (n, \vec{m}) будем называть вполне нормальным для \mathbf{f} относительно задачи A, если НОД $(Q_m, P_{n_i}^j) = 1$ для всех j = 1, ..., k.

Определение 4. Система **f** называется совершенной относительно задачи A, если все индексы $(n, \vec{m}) \in \mathbb{Z}_+^{k+1}$ являются нормальными для **f** относительно задачи A.

Определение 5. Систему **f** будем называть вполне совершенной относительно задачи A, если все индексы $(n, \vec{m}) \in \mathbb{Z}_+^{k+1}$ являются вполне нормальными для **f** относительно задачи A.

При k=1 индекс (n,m) является нормальным для $\mathbf{f}=\{f_1\}$ (полагаем $c_l:=f_l^1,\ l=0,\ 1,\ldots$) тогда и только тогда, когда [1]

$$H_{n+1,m} \cdot H_{n,m+1} \neq 0,$$
 (1.4)

где определители Адамара $H_{n,m}$ определяются равенствами

$$H_{n,m} = \begin{vmatrix} c_{n-m+1} & c_{n-m+2} & \dots & c_n \\ c_{n-m+2} & c_{n-m+3} & \dots & c_{n+1} \\ \vdots & \vdots & \ddots & \vdots \\ c_n & c_{n+1} & \dots & c_{n+m-1} \end{vmatrix}.$$

Критерием вполне нормального индекса является условие [1]

$$H_{n,m} \cdot H_{n+1,m} \cdot H_{n,m+1} \neq 0.$$

Если индекс (n, \vec{m}) является нормальным, то задача A имеет единственное решение [8, гл. 4, §1]. В этом случае однозначно определяется вектор

$$\pi_{n,\vec{m}} = (\pi^1, ..., \pi^k), \quad \pi^j(z) = \frac{P_{n_j}^j(z)}{Q_m(z)},$$

компоненты которого $\pi^j(z)$ называют аппроксимациями Эрмита—Паде второго типа (совместными аппроксимациями Паде в терминологии монографии [8]) для ${\bf f}$. Следующий пример показывает, что нормальность индекса (n,m) не является необходимым условием единственности решения задачи ${\bf A}$.

Пример 1.2. Пусть k = 1, n = 2, m = 2, а

$$f_1(z) = \frac{1}{2} + \frac{z}{2} + \frac{z^2}{8} + \frac{z^3}{16} + \frac{z^4}{32} + \frac{z^5}{5!} + \frac{z^6}{6!} + \dots$$

Тогда любое решение задачи А можно записать в виде: $(\lambda Q_2, \lambda P_2)$, где $\lambda \in \mathbb{C}$, $\lambda \neq 0$, а

$$Q_2(z) = 2 - z$$
, $P_2(z) = 1 + \frac{z}{2} - \frac{z^2}{4}$.

При этом индекс (2, 2) не является нормальным, так как $\deg Q_2 = 1$.

Нашей ближайшей целью является нахождение необходимых и достаточных условий на индекс $(n, \vec{m}) \in \mathbb{Z}_+^{k+1}$ и систему \mathbf{f} , при которых решение задачи A единственно.

1.2. Критерий единственности решения задачи А. В дальнейшем, не ограничивая общности, будем считать, что радиусы сходимости всех степенных рядов (1.1) не равны нулю, а \vec{m} — ненулевой мультииндекс. Для нулевого мультииндекса \vec{m} решение (с точностью до числового множителя) задачи А очевидно: $Q_m(z) \equiv 1$, а $P_{n_i}^j(z) - n_i$ -я частичная сумма ряда f_i .

Введем необходимые обозначения. Для каждого $j \in \{1, ..., k\}$, фиксированных индекса n и мультииндекса $\vec{m} = (m_1, ..., m_k)$ в предположении, что $m_i \neq 0$,

определим матрицу порядка $m_i \times (m+1)$

$$F^{j} = \begin{pmatrix} f_{n-m_{j}+1}^{j} & f_{n-m_{j}+2}^{j} & \dots & f_{n_{j}+1}^{j} \\ f_{n-m_{j}+2}^{j} & f_{n-m_{j}+3}^{j} & \dots & f_{n_{j}+2}^{j} \\ \dots & \dots & \dots & \dots \\ f_{n}^{j} & f_{n+1}^{j} & \dots & f_{n+m}^{j} \end{pmatrix},$$
(1.5)

а затем матрицу порядка $m \times (m+1)$

$$F_{n,\vec{m}} = [F^1 \ F^2 \ \dots \ F^k]^T := \begin{pmatrix} f_{n-m_1+1}^1 & f_{n-m_1+2}^1 & \dots & f_{n_1+1}^1 \\ f_{n-m_1+2}^1 & f_{n-m_1+3}^1 & \dots & f_{n_1+2}^1 \\ \dots & \dots & \dots & \dots \\ f_n^1 & f_{n+1}^1 & \dots & f_{n+m}^1 \\ \dots & \dots & \dots & \dots \\ f_{n-m_k+1}^k & f_{n-m_k+2}^k & \dots & f_{n_k+1}^k \\ f_{n-m_k+2}^k & f_{n-m_k+3}^k & \dots & f_{n_k+2}^k \\ \dots & \dots & \dots & \dots \\ f_n^k & f_{n+1}^k & \dots & f_{n+m}^k \end{pmatrix}.$$

$$(1.6)$$

Если к матрице $F_{n,\vec{m}}$ добавить в качестве последней строки строку

$$(f_{n+l}^j f_{n+l+1}^j \dots f_{n+m+l}^j),$$

то получим квадратную матрицу порядка m+1. Определитель этой матрицы обозначим через $d^j_{n,\vec{m},l}$. При $m_j=0$ считаем, что матрица $F_{n,\vec{m}}$ и определитель $d^j_{n,\vec{m},l}$ не содержат блок-матрицу F^j .

Определим также функциональные матрицы-строки порядка $1 \times (m+1)$

$$\begin{split} E(z) &= (z^m & z^{m-1} & \dots & z & 1), \\ E_{m_j}(z) &= \left(\sum_{l=0}^{n-m_j} f_l^j z^{m+l} & \sum_{l=0}^{n-m_j+1} f_l^j z^{m+l-1} & \dots & \dots & \sum_{l=0}^{n_j} f_l^j z^l \right). \end{split}$$

Определение 6. Индекс (n, \vec{m}) будем называть слабо нормальным для \mathbf{f} относительно задачи A, если ранг матрицы $F_{n,\vec{m}}$ равен m.

В примере 1.1 индекс (2, 2) не является нормальным и не является слабо нормальным, а в примере 1.2 индекс (2, 2) не является нормальным, но является слабо нормальным относительно задачи А для рассматриваемых в этих примерах рядов.

Далее будет установлено, что любой нормальный индекс (n, \vec{m}) для \mathbf{f} относительно задачи А является также и слабо нормальным индексом для \mathbf{f} относительно задачи А. Пример 1.2 показывает, что обратное утверждение, вообще говоря, неверно.

Определение 7. Систему **f** назовем слабо совершенной относительно задачи A, если все индексы $(n, \vec{m}) \in \mathbb{Z}_+^{k+1}$ являются слабо нормальными для **f** относительно задачи A.

Отметим, что любая совершенная система ${\bf f}$ относительно задачи ${\bf A}$ является также и слабо совершенной системой относительно задачи ${\bf A}$.

Сформулируем и докажем основную теорему этого параграфа.

Теорема 8. Для того чтобы для фиксированного индекса (n, \vec{m}) задача А имела единственное решение, необходимо и достаточно, чтобы индекс (n, \vec{m}) был слабо нормальным для f относительно задачи A, m. e. rang $F_{n,\vec{m}} = m$.

