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FINITE GROUPS WITH FORMATIONAL SUBNORMAL

PRIMARY SUBGROUPS OF BOUNDED EXPONENT

V.S. MONAKHOV, I.L. SOKHOR

Abstract. Let Uk be the class of all supersoluble groups in which
exponents are not divided by the (k+1)-th powers of primes. We investi-
gate the classes wUk and vUk that contain all �nite groups in which every
Sylow and, respectively, every cyclic primary subgroup is Uk-subnormal.
We prove that wUk and vUk are subgroup-closed saturated formations
and obtain the characterizations of these formations.

Keywords: �nite group, primary subgroup, subnormal subgroup.

1. Introduction

All groups in this paper are �nite. A primary group is a group of prime power
order. All fragments of the theory of group classes that we used correspond to [1].

Let F be a non-empty formation. A subgroup H of a group G is called F-
subnormal in G if either G = H or there is a subgroup chain

(1) H = H0 ⋖ . . .⋖Hi ⋖Hi+1 ⋖ . . .⋖Hn = G

such that Hi+1/(Hi)Hi+1
∈ F for all i, [1, De�nition 6.1.2]. We write X ⋖ Y if X is

a maximal subgroup of a group Y , and XY = ∩y∈Y X
y is the core of a subgroup X

in a group Y . If X and Y are formations and X ⊆ Y, then, clearly, every X-
subnormal subgroup is Y-subnormal. If F is a soluble formation (i. e. all groups in
F are soluble) and H is a soluble F-subnormal subgroup of a group G, then G is
soluble, [2, Lemma 2.13].
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Let P be the set of all primes. If |Hi+1 : Hi| ∈ P for every i in (1), then H is
P-subnormal in G, [3, De�nition 1].

The class of groups with all Sylow subgroups (all cyclic primary subgroups) F-
subnormal is denoted by wF (vF, respectively). If F = U is the formation of all
supersoluble groups, then the class wU (vU) coincides with the class of all groups
in which every Sylow subgroup (every cyclic primary subgroup, respectively) is P-
subnormal, [6, lemma 1.12]. The classes wU and vU are quite well investigated [3]�
[9]. In particular, these classes are subgroup-closed saturated formations, wU ⊂ vU
and every group from vU has a Sylow tower of supersoluble type. The inclusion
wU ⊂ vU is proper, every biprimary minimal non-supersoluble group with non-
cyclic non-normal Sylow subgroup belongs to vU\wU, see [9, Example 2, Example 3].

The exponent of a group G is the least common multiple of the orders of all
elements of G and denoted by exp(G). The set of all positive integers is denoted
by N and the set of all positive integers not divided by the (k + 1)-th powers of
primes for k ∈ N is denoted by Nk. If X is a formation, then Xk is the class of all
groups from X with exponents from Nk. It is clear that Xk = X ∩ Ek, where E is
the formation of all �nite groups.

Introduce the following classes of groups:

• Uk is the class of all supersoluble groups with exponents from Nk;
• wUk = w(Uk) is the class of all groups in which every Sylow subgroup is
Uk-subnormal;

• vUk = v(Uk) is the class of all groups in which every cyclic primary subgroup
is Uk-subnormal.

Since Uk ⊂ U, we have wUk ⊂ wU and vUk ⊂ vU. Hence groups in wUk and vUk

possess the properties of groups from wU and vU, respectively. In particular, groups
in wUk and vUk have Sylow towers of supersoluble type. In addition, wUk ⊂ vUk

(Lemma 10) and this inclusion is proper for every k (Example 4).
Although Uk is a subgroup-closed non-saturated formation, wUk and vUk are

subgroup-closed saturated formations (Proposition 1 and Proposition 2). The follow-
ing theorems contain the characterizations of groups from these formations.