В случае если $\operatorname{rang} F_{n,\vec{m}} = m$, при определенном выборе нормирующего множителя для решений задачи (Q_m,P) справедливы следующие детерминантные представления:

$$Q_m(z) = \det[F^1 \ F^2 \ \dots \ F^k \ E(z)]^T,$$
 (1.7)

$$P_{n_j}^j(z) = [F^1 \ F^2 \ \dots \ F^k \ E_{m_j}(z)]^T,$$
 (1.8)

$$R_{n,\vec{m}}^{j}(z) = \sum_{l=1}^{\infty} d_{n,\vec{m},l}^{j} z^{n+m+l}.$$
 (1.9)

Доказательство. Пусть

$$Q_m(z) = b_0 + b_1 z + \dots + b_m z^m.$$

Обозначим через $(g)_k$ коэффициент при z^k степенного ряда g(z). Рассмотрим систему m линейных однородных уравнений относительно m+1 неизвестных коэффициентов b_0, b_1, \ldots, b_m :

$$(Q_m f_j)_p = 0 (1.10)$$

 $p = n_i + 1, n_i + 2, ..., n_i + m_j; j = 1, 2, ..., k.$

В матричном виде система (1.10) выглядит так:

$$F_{n,\vec{m}}b^T = \theta^T, \tag{1.11}$$

где $b=(b_0,\,b_1,\,...,\,b_m)$ — матрица-строка, а матрица-строка θ имеет порядок $1\times(m+1)$, все ее элементы нулевые. Поскольку система (1.11) является однородной и в ней число неизвестных на единицу больше числа уравнений, то из теоремы Кронекера — Капелли следует, что у системы (1.11) имеется ненулевое решение. Более того, множество всех линейно независимых решений системы (1.11) состоит из одного фундаментального решения тогда и только тогда, когда $\operatorname{rang} F_{n,\vec{m}} = m$. В этом случае все остальные ненулевые решения получаются домножением этого фундаментального решения на число $\lambda \neq 0$. Поскольку многочлены $P_{n_j}^j(z)$ однозначно определяются по заданному многочлену $Q_m(z)$, то тем самым первая часть теоремы 8 доказана.

Докажем теперь равенства (1.7), (1.8). Так как ранг матрицы $F_{n,\vec{m}}$ равен m, то при некотором $p \in \{1, ..., m+1\}$ определитель, полученный в результате вычеркивания в матрице $F_{n,\vec{m}}$ p-го столбца, отличен от нуля. Для определенности предположим, что p=m+1. Тогда в развернутом виде систему (1.11)

можно переписать в виде

$$\begin{pmatrix} f_{n-m_{1}+1}^{1} & f_{n-m_{1}+2}^{1} & \cdots & f_{n_{1}}^{1} \\ f_{n-m_{1}+2}^{1} & f_{n-m_{1}+3}^{1} & \cdots & f_{n_{1}+1}^{1} \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ f_{n}^{1} & f_{n+1}^{1} & \cdots & f_{n+m-1}^{1} \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ f_{n-m_{k}+1}^{k} & f_{n-m_{k}+2}^{k} & \cdots & f_{n_{k}}^{k} \\ f_{n-m_{k}+2}^{k} & f_{n-m_{k}+3}^{k} & \cdots & f_{n_{k}+1}^{k} \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ f_{n}^{k} & f_{n+1}^{k} & \cdots & f_{n+m-1}^{k} \end{pmatrix} = -b_{0} \begin{pmatrix} f_{n_{1}+1}^{1} \\ f_{n_{1}+2}^{1} \\ \cdots \\ f_{n_{k}+1}^{1} \\ f_{n+m}^{k} \\ \cdots \\ f_{n_{k}+1}^{k} \\ f_{n_{k}+2}^{k} \\ \cdots \\ f_{n+m}^{k} \end{pmatrix}. \tag{1.12}$$

Обозначим главный определитель системы (1.12) через $H_{n,\vec{m}}$. По предположению $H_{n,\vec{m}}$ не равен нулю. Если бы $b_0=0$, то система (1.12) имела бы только нулевое решение. Тогда и система (1.11) имела бы только нулевое решение. Поэтому $b_0 \neq 0$. Решаем систему (1.12) по правилу Крамера. Пренебрегая числовым множителем, результат можно записать в виде:

$$Q_{m}(z) = \begin{vmatrix} f_{n-m_{1}+1}^{1} & f_{n-m_{1}+2}^{1} & \cdots & f_{n_{1}+1}^{1} \\ \vdots & \vdots & \vdots & \vdots \\ f_{n}^{1} & f_{n+1}^{1} & \cdots & f_{n+m}^{1} \\ \vdots & \vdots & \vdots & \vdots \\ f_{n-m_{k}+1}^{k} & f_{n-m_{k}+2}^{k} & \cdots & f_{n_{k}+1}^{k} \\ \vdots & \vdots & \vdots & \vdots \\ f_{n}^{k} & f_{n+1}^{k} & \cdots & f_{n+m}^{k} \\ z^{m} & z^{m-1} & \cdots & 1 \end{vmatrix} = \det[F^{1} & \cdots & F^{k} E(z)]^{T}.$$

Отсюда, в частности, следует, что $b_0 = H_{n,\vec{m}} \neq 0$. В случае если бы мы, вычеркивая в матрице $F_{n,\vec{m}}$ столбец с номером $p \in \{1, ..., m\}$, получили определитель отличный от нуля, то, рассуждая аналогично, также пришли бы к предыдущему представлению. Равенство (1.7) доказано.

Многочлены $P_{n_i}^j(z)$ определим равенствами:

$$P_{n_j}^j(z) = \sum_{p=0}^{n_j} (Q_m f_j)_p z^p, \quad j = 1, 2, ..., k.$$

Будем искать их явный вид. Для этого рассмотрим

$$Q_{m}(z) \cdot \sum_{l=0}^{\infty} f_{l}^{j} z^{l} = \begin{bmatrix} f_{n-m_{1}+1}^{1} & f_{n-m_{1}+2}^{1} & \cdots & f_{n_{1}+1}^{1} \\ \vdots & \vdots & \vdots & \vdots \\ f_{n}^{1} & f_{n+1}^{1} & \cdots & f_{n+m}^{1} \\ \vdots & \vdots & \vdots & \vdots \\ f_{n-m_{k}+1}^{k} & f_{n-m_{k}+2}^{k} & \cdots & f_{n_{k}+1}^{k} \\ \vdots & \vdots & \vdots & \vdots \\ f_{n}^{k} & f_{n+1}^{k} & \cdots & f_{n+m}^{k} \\ \sum_{l=0}^{\infty} f_{l}^{j} z^{m+l} & \sum_{l=0}^{\infty} f_{l}^{j} z^{m+l-1} & \cdots & \sum_{l=0}^{\infty} f_{l}^{j} z^{l} \end{bmatrix}$$

$$(1.13)$$

При $m_j \neq 0$ в определителе (1.13) выделим блок F^j . Вычтем из последней строки определителя первую строку блока F^j , умноженную на z^{n_j+1} , затем вторую строку блока F^j , умноженную на z^{n_j+2} , и так далее вплоть до последней строки блока F^j , умноженной на z^{n+m} . В результате получим определитель, у которого ряды в последней строке имеют лакуны длиной m_j . Сохраняя начальные строки этих рядов, придем к определителю

$$P_{n_j}^j(z) = \det[F^1 \ F^2 \ \dots \ F^k \ E_{m_j}(z)]^T. \tag{1.14}$$

Он и будет искомым. Действительно, $P_{n_j}^j(z)$ — многочлен и $\deg P_{n_j}^j \leqslant n_j$. Учитывая (1.14) и (1.2), $R_{n,\vec{m}}^j(z)$ можно представить в виде

$$R_{n,\vec{m}}^{j}(z) = \begin{vmatrix} f_{n-m_{1}+1}^{1} & f_{n-m_{1}+2}^{1} & \cdots & f_{n_{1}+1}^{1} \\ \vdots & \vdots & \vdots & \vdots \\ f_{n}^{1} & f_{n+1}^{1} & \cdots & f_{n+m}^{1} \\ \vdots & \vdots & \vdots & \vdots \\ f_{n-m_{k}+1}^{k} & f_{n-m_{k}+2}^{k} & \cdots & f_{n_{k}+1}^{k} \\ \vdots & \vdots & \vdots & \vdots \\ f_{n}^{k} & f_{n+1}^{k} & \cdots & f_{n+m}^{k} \\ \sum_{l=n+1}^{\infty} f_{l}^{j} z^{m+l} & \sum_{l=n+2}^{\infty} f_{l}^{j} z^{m+l-1} & \cdots & \sum_{l=n+m+1}^{\infty} f_{l}^{i} z^{l} \end{vmatrix} = \sum_{l=1}^{\infty} d_{n,\vec{m},l}^{j} z^{n+m+l}.$$