Theorem 1. For a group G, the following statements are equivalent.
(1) Every Sylow subgroup of G is Uk-subnormal in G, i. e. G ∈ wUk.
(2) G/Φ(G) ∈ (wUk)k;
(3) A/Φ(A) ∈ Uk for every metanilpotent subgroup A of G;
(4) B/Φ(B) ∈ Uk for every biprimary subgroup B of G.

Corollary 1. If G ∈ wUk, then G/F (G) ∈ Ak.

Here Ak is the class of all groups with abelian Sylow subgroups of exponent
from Nk.

Corollary 2. For a metanilpotent group G, the following statements are equivalent.
(1) Every Sylow subgroup of G is Uk-subnormal in G.
(2) G/Φ(G) ∈ Uk.
(3) G ∈ U and G/F (G) ∈ Ak.

Here Ak is the class of all abelian groups with exponents from Nk.

Theorem 2. For a group G, the following statements are equivalent.
(1) Every cyclic primary subgroup of G is Uk-subnormal in G, i. e. G ∈ vUk.
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(2) G/Φ(G) ∈ (vUk)k.
(3) A/Φ(A) ∈ Uk for every subgroup A with nilpotent derived subgroup.
(4) B/Φ(B) ∈ Uk for every biprimary subgroup B with cyclic Sylow subgroup.

Corollary 3. U ∩ wUk = N2 ∩ wUk = U ∩ vUk = NA ∩ vUk. In particular, every
Sylow subgroup of a supersoluble group G is Uk-subnormal in G if and only if every
cyclic primary subgroup of G is Uk-subnormal in G.

Here N2 is the class of all metanilpotent groups and NA is the class of all
groups with nilpotent derived subgroup. Both of these classes are subgroup-closed
saturated formations.

2. Preliminaries

Throughout this paper, k denotes an positive integer. We write H ≤ G (H < G)
if H is a (proper) subgroup of G. A subgroup H of G is non-trivial if H ̸= 1
and H ̸= G. By π(k) we denote the set of all primes dividing k. For a group G,
π(G) = π(|G|), where |G| is the order of G. If

|G| = pα1
1 pα2

2 . . . pαn
n , p1 < p2 < . . . < pn,

and G has a normal series G = G0 ≥ G1 ≥ . . . ≥ Gn−1 ≥ Gn = 1 such that
Gi−1/Gi is isomorphic to a Sylow pi-subgroup of G for every i, then we say that
G has a Sylow tower of supersoluble type. It is easy to check that the class D of
all groups with Sylow tower of supersoluble type is a subgroup-closed saturated
Fitting formation. The class A of all groups with abelian Sylow subgroups is a
subgroup-closed formation, but it is not a saturated formation and it is not a
Fitting formation.

The greatest common divisor (gcd) and the least common multiple (lcm) of
integers a and b are denoted by (a, b) and [a, b], respectively. We repeatedly use the
following simplest properties of Nk.

Lemma 1. (1) If n ∈ Nk and d divides n, then d ∈ Nk and n/d ∈ Nk.
(2) If a, b ∈ Nk, then (a, b) ∈ Nk and [a, b] ∈ Nk.

Lemma 2. (1) π(G) = π(exp(G)) and exp(G) divides |G|.
(2) The exponent of G is equal to lcm of orders of primary elements of G.
(3) If H is a subgroup of G and N is a normal subgroup of G, then exp(H)

and exp(G/N) divide exp(G).
(4) If G = G1×G2, where G1 ≤ G and G2 ≤ G, then exp(G) = [exp(G1), exp(G2)].

Proof. (1) For every p ∈ π(G), there is an element of order p in G by Sylow's
Theorem. Hence π(G) = π(exp(G)). In view of Lagrange's Theorem, the order of
every element of G divides |G|. Therefore exp(G) divides |G| by Lemma 1 (2).

(2) Assume that π(G) = {p1, p2, . . . , pm}, p1 < p2 < . . . < pm, and exp(G) =
pn1
1 pn2

2 . . . pnm
m . For every i = 1, 2, . . . ,m, there is an element xi in G such that

|xi| = pni
i ti and pi does not divide ti. It is clear that xti

i is a primary element of

order pni
i and [xti

1 , x
t2
2 , . . . , xtm

m ] = exp(G).
(3) This statement true in view of Lagrange's Theorem.
(4) According to Statement (3), exp(G1) and exp(G2) divide exp(G). Hence

[exp(G1), exp(G2)] divides exp(G). Since any element g ∈ G can be represented
as g = g1g2, where g1 ∈ G1, g2 ∈ G2 and |g| = [|g1|, |g2|], we conclude that exp(G)
divides [exp(G1), exp(G2)]. Consequently, [exp(G1), exp(G2)] = exp(G). □
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A class X is saturated if G ∈ X whenever G/Φ(G) ∈ X. Here Φ(G) is the Frattini
subgroup of a group G. If H ∈ X whenever H ≤ G and G ∈ X, then X is a
subgroup-closed class.

Lemma 3. (1) Ek is a subgroup-closed formation.
(2) If X is a (subgroup-closed) formation, then Xk = X∩Ek is a (subgroup-closed)

formation.
(3) If X and Y are formations, then (X ∩Y)k = Xk ∩Yk and (XY)k ⊂ XkYk.

Proof. (1) Assume that G ∈ Ek and N is a normal subgroup of G. Then exp(G) ∈
Nk and exp(G/N) divides exp(G) by Lemma 2 (3). Hence exp(G/N) ∈ Nk by
Lemma 1 (1), and G/N ∈ Ek. Consequently, Ek is a homomorph.

Let N1 and N2 be normal subgroups of G and let G/N1, G/N2 ∈ Ek. By Remak's
Lemma,G/(N1∩N2) is isomorphic to a subgroup which is a subdirect product of the
direct product G/N1 ×G/N2. Since exp(G/Ni) ∈ Nk for i = 1, 2 and exp(G/N1 ×
G/N2) = [exp(G/N1), exp(G/N2)] by Lemma 2 (4), we get exp(G/N1×G/N2) ∈ Nk

by Lemma 1 (2). Consequently, Ek is a formation.
Assume that G ∈ Ek and H is a subgroup of G. In that case, exp(G) ∈ Nk and

exp(H) divides exp(G). Consequently, exp(H) ∈ Nk by Lemma 1 (1) and H ∈ Ek.
Thus Ek is a subgroup-closed formation.

(2) Since the intersection of (subgroup-closed) formations is a (subgroup-closed)
formation and in view of Statement (1), Statement (2) is true.

(3) Let G ∈ (X∩Y)k. In that case, G ∈ (X∩Y) and exp(G) ∈ Nk. Hence G ∈ Xk

è G ∈ Yk. It follows that G ∈ Xk ∩ Yk and (X ∩ Y)k ⊆ Xk ∩ Yk. Now assume
that G ∈ Xk ∩Yk. Then G ∈ Xk ⊆ X and G ∈ Yk ⊆ Y, exp(G) ∈ Nk. Therefore
G ∈ (X ∩Y)k and (X ∩Y)k = Xk ∩Yk.

Let G ∈ (XY)k. In that case, G ∈ XY è exp(G) ∈ Nk. Since G ∈ XY, we get
GY ∈ X. From exp(G) ∈ Nk it follows that exp(GY) ∈ Nk and exp(G/GY) ∈ Nk.
Hence GY ∈ Xk, G/GY ∈ Yk and GYk ≤ GY. But Yk ⊆ Y. Therefore GY ≤ GYk .
Consequently, GYk = GY and G ∈ XkYk. Thus, (XY)k ⊆ XkYk. □

Example 1. Note that the reverse inclusion in Lemma 3 (3) does not hold, an
example is D8 ∈ N1N1 \ (NN)1. Here D8 is the dihedral group of order 8.