При преобразованиях воспользовались определением суммы степенного ряда и правилом сложения определителей. Справедливость предыдущего равенства при $m_i = 0$ проверяется непосредственно. Теорема 8 доказана.

1.3. Замечания и некоторые следствия. Компонента m_j мультииндекса \vec{m} определяет число коэффициентов ряда f_j , которые учитываются при построении многочлена $Q_m(z)$. В частности, если $m_j=0$, то матрица $F_{n,\vec{m}}$ и определитель в (1.7) не содержат блока F^j и, следовательно, при построении многочлена $Q_m(z)$ ряд f_j не участвует, а порядок мультииндекса \vec{m} определяется остальными ненулевыми компонентами.

Например, если $\vec{m}=(m_1,0,...,0)\in\mathbb{Z}_+^k$, то $m=m_1$ и тогда, как и в одномерном случае, при нахождении $Q_m(z)$ учитываются только коэффициенты ряда f_1 . При этом представление (1.7) (с учетом принятых ранее обозначений для коэффициентов ряда f_1) совпадает с (1.3).

В том случае, если \overrightarrow{m} — нулевой индекс, то с точностью до числового множителя $Q_m(z)\equiv 1$, а $P_{n_j}^j(z)$ — n_j -я частная сумма ряда f_j . Отсюда, в частности, следует, что если $\mathbf f$ является совершенной системой относительно задачи $\mathbf A$, то все коэффициенты рядов (1.1) не равны нулю. Например, если одно из чисел $\{\lambda_p\}_{p=1}^k$ равно нулю, то $\{e^{\lambda_p z}\}_{p=1}^k$ уже не является совершенной системой относительно задачи $\mathbf A$. В этой связи напомним, что для набора экспонент $\{e^{\lambda_p z}\}_{p=1}^k$ явное решение задачи $\mathbf A$ получено Эрмитом [27] в предположении, что все $\{\lambda_p\}_{p=1}^k$ отличны от нуля.

Следует также сказать, что если индекс (n,\vec{m}) не является слабо нормальным для ${\bf f}$ относительно задачи ${\bf A}$, то многочлены $Q_m(z)$ и $P^j_{n_j}(z)$, определенные равенствами (1.7) и (1.8), не являются решениями задачи ${\bf A}$. В частности, в примере 1.1 для индекса (2, 2) искомый многочлен $Q_2(z)=a+bz-(4a+2b)z^2$. Однако если $Q_2(z)$ находить по формуле (1.3), то получим, что $Q_2(z)\equiv 0$. Как уже отмечалось, представление многочлена Паде в виде (1.3) вытекает из общего представления многочленов Эрмита—Паде (1.7). Поэтому оно также справедливо только в том случае, когда индекс (n,m) является слабо нормальным относительно задачи ${\bf A}$. В монографии [3] при доказательстве теоремы 1.1.1 на это обстоятельство не обращено внимание (см. [3, гл. 1, § 1.1, теорема 1.1.1]).

Из (1.7) и (1.8) вытекают следующие критерии нормальности и вполне нормальности индекса (n, \vec{m}) .

Следствие 1. Индекс $(n, \vec{m}) \in \mathbb{Z}_+^{k+1}$ будет нормальным для \mathbf{f} относительно задачи A тогда и только тогда, когда

$$H_{n+1,\vec{m}} \cdot \prod_{j=1}^{k} H_{n,\vec{m}}^{j} \neq 0,$$
 (1.15)

где

$$H_{n,\vec{m}}^{j} = \begin{vmatrix} f_{n-m_{1}+1}^{1} & f_{n-m_{1}+2}^{1} & \cdots & f_{n_{1}+1}^{1} \\ \vdots & \vdots & \ddots & \vdots \\ f_{n}^{1} & f_{n+1}^{1} & \cdots & f_{n+m}^{1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ f_{n-m_{k}+1}^{k} & f_{n-m_{k}+2}^{k} & \cdots & f_{n_{k}+1}^{k} \\ \vdots & \vdots & \vdots & \vdots \\ f_{n-m_{j}}^{j} & f_{n-m_{j}+1}^{j} & \cdots & f_{n_{j}}^{j} \end{vmatrix}.$$

Индекс (n, \vec{m}) будет вполне нормальным для ${f f}$ относительно задачи A тогда и только тогда, когда

$$H_{n,\vec{m}} \cdot H_{n+1,\vec{m}} \cdot \prod_{j=1}^{k} H_{n,\vec{m}}^{j} \neq 0.$$
 (1.16)

В частности, при k=1 получим критерий нормального индекса (n,m), совпадающий с (1.4). Как и прежде, при $m_j=0$ в (1.15) и предыдущем неравенстве предполагается, что определители $H_{n,\vec{m}},H_{n+1,\vec{m}},H_{n,\vec{m}}^j$ не содержат блок F^j .

Следствие 2. Для того чтобы задача A имела единственное решение для любого индекса (n, \vec{m}) , где $\vec{m} \neq (0, ..., 0)$, необходимо и достаточно, чтобы система f была слабо совершенной.

Следующее следствие можно рассматривать как некоторый многомерный аналог теоремы Кронекера [8, гл. 2, § 3].

Следствие 3. Пусть индекс $n = (n, \vec{m})$ является слабо нормальным для $\mathbf{f} = (f_1, ..., f_k)$ относительно задачи A, а ряд f_j не является формальным.

Тогда для того, чтобы функция $f_j(z)$ была рациональной, необходимо и достаточно, чтобы $d^j_{n \overrightarrow{m} l} = 0$ для всех достаточно больших l.

Важно отметить, что предыдущее следствие справедливо и при $m_j=0$. Уже было сказано, что если $m_j=0$, то при нахождении многочлена $Q_m(z)$ коэффициенты ряда f_j не учитываются. Однако при построении многочлена $P_{n_j}^j(z)$ и соответствующего остаточного члена $R_{n,\vec{m}}^j(z)$ коэффициенты ряда f_j принимаются во внимание.

Следствие 4. Если система f является совершенной относительно задачи A, то для любого индекса $(n, \vec{m}) \in \mathbb{Z}_+^k$ в равенствах (1.2) коэффициенты $l_i \neq 0$ при всех j = 1, 2, ..., k.

Для доказательства следствия, заметим, что из (1.9) вытекает равенство $l_j = d_{n,\vec{m},1}^j$. Теперь остается применить критерий (1.15) нормальности индекса.

§ 2. Многочлены Эрмита — Паде первого типа

2.1. Постановка задачи. Рассмотрим задачу Эрмита—Паде, двойственную задаче A (см. [1], [8, гл. 4, §1], [33]).