Note that wUk and (wU)k are distinct classes: wUk = w(Uk) is the class of all
groups in which every Sylow subgroup is Uk-subnormal; the class (wU)k = wU∩Ek

consists of all groups with U-subnormal Sylow subgroups and exponent that is not
divided by the (k + 1)-th powers of primes.

Similarly, vUk and (vU)k are also distinct classes: vUk = v(Uk) is the class of all
groups in which every primary cyclic subgroup is Uk-subnormal; (vU)k = vU ∩ Ek

consists of all groups with U-subnormal primary cyclic subgroups and exponent
that is not divided by the (k + 1)-th powers of primes.

Lemma 4. (1) (wU)k and (vU)k are subgroup-closed formations for any k.
(2) (wU)k ⊂ wUk and (vU)k ⊂ vUk for any k.

Proof. (1) Since wU and vU are subgroup-closed saturated formations, (wU)k =
wU ∩ Ek and (vU)k = vU ∩ Ek, we deduce that (wU)k and (vU)k are subgroup-
closed formations by Lemma 3 (2).

(2) Let G ∈ (wU)k. In that case, exp(G) ∈ Nk and every Sylow subgroup of G is
U-subnormal in G. Assume that R is a Sylow subgroup of G. By hypothesis, there
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is a subgroup chain

R = H0 ⋖ . . .⋖Hi ⋖Hi+1 ⋖ . . .⋖Hn = G

such that Hi+1/(Hi)Hi+1
∈ U for every i. By Lemma 1, exp

(
Hi+1/(Hi)Hi+1

)
∈ Nk.

Hence Hi+1/(Hi)Hi+1
∈ Uk for every i. Thus R is Uk-subnormal in G and G ∈ wUk.

Let G ∈ (vU)k. Then exp(G) ∈ Nk and every cyclic primary subgroup of G is
U-subnormal in G. Assume that A is a cyclic primary subgroup of G. By hypothesis,
there is a subgroup chain A = H0 ⋖ . . . ⋖ Hi ⋖ Hi+1 ⋖ . . . ⋖ Hn = G such

that Hi+1/(Hi)Hi+1
∈ U for every i. Since exp

(
Hi+1/(Hi)Hi+1

)
∈ Nk, we get

Hi+1/(Hi)Hi+1
∈ Uk for every i. Therefore A is Uk-subnormal in G and G ∈

vUk. □

Example 2. In Lemma 4 (2), the inclusion is proper. In the non-cyclic group

G = C3 ⋊ C2k+1 = ⟨a, b | a3 = b2
k+1

= 1, ab = a2⟩, a Sylow 3-subgroup C3

is normal. Therefore C3 is U1-subnormal in G. A Sylow 2-subgroup C2k+1 is also
U1-subnormal in G, since

(C2k+1)G
∼= C2k , G/(C2k+1)G

∼= S3 ∈ U1.

Thus, G ∈ wU1 ⊂ wUk, but G /∈ (wU)k in view of exp(G) = 3 · 2k+1.

Remind the properties of F-subnormal subgroups that we use.

Lemma 5. Let F be a formation, let H and K be subgroups of G and let N be a
normal subgroup of G. The following statement hold.

(1) If K is F-subnormal in H and H is F-subnormal in G, then K is F-subnormal
in G [1, 6.1.6(1)].

(2) If K/N is F-subnormal in G/N , then K is F-subnormal in G [1, 6.1.6(2)].
(3) If H is F-subnormal in G, then HN/N is F-subnormal in G/N [1, 6.1.6(3)].
(4) If F is a subgroup-closed formation and H is F-subnormal in G, then H ∩K

is F-subnormal in K [1, 6.1.7(2)].
(5) If F is a subgroup-closed formation and H and K are F-subnormal in G, then

H ∩K is F-subnormal in G [1, 6.1.7(3)].

Lemma 6. If F is a subgroup-closed formation and H is F-subnormal in G, then
HF is subnormal in G.