Задача В. Для набора **f** степенных рядов (1.1) и ненулевого мультииндекса $n=(n_1,\ldots,n_k)\in\mathbb{Z}_+^k$ найти такие не равные тождественно нулю одновременно многочлены $A_1(z)=A_n^1(z),\ldots,A_k(z)=A_n^k(z)$, степени которых $\deg A_1\leqslant \leqslant n_1-1,\ldots,\deg A_k\leqslant n_k-1$ и

$$L_n(z) := \sum_{j=1}^k A_j(z) f_j(z) = c_n z^{|n|-1} + \dots,$$
 (2.1)

где $|n| = n_1 + ... + n_k$, а $\deg A_i = -1$ только тогда, когда $A_i(z) \equiv 0$.

Заметим, что если, например, $n_k=0$, то задача В вырождается в аналогичную задачу, но уже для набора $f=(f_1,\,...,\,f_{k-1})$, состоящего из k-1 степенных рядов. Поэтому в дальнейшем, где это необходимо учитывать, будем рассматривать индексы $n=(n_1,\,...,\,n_k)$, у которых компоненты $n_j>0$.

В случае когда k=2, $(n_1,n_2)=(m+1,n+1)$, $\mathbf{f}=(f_1,-1)$, задача В равносильна задаче А. Поэтому многочлен $A_1(z)$ (как и $A_2(z)$) является многочленом Паде и в предположении, что индекс (m+1,n+1) является слабо нормальным для \mathbf{f} относительно задачи A, он тождественно совпадает с $Q_m(z)$ и, следовательно, с точностью до множителя определяется (с учетом обозначений $c_l:=f_l^1, l=0,1,\ldots$) равенством (1.3).

В том случае, когда **f** является набором экспонент $\{e^{\lambda_j z}\}_{j=1}^k$, где λ_j — различные комплексные числа, решение задачи В получено в [26]. В этой работе искомые многочлены представлены Эрмитом в виде интегралов Коши. Для произвольного набора **f** решение задачи В существует, но не единственно [8, гл. 4, § 1]. В частности, многочлены $A_j(z)$ находятся с точностью до числового множителя: если набор $A = (A_1, ..., A_k)$ удовлетворяет необходи-

мым условиям, то для любого отличного от нуля комплексного числа λ набор $\lambda A=(\lambda A_1,...,\lambda A_k)$ также удовлетворяет условиям задачи. Однако эта неединственность также может быть и более существенной.

Пример 2.1. Пусть k = 2, n = (3, 3), а $\mathbf{f} = (f_1, 1)$, где f_1 — ряд из примера 1.1. Тогда любое решение задачи В можно представить в виде:

$$(\lambda A_1, \lambda A_2), \quad \lambda \in \mathbb{C}, \ \lambda \neq 0, \quad A_1(z) = a + bz - (4a + 2b)z^2, \ A_2(z) = -\frac{1}{2}a - \left(a + \frac{1}{2}b\right)z,$$

где a, b — произвольные действительные числа, не равные нулю одновременно.

Определение 9. Будем говорить, что задача В имеет *единственное решение*, если для любых двух наборов $A' = (A'_1, ..., A'_k)$, $A'' = (A''_1, ..., A''_k)$ многочленов, являющихся решением задачи В, найдется комплексное число λ , что $A'' = \lambda A'$.

Определение 10. Если $A = (A_1, ..., A_k)$ — решение задачи В с ненулевым индексом $n \in \mathbb{Z}_+^k$, то многочлены $A_1(z), ..., A_k(z)$ называют многочленами Эрмита — Паде первого типа (Latin Type) для набора \mathbf{f} степенных рядов (1.1).

Центральными понятиями в теории таких многочленов также являются понятия нормального индекса и совершенной системы [8, гл. 4, § 1].

Определение 11. Ненулевой индекс $n=(n_1,\,...,\,n_k)\in\mathbb{Z}_+^k$ называется нормальным для $\mathbf f$ относительно задачи B, если для любого решения задачи B с индексом n

$$\deg A_j = n_j - 1, \quad j = 1, ..., k.$$

Определение 12. Систему \mathbf{f} называют совершенной относительно задачи \mathbf{B} , если все ненулевые индексы $n \in \mathbb{Z}_+^k$ являются нормальными для \mathbf{f} относительно задачи \mathbf{B} .

Если k=2 и $\mathbf{f}=(f_1,-1)$, то критерий нормальности индекса $(n_1,n_2)==(m+1,n+1)$ выражается (при сохранении обозначений $c_l:=f_l^1, l=0,1,\ldots$) условием (1.4).

Хорошо известно, что если индекс n является нормальным для ${\bf f}$ относительно задачи ${\bf B}$, то задача ${\bf B}$ имеет единственное решение. Следующий пример показывает, что уже при k=2 нормальность индекса n не является необходимым условием единственности решения задачи ${\bf B}$.

Пример 2.2. Пусть k = 2, n = (3, 3), а $\mathbf{f} = (f_1, 1)$, где f_1 – ряд из примера 1.2. Тогда любое решение задачи В можно записать в виде:

$$(\lambda A_1,\,\lambda A_2),\quad \lambda\in\mathbb{C},\ \lambda\neq0,\quad A_1(z)=8-4z,\ A_2(z)=-4-2z+z^2.$$

В этом примере индекс n=(3,3) не является нормальным, так как $\deg A_1=1$. Нашей ближайшей целью является нахождение необходимых и достаточных условий на индекс $n\in\mathbb{Z}_+^k$ и систему \mathbf{f} , определяемую равенствами (1.1), при которых решение задачи В является единственным.

2.2. Критерий единственности решения задачи В. Введем необходимые обозначения. Для ненулевого мультииндекса $n=(n_1,...,n_k)$ и каждого $j\in\{1,...,k\}$, для которого $n_i\neq 0$, определим матрицу порядка $(|n|-1)\times n_j$

$$G^j = \begin{pmatrix} f_1^j & 0 & \dots & 0 \\ f_1^j & f_0^j & \dots & 0 \\ \dots & \dots & \dots & \dots \\ f_{n_{j-1}}^j & f_{n_{j}-2}^j & \dots & f_0^j \\ f_{n_{j}}^j & f_{n_{j}-1}^j & \dots & f_1^j \\ \dots & \dots & \dots & \dots \\ f_{|n|-2}^j & f_{|n|-3}^j & \dots & f_{|n|-n_{j}-1}^j \end{pmatrix},$$

а затем матрицу порядка $(|n|-1) \times |n|$

$$G_n = (G^1 \ G^2 \ ... \ G^k).$$

Если $n_j=0$, то считаем, что матрица G_n не содержит блок G^j . Рассмотрим также k функциональных матриц-строк порядка $1\times |n|$

$$U_j(z) = (0 \ 0 \ \dots \ 0 \ \dots \ 1 \ z \ \dots \ z^{n_j-1} \ \dots \ 0 \ 0 \ \dots \ 0), \quad j = 1, \dots, k$$

и матрицу

$$U(z) := U_1(z) + ... + U_k(z) = (1 \ z \ ... \ z^{n_1-1} \ 1 \ z \ ... \ z^{n_2-1} \ ... \ 1 \ z \ ... \ z^{n_k-1}).$$

Если в матрице G_n добавить в качестве последней строки строку $U_j(z)$, то получим квадратную матрицу порядка $|n| \times |n|$. Определитель этой матрицы имеет вид

$$\det\begin{bmatrix} G_n \\ U_j(z) \end{bmatrix} = \begin{bmatrix} f_0^1 & \dots & 0 & \dots & f_0^j & 0 & \dots & 0 & \dots & f_0^k & \dots & 0 \\ f_1^1 & \dots & 0 & \dots & f_1^j & f_0^j & \dots & 0 & \dots & f_1^k & \dots & 0 \\ \vdots \\ f_{n_{j-1}}^1 & \dots & f_{n_{j-n_1}}^1 & \dots & f_{n_{j-1}}^j & f_{n_{j-2}}^j & \dots & f_0^j & \dots & f_{n_{j-1}}^k & \dots & f_{n_{j-n_k}}^k \\ \vdots \\ f_{n_j}^1 & \dots & f_{n_{j-n_1+1}}^1 & \dots & f_{n_j}^j & f_{n_{j-1}}^j & \dots & f_1^j & \dots & f_{n_j}^k & \dots & f_{n_j-n_{k+1}}^k \\ \vdots \\ \vdots \\ f_{|n|-2}^1 & \dots & f_{|n|-n_1-1}^1 & \dots & f_{|n|-2}^j & f_{|n|-3}^j & \dots & f_{|n|-n_j-1}^j & \dots & f_{|n|-2}^k & \dots & f_{|n|-n_k-1}^k \\ 0 & \dots & 0 & \dots & 1 & z & \dots & z^{n_j-1} & \dots & 0 & \dots & 0 \end{bmatrix}$$
 (2.2)

Если в определителе (2.2) последнюю строку заменить матрицей-строкой

$$(f_{l+|n|-2}^1 f_{l+|n|-3}^1 \dots f_{l+|n|-n_1-1}^1 \dots f_{l+|n|-2}^k f_{l+|n|-3}^k \dots f_{l+|n|-n_k-1}^k),$$

то полученный определитель обозначим через $\widetilde{d}_{n\,l}$.

Определение 13. Ненулевой индекс $n \in \mathbb{Z}_+^k$ назовем слабо нормальным для f относительно задачи B, если ранг матрицы G_n равен |n|-1.

В примере 2.1 индекс n = (3, 3) не является нормальным и не является слабо нормальным, а в примере 2.2 этот индекс не является нормальным, но является слабо нормальным относительно задачи В для рассматриваемых в этих примерах рядов.

Определение 14. Систему ${\bf f}$ назовем слабо совершенной относительно задачи B, если все ненулевые индексы $n\in\mathbb{Z}_+^k$ являются слабо нормальными для ${\bf f}$ относительно задачи B.

Далее будет установлено, что любой нормальный индекс n для \mathbf{f} относительно задачи В является также и слабо нормальным индексом для \mathbf{f} относительно задачи В. Поэтому любая совершенная система \mathbf{f} относительно задачи В является также и слабо совершенной системой относительно задачи В.

Сформулируем и докажем основную теорему этого параграфа.

Теорема 15. Для того чтобы для ненулевого индекса $n \in \mathbb{Z}_+^k$ задача В имела единственное решение, необходимо и достаточно, чтобы индекс n был слабо нормальным для \mathbf{f} относительно задачи \mathbf{B} , m. e. rang $G_n = |n| - 1$.

В случае если $\operatorname{rang} G_n = |n| - 1$, при определенном выборе нормирующего множителя справедливы следующие представления:

$$A_{j}(z) = \det \begin{bmatrix} G_{n} \\ U_{i}(z) \end{bmatrix}, \quad j = 1, ..., k;$$
 (2.3)

$$L_n(z) = \sum_{l=1}^{\infty} \tilde{d}_{n,l} \, z^{|n|+l-2}. \tag{2.4}$$

Доказательство. Пусть $n = (n_1, ..., n_k) \in \mathbb{Z}_+^k$ — ненулевой мультииндекс, а

$$A_j(z) = b_0^j + b_1^j z + ... + b_{n,-1}^j z^{n_j-1}, \quad j = 1, ..., k.$$

Опираясь на равенство (2.1), запишем в матричной форме систему уравнений для определения коэффициентов многочленов $A_j(z)$:

$$G_n b^T = \theta^T, (2.5)$$

где

$$b = (b_0^1 \ b_1^1 \ \dots \ b_{n_1-1}^1 \ \dots \ b_0^k \ b_1^k \ \dots \ b_{n_k-1}^k)$$

— матрица-строка порядка $1 \times |n|$ (при $n_j = 0$ матрица b не содержит элементов $b_0^j, \ldots, b_{n_j-1}^j$), а θ — матрица порядка $1 \times |n|$, все элементы которой равны нулю.

Система линейных уравнений (2.5) является однородной, и в ней число неизвестных на единицу больше числа уравнений. Поэтому из теоремы Кронекера — Капелли следует, что система (2.5) имеет ненулевое решение, а множество всех линейно независимых решений этой системы состоит из одного фундаментального решения тогда и только тогда, когда $\operatorname{rang} G_n = |n| - 1$. В этом случае все остальные ненулевые решения получаются в результате умножения этого фундаментального решения на комплексное число $\lambda \neq 0$. Заметим, что если все коэффициенты рядов (1.1) являются действительными числами, то решение системы (2.5) является матрицей, элементы которой также действительные числа. Первая часть теоремы 2 доказана.

Докажем теперь равенства (2.3), (2.4). Так как rang $G_n = |n|-1$, то при некотором $p \in \{1, 2, ..., |n|\}$ определитель, полученный из матрицы G_n вычеркиванием в ней p-го столбца, отличен от нуля. Для определенности предположим,

что p = |n|. Тогда систему (2.5) можно записать следующим образом:

$$\begin{pmatrix} f_{0}^{1} & \dots & 0 & \dots & f_{0}^{k} & \dots & 0 \\ f_{1}^{1} & \dots & 0 & \dots & f_{1}^{k} & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots \\ f_{n_{k}-1}^{1} & \dots & f_{n_{k}-n_{1}}^{1} & \dots & f_{n_{k}-1}^{k} & \dots & f_{1}^{k} \\ f_{n_{k}}^{1} & \dots & f_{n_{k}-n_{1}+1}^{1} & \dots & f_{n_{k}}^{k} & \dots & f_{2}^{k} \\ \dots & \dots & \dots & \dots & \dots & \dots \\ f_{|n|-3}^{1} & \dots & f_{|n|-n_{k}-2}^{1} & \dots & f_{|n|-3}^{k} & \dots & f_{|n|-n_{k}}^{k} \end{pmatrix} \begin{pmatrix} b_{0}^{1} \\ \vdots \\ b_{n_{k}-1}^{1} \\ \vdots \\ b_{0}^{k} \\ \vdots \\ b_{n_{k}-2}^{k} \end{pmatrix} = -b_{n_{k}-1}^{k} \begin{pmatrix} 0 \\ 0 \\ \vdots \\ f_{0}^{k} \\ f_{1}^{k} \\ \vdots \\ f_{|n|-n_{k}-1}^{k} \end{pmatrix} .$$
 (2.6)

Обозначим главный определитель системы (2.6) через $\widetilde{H}_n^{n_k}$. По нашему предположению $\widetilde{H}_n^{n_k} \neq 0$. Если бы $b_{n_k-1}^k = 0$, то система (2.6) имела бы единственное нулевое решение. Тогда бы и система (2.5) имела только нулевое решение. Поэтому $b_{n_k-1}^k \neq 0$. Решая систему (2.6) по правилу Крамера, получим решение, которое символически можно записать в виде:

$$\det[G_n \ U(z)]^T = A_1(z) + \dots + A_k(z), \tag{2.7}$$

где $A_j(z)$ определяются равенствами (2.3), которые в развернутом виде совпадают с (2.2). В случае если бы мы, вычеркивая столбец матрицы G_n с другим номером, получили определитель, отличный от нуля, то, рассуждая аналогичным образом, пришли бы к символической записи решения в виде (2.7).

Докажем, что многочлены $A_j(z)$, определенные равенствами (2.2) и (2.3), действительно являются искомыми многочленами. Разложив определитель в (2.2) по элементам последней строки, получим, что $\deg A_j(z) \leq n_j - 1$. Остается доказать выполнение условий (2.1). Заметим, что

$$\begin{split} L_n(z) &= \sum_{j=1}^k A_j(z) f_j(z) = \\ &= \begin{bmatrix} f_0^1 & 0 & \dots & 0 & \dots & f_0^k & 0 & \dots & 0 \\ f_1^1 & f_0^1 & \dots & 0 & \dots & f_1^k & f_0^k & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ f_{|n|-2}^1 & f_{|n|-3}^1 & \dots & f_{|n|-n_1-1}^1 & \dots & f_{|n|-2}^k & f_{|n|-3}^k & \dots & f_{|n|-n_k-1}^k \\ \sum_{l=0}^\infty f_l^1 z^l & \sum_{l=0}^\infty f_l^1 z^{l+1} & \dots & \sum_{l=0}^\infty f_l^1 z^{l+n_1-1} & \dots & \sum_{l=0}^\infty f_l^k z^l & \sum_{l=0}^\infty f_l^k z^{l+1} & \dots & \sum_{l=0}^\infty f_l^k z^{l+n_k-1} \end{bmatrix}. \end{split}$$

В полученном определителе из последней строки вычтем первую строку, умноженную на 1, затем вторую строку, умноженную на z, и так далее вплоть до предпоследней строки, умноженной на $z^{|n|-2}$. Тогда

$$L_n(z) = \begin{vmatrix} f_0^1 & \dots & 0 & \dots & f_0^k & \dots & 0 \\ f_1^1 & \dots & 0 & \dots & f_1^k & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ f_{|n|-2}^1 & \dots & f_{|n|-n_1-1}^1 & \dots & f_{|n|-2}^k & \dots & f_{|n|-n_k-1}^k \\ \sum_{l=|n|-1}^{\infty} f_l^1 z^l & \dots & \sum_{l=|n|-1}^{\infty} f_{l-n_1+1}^1 z^l & \dots & \sum_{l=|n|-1}^{\infty} f_l^k z^l & \dots & \sum_{l=|n|-1}^{\infty} f_{l-n_k+1}^k z^l \end{vmatrix} = \sum_{l=1}^{\infty} \widetilde{d}_{n,l} z^{|n|+l-2}.$$

Здесь также при преобразованиях воспользовались определением суммы степенного ряда и правилом сложения определителей. Равенство (2.4) и теорема 2 доказаны. \Box

2.3. Замечания и некоторые следствия. Из теоремы 2 следует, что n_j -я компонента слабо нормального индекса $n=(n_1,...,n_k)\in\mathbb{Z}_+^k$ определяет число коэффициентов ряда f_j , которое учитывается при построении многочленов $\{A_p(z)\}_{p=1}^k$. В частности, если $n_j=0$, то в матрице G_n отсутствует блок G^j и, следовательно, при их построении коэффициенты ряда f_j не учитываются, многочлен $A_j(z)\equiv 0$, а порядок мультииндекса n определяется остальными ненулевыми компонентами.

Например, если $n=(n_1,n_2,0,...,0)$, то при построении многочленов учитываются только коэффициенты рядов f_1 , f_2 , и если $f_2(z)\equiv -1$, то в этом случае многочлен $A_1(z)$ представляется определителем из (2.3), в котором каждый из n_2 последних столбцов, которые образуют блок G^2 , состоит из нулей и одной -1. Разлагая этот определитель последовательно по элементам каждого такого столбца, с точностью до числового множителя получим, что

$$A_1(z) = \begin{vmatrix} f_{n_2}^1 & f_{n_2-1}^1 & \cdots & f_{n_2-n_1+1}^1 \\ f_{n_2+1}^1 & f_{n_2}^1 & \cdots & f_{n_2-n_1+2}^1 \\ \cdots & \cdots & \cdots & \cdots \\ f_{n_2+n_1-2}^1 & f_{n_2+n_1-3}^1 & \cdots & f_{n_2-1}^1 \\ 1 & z^2 & \cdots & z^{n_1-1} \end{vmatrix}.$$

Данное представление многочлена $A_1(z)$ полностью согласуется с равенством Паде (1.3). В этом случае $A_i(z) \equiv 0$ при i=3,...,k.

Если же $n=(n_1,0,...,0)$, то из (2.3) следует, что $A_1(z)=(f_0^1)^{n_1-1}z^{n_1-1}$, а $A_j(z)\equiv 0$ при j=2,...,k (при $n=(n_1,0,...,0)$ явный вид $A_1(z)$ легко найти и непосредственно из условий (2.1)). Отсюда, в частности, следует, что если система ${\bf f}$ совершенна относительно задачи ${\bf B}$, то $f_0^j\neq 0$ при любом j=1,...,k.

Следует также сказать, что если индекс n не является слабо нормальным для ${\bf f}$ относительно задачи ${\bf B}$, то многочлены $A_j(z)$, определенные равенствами (2.3), не являются решениями задачи ${\bf B}$, так как все они тождественно равны нулю. В частности, $A_1(z)=a+bz-(4a+2b)z^2$ в примере 2.1. Однако если $A_1(z)$ находить по формуле (2.3), то получим, что $A_1(z)\equiv 0$.

Из (2.3) вытекает следующий критерий нормальности индекса n для набора ${\bf f}$ относительно задачи ${\bf B}$.

Следствие 5. Ненулевой индекс $n = (n_1, ..., n_k) \in \mathbb{Z}_+^k$ будет нормальным для f относительно задачи B тогда и только тогда, когда

$$\prod_{j=1}^{k} \widetilde{H}_{n}^{n_{j}} \neq 0, \tag{2.8}$$

где $\widetilde{H}_n^{n_j}$ — определитель, полученный из определителя (2.2) вычеркиванием в нем последней строки и столбца, в котором находится элемент z^{n_j-1} .

Заметим, что в том случае, когда $n_j=0$ либо $n_j=1$, в определителе $\widetilde{H}_n^{n_j}$ отсутствует блок G^j .

Если k=2, $\mathbf{f}=(f_1,-1)$ и $(n_1,n_2)=(m+1,n+1)$, то несложно показать, что (2.8) равносильно условию $H_{n+1,m}\cdot H_{n,m+1}\neq 0$. Поэтому следствие 5 согласуется (с учетом обозначений $c_l:=f_l^1,\ l=0,1,\ldots$) с критерием нормальности индекса (1.4).

Следствие 6. Если система **f** совершенна относительно задачи B, то для любого ненулевого индекса $n \in \mathbb{Z}_+^k$ и решения $A = (A_1, ..., A_k)$ задачи B с этим индексом в равенстве (2.1) коэффициент $c_n \neq 0$.

Доказательство. Если система ${\bf f}$ совершенна, то произвольный индекс $n\in\mathbb{Z}_+^k$ является нормальным для f относительно задачи В. Поэтому справедливо равенство (2.4), в котором $c_n=\widetilde{d}_{n,1}$. Определитель $\widetilde{d}_{n,1}$ совпадает с определителем $\widetilde{H}_{n^*}^{n_k^*}$, при условии, что индекс $n^*=(n_1^*,\ldots,n_k^*)$ отличается от индекса $n=(n_1,\ldots,n_k)$ только k-й компонентой: $n_k^*=n_k+1$. Тогда из критерия нормальности индекса (2.8) следует, что $c_n=\widetilde{H}_{n^*}^{n_k^*}\neq 0$. Следствие 6 доказано.

Покажем, что задачи A и B связаны некоторыми отношениями двойственности. Для этого наряду с системой $\mathbf{f} = (f_1, ..., f_k)$ рассмотрим расширенную систему $\bar{\mathbf{f}} = (1, f_1, ..., f_k)$.

Следствие 7. Система ${\bf f}$ является вполне совершенной относительно задачи A тогда и только тогда, когда расширенная система ${f f}$ является совершенной относительно задачи B.

Доказательство. Пусть **f** является вполне совершенной относительно задачи A. Тогда для любого индекса $(n, \vec{m}) = (n, m_1, ..., m_k) \in \mathbb{Z}_+^{k+1}$ выполняется условие (1.16). Покажем, что любой индекс $\vec{n} := (n_0, n_1, ..., n_k) \in \mathbb{Z}_+^{k+1}$ является нормальным для $\vec{\mathbf{f}}$ относительно задачи B.

Пусть $\left\{\overline{A}_{j}(z)\right\}_{j=0}^{k}$ — решение задачи В для индекса \overrightarrow{n} и системы $\overline{\mathbf{f}}$. Нужно показать, что $\deg \overline{A}_{j} = n_{j} - 1$ при $n_{j} > 0$. Из критерия (2.8) следует, что это условие будет выполнено, если $\overline{H}_{\overrightarrow{n}}^{n_{j}} \neq 0$ для ненулевого n_{j} . Здесь и далее $\overline{H}_{\overrightarrow{n}}^{n_{j}}$ — определитель $\widetilde{H}_{n}^{n_{j}}$ из (2.8), построенный уже для системы $\overline{\mathbf{f}}$. При $n_{j} > 1$ и $j \in \{1, 2, ..., k\}$ определитель $\overline{H}_{n}^{n_{j}}$ имеет вид

$$\begin{vmatrix} f_{n_0}^1 & \cdots & f_{n_0-n_1+1}^1 & \cdots & f_{n_0}^j & f_{n_0-1}^j & \cdots & f_{n_0-n_j+2}^j & \cdots & f_{n_0}^k & \cdots & f_{n_0-n_k+1}^k \\ f_{n_0+1}^1 & \cdots & f_{n_0-n_1+2}^1 & \cdots & f_{n_0+1}^j & f_{n_0}^j & \cdots & f_{n_0-n_j+3}^j & \cdots & f_{n_0+1}^k & \cdots & f_{n_0-n_k+2}^k \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ f_{|n|-2}^1 & \cdots & f_{|n|-n_1-1}^1 & \cdots & f_{|n|-2}^j & f_{|n|-3}^j & \cdots & f_{|n|-n_j}^j & \cdots & f_{|n|-2}^k & \cdots & f_{|n|-n_k-1}^k \end{vmatrix}.$$

Для доказательства этого представления нужно учесть, что из определения $\overline{H}_{\vec{n}}^{n_j}$ следует, что каждый из первых n_0 столбцов определителя $\overline{H}_{\vec{n}}^{n_j}$, образующих блок G^0 , состоит из нулей и одной единицы. Разлагая этот определитель по элементам каждого такого столбца, получим нужное представление. Ана-

логично показывается, что

$$\overline{H}_{\vec{n}}^{n_0} = \begin{vmatrix} f_{n_0-1}^1 & \dots & f_{n_0-n_1}^1 & \dots & f_{n_0-1}^k & \dots & f_{n_0-n_k}^k \\ f_{n_0}^1 & \dots & f_{n_0-n_1+1}^1 & \dots & f_{n_0}^k & \dots & f_{n_0-n_k+1}^k \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ f_{|n|-2}^1 & \dots & f_{|n|-n_1-1}^1 & \dots & f_{|n|-2}^k & \dots & f_{|n|-n_k-1}^k \end{vmatrix}.$$

При $n_j=1$ в $\overline{H}_{\vec{n}}^{n_j}$, $\overline{H}_{\vec{n}}^{n_0}$ отсутствует блок, содержащий коэффициенты ряда f_j . Теперь нетрудно заметить, что при $n_j>1$, $j\in\{1,2,...,k\}$, определитель $\overline{H}_{\vec{n}}^{n_j}$ только знаком может отличаться от по предположению не равного нулю определителя $H_{n,\vec{m}}^j$, в котором индекс $(n,\vec{m}):=(n_0,...,n_{j-1},n_j-2,n_{j+1},...,n_k)$ отличается от индекса \vec{n} только j-й компонентой. Это следует из того, что $\overline{H}_{\vec{n}}^{n_j}$ равен определителю, который можно получить из определенного указанным образом определителя $H_{n,\vec{m}}^j$ с помощью перестановки его строк, столбцов и транспонирования. По той же причине при $n_j=1$ определитель $\overline{H}_{\vec{n}}^{n_j}$ только знаком может отличаться от неравного нулю определителя $H_{n,\vec{m}}$, в котором индекс $(n,\vec{m}):=(n_0,...,n_{j-1},n_j-1,n_{j+1},...,n_k)$ отличается от \vec{n} только j-й компонентой.

Покажем, что и $\overline{H}_{\vec{n}}^{n_0} \neq 0$ при $n_0 > 0$. Действительно, если $\vec{n} = (n_0, 0, ..., 0)$, то $\overline{A}_0(z) = z^{n_0-1}$, $\deg \overline{A}_0 = n_0 - 1$ и $\overline{H}_{\vec{n}}^{n_0} \neq 0$. Предположим теперь, что у индекса \vec{n} кроме n_0 , еще и $n_j > 0$ при некотором $j \in \{1, 2, ..., k\}$. Рассмотрим определитель $H_{n,\vec{m}}$, у которого индекс $(n,\vec{m}) := (n_0 - 1, ..., n_{j-1}, n_j - 1, n_{j+1}, ..., n_k)$ отличается от \vec{n} только 0-й и j-й компонентами. Этот определитель по предположению не равен нулю и только знаком может отличаться от $\overline{H}_{\vec{n}}^{n_0}$.

Предположим теперь, что $\bar{\mathbf{f}}$ является совершенной системой относительно задачи В. Тогда для произвольного индекса $\vec{n}=(n_0,n_1,...,n_k)\in\mathbb{Z}_+^{k+1}$ выполняются условия $\prod_{j=0}^k \overline{H}_{\vec{n}}^{n_j} \neq 0$. Покажем, что любой индекс $(n,\vec{m})=(n,m_1,...,m_k)$ является вполне нормальным для \mathbf{f} относительно задачи А. Для этого необходимо проверить, что выполняется условие (1.16) для этого индекса.

Определитель $H_{n,\vec{m}}$ с точностью до знака равен отличному от нуля определителю $\overline{H}_{\vec{n}}^{n_j}$, в котором индекс $\vec{n}=(n,...,m_{j-1},m_j+1,m_{j+1},...,m_k)$ отличается от индекса (n,\vec{m}) только j-й компонентой. Аналогично замечаем, что $H_{n,\vec{m}}^j$ с точностью до знака равен отличному от нуля определителю $\overline{H}_{\vec{n}}^{n_j}$, в котором $\vec{n}=(n,...,m_{j-1},m_j+2,m_{j+1},...,m_k)$ отличается от индекса (n,\vec{m}) только j-й компонентой. Следовательно, условие (1.16) выполнено.

Как уже отмечалось выше, если в индексе \vec{n} компонента $n_0 = 0$, то задача В для системы $\vec{\mathbf{f}}$ вырождается в задачу В для \mathbf{f} . В связи с этим введем новое определение.

Определение 16. Задачу В для $\bar{\mathbf{f}}$ будем называть невырожденной, если она рассматривается на множестве индексов $\vec{n} = (n_0, n_1, ..., n_k) \in \mathbb{Z}_+^{k+1}$, у которых $n_0 \neq 0$. Систему $\bar{\mathbf{f}}$ будем называть совершенной относительно невырожденной

 $\vec{n}=(n_0,n_1,...,n_k)\in\mathbb{Z}_+^{k+1},\ n_0\neq 0,$ являются нормальными для $\bar{\mathbf{f}}$ относительно невырожденной задачи В.

Следующее следствие доказывается аналогично предыдущему.

Следствие 8. Система ${\bf f}$ является совершенной относительно задачи A тогда и только тогда, когда расширенная система ${f \bar f}$ является совершенной относительно невырожденной задачи B.

Из следствия 7 и сделанных ранее замечаний можно сделать вывод о том, что если система $\bar{\mathbf{f}}$ является совершенной относительно задачи B, то все коэффициенты степенных рядов (1.1) не равны нулю.

Список литературы

- [1] Аптекарев А. И., Буслаев В. И., Мартинес-Финкельштейн А., Суетин С. П. Аппроксимации Паде, непрерывные дроби и ортогональные многочлены // УМН. 2011. Т. 66, вып. 6(402). С. 37—122.
- [2] Аптекарев А. И., Лысов В. Г., Туляков Д. Н. Случайные матрицы с внешним источником и асимптотика совместно ортогональных многочленов // Матем. сб. 2011. Т. 202, N° 2. С. 3–56.
- [3] Бейкер Дж. мл., Грейвс-Моррис П. Аппроксимации Паде. М.: Мир, 1986.
- [4] *Икономов Н. Р., Суетин С. П.* Алгоритм Висковатова для полиномов Эрмита Паде // Матем. сб. 2021. Т. 212, № 9. С. 94—118.
- [5] *Калягин В. А.* Аппроксимации Эрмита Паде и спектральный анализ несимметричных операторов // Матем. сб. 1994. Т. 185, \mathbb{N}^2 6. С. 79–100.
- [6] *Клейн Ф.* Элементарная математика с точки зрения высшей: В 2-х томах. Т. 1. Арифметика. Алгебра. Анализ. М.: Наука, 1987.
- [7] $\mathit{Лысов}$ В. $\mathit{\Gamma}$. Аппроксимации Эрмита Паде смешанного типа для системы Никишина // Анализ и математическая физика. Сб. статей. М.: МИАН, 2020. С. 213—227. (Труды МИАН; Т. 311).
- [8] Никишин Е. М., Сорокин В. Н. Рациональные аппроксимации и ортогональность. М.: Наука, 1988.
- [9] Рациональные приближения постоянной Эйлера и рекуррентные соотношения. Сб. статей / Под ред. А. И. Аптекарева. М.: МИАН, 2007. (Совр. пробл. матем.; Вып. 9).
- [10] Сорокин В. Н. Циклические графы и теорема Апери // УМН. 2002. Т. 57, вып. 3(345).
 С 99–134
- [11] Сорокин В. Н. Аппроксимации Эрмита Паде функции Вейля и ее производной для дискретных мер // Матем. сб. 2020. Т. 211, N° 10. С. 139—156.
- [12] Старовойтов А. П., Рябченко Н. В. Аналоги формулы Шмидта для полиортогональных многочленов первого типа // Матем. заметки. 2021. Т. 110, вып. 3. С. 424–433.
- [13] Старовойтов А. П., Рябченко Н. В. О явном виде полиортогональных многочленов // Изв. вузов. Матем. 2021. N^2 4. С. 80–89.
- [14] Старовойтов А. П., Рябченко Н. В., Драпеза А. А. О существовании и единственности многочленов Эрмита Паде первого рода //ПМФТ. 2019. \mathbb{N}^3 3(40). С. 100—103.
- [15] Суетин С. П. Аппроксимации Паде и эффективное аналитическое продолжение степенного ряда // УМН. 2002. Т. 57, вып. 1(343). С. 45–142.
- [16] Суетин С. П. Распределение нулей полиномов Паде и аналитическое продолжение // УМН. 2015. Т. 70, вып. 5(425). С. 121–174.
- [17] *Суетин С. П.* Полиномы Эрмита Паде и квадратичные аппроксимации Шафера для многозначных аналитических функций // УМН. 2020. Т. 75, вып. 4(454). С. 213–214.
- [18] *Aptekarev A. I.*, *Bleher P. M.*, *Kuijlaars A. B. J.* Large *n* limit of Gaussian random matrices with external source. Part II // Comm. Math. Phys. 2005. V. 259, № 2. P. 367–389.

- [19] Aptekarev A.I., Branquinho A., Van Assche W. Multiple orthogonal polynomials for classical weights // Trans. AMS. 2003. V. 355, № 10. P. 3887–3914.
- [20] Aptekarev A. I., Kalyagin V. A., Saff E. B. Higher-order three-term recurrences and asymptotics of multiple orthogonal polynomials // Constr. Approx. 2009. V. 30, № 2. P. 175–223.
- [21] Beckermann B., Kalyagin V., Matos A.C., Wielonsky F. How well does the Hermite—Padé approximation smooth the Gibbs phenomenon? // Math. Comput. 2011. V. 80, Nº 274. P. 931–958.
- [22] Bleher P. M., Kuijlaars A. B. J. Random matrices with external source and multiple orthogonal polynomials // Int. Math. Res. Not. 2004. V. 3. P. 109–129.
- [23] *Boyd J. P.* Chebyshev expansion on intervals with branch points with application to the root of Kepler's equation: A Chebyshev − Hermite − Padé method // J. Comput. Appl. Math. 2009. V. 223, № 2. P. 693−702.
- [24] Chudnovsky G. V. Hermite Padé approximations to exponential functions and elementary estimates of the measure of irrationality of π // The Riemann problem, complete integrability and arithmetic applications. New York, Berlin: Springer-Verlag, 1982. P. 299–322. (Lecture Notes in Math.; V. 925).
- [25] *Daems E., Kuijlaars A. B. J.* Multiple orthogonal polynomials of mixed type and non-intersecting Brownian motions // J. Approx. Theory. 2007. V. 146. P. 91–114.
- [26] Hermite C. Sur la généralisation des fractions continues algébriques // Ann. Mat. Pura Appl. Ser. 2A. 1893. V. 21. P. 289–308.
- [27] Hermite C. Sur la fonction exponentielle // C. R. Acad. Sci. (Paris) 1973. V. 77. P. 18–293.
- [28] Kuijlaars A. B. J. Multiple orthogonal polynomial ensembles // Recent trends in orthogonal polynomials and approximation theory. Providence, RI: AMS, 2010. P. 155–176. (Contemp. Math.; V. 507).
- [29] Kuijlaars A. B. J., Martínez-Finkelshtein A., Wielonsky F. Non-intersecting squared Bessel paths and multiple orthogonal polynomials for modified Bessel weights // Comm. Math. Phys. 2009. V. 286, № 1. P. 217–275.
- [30] Lagomasino G. L., Peralta S. M., Szmigielski J. Mixed type Hermite Padé approximation inspired by the Degasperis — Procesi equation // Adv. Math. 2019. V. 349. P. 813—838.
- [31] Mahler K. Applications of some formulae by Hermite to the approximation of exponentials and logarithms // Math. Ann. 1967. V. 168. P. 372–399.
- [32] *Padé H.* Mémoire sur les développement en fractions continues de la fonction exponential // Ann. Sci., Ecole Normale Sup. (3). 1899. V. 16. P. 395–426.
- [33] Stahl H. Asymptotics for quadratic Hermite Padé polynomals associated with the exponential function // Electron. Trans. Num. Anal. 2002. V. 14. P. 195–222.
- [34] *Van Assche W.* Multiple orthogonal polynomials, irrationality and transcedence // Continued fractions: from analytic number theory to constructive approximation (Columbia, MO, USA, 1998). Providence, RI: AMS, 1999. P. 325–342. (Contemp. Math.; V. 236).

Старовойтов Александр Павлович Гомельский государственный университет им. Фр. Скорины

E-mail: svoitov@gsu.by

Рябченко Наталия Валерьевна Гомельский государственный университет им. Фр. Скорины

E-mail: nmankevich@tut.by

Представлено в редакцию 03.09.2020/20.02.2021