Proof. Use induction on |G|. If H = G, then HF = GF is normal in G. Let H be a
proper subgroup of G. In that case, there is a maximal subgroup M of G such that
M contains H and GF. By induction, HF is subnormal in M . Since HF ≤ GF ≤ M ,
we deduce that HF is subnormal in GF. But GF is normal in G. Therefore HF is
subnormal in G. □

Lemma 7. If H is a subnormal subgroup of a soluble group G, then H is U1-subnor-
mal in G.

Proof. Assume that H is a subnormal subgroup of a soluble group G. In that case,
there is a composition series such that

1 = H0 ≤ H1 ≤ . . . ≤ Hj = H ≤ Hj+1 ≤ . . . ≤ Hm = G.

Since G is soluble, we get |Hj+1/(Hj)Hj+1
| = |Hj+1/Hj | ∈ P and Hj+1/Hj ∈ Uk.

Therefore H is Uk-subnormal in G. □
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Example 3. In the Frobenius group F5 = C5 ⋊ C4, a Sylow subgroup C4 is
U-subnormal, but C4 is not U1-subnormal and not subnormal.

We repeatedly use the following lemma.

Lemma 8. If H is a non-normal subgroup of a soluble group G and |G : H| = r ∈ P,
then G/HG

∼= Cr ⋊Ct, where t divides r − 1. In particular, G/HG is supersoluble.

Proof. According to |G : H| ∈ P, we deduce that H is a maximal subgroup of
G and G = G/HG is a soluble primitive group. Therefore G = N ⋊ H, where
N = F (G) = CG(N) is the unique minimal normal subgroup of G, H = H/HG is

a maximal subgroup of G. Hence

|N | = |G : H| = |G : H| = r, N ∼= Cr, NG(N)/CG(N) = G/N ∼= H

and H is isomorphic to a subgroup of the automorphism group of N . Therefore
H ∼= Ct and t divides r − 1. Thus, G/HG

∼= Cr ⋊ Ct, in particular, G/HG is
supersoluble. □

3. Groups with Uk-subnormal Sylow subgroups

We repeatedly use the following properties of groups with U-subnormal Sylow
subgroups.

Lemma 9. (1) A group G ∈ wU if and only if every metanilpotent subgroup of G
is supersoluble, [6, Theorem 2.6 (2)]. In particular, U = wU ∩N2.

(2) A group G ∈ wU if and only if every biprimary subgroup of G is supersoluble,
[4, Theorem B (1)], [9, Theorem 1 (2)].

(3) If G ∈ wU, then G has a Sylow tower of supersoluble type and every Sylow
subgroup of G/F (G) is abelian, [3, Proposition 2.8; Theorem 2.13 (3)].

(4) Every minimal non-supersoluble subgroup of G is threeprimary if and only if
G ∈ wU, [9, Corollary 1 (2)].

Proposition 1. wUk is a subgroup-closed saturated formation.

Proof. By Lemma 3 (2), Uk is a subgroup-closed formation. Therefore wUk is a
subgroup-closed formation by [10, Theorem 3.1 (5)].

Now we prove that wUk is a saturated formation. Assume the contrary and let
G be a group of least order such that G/Φ(G) ∈ wUk and G /∈ wUk.

Assume that N ̸= 1 is a normal subgroup of G and Φ(G/N) = K/N . Since

Φ(G)N/N = (∩M⋖GM)N/N ≤ (∩N≤H⋖GH) /N = Φ(G/N) = K/N,

we get Φ(G)N ≤ K. Since

G/K ∼= (G/Φ(G))/(K/Φ(G)), G/Φ(G) ∈ wUk

and wUk is a homomorph, we have G/K ∈ wUk. Hence

(G/N)/(Φ(G/N)) = (G/N)/(K/N) ∼= G/K ∈ wUk.

Since |G/N | < |G|, we get G/N ∈ wUk. Thus G/N ∈ wUk for every non-identity
normal subgroup N of G. Since wUk is a formation, G has the unique minimal
normal subgroup.

Since G has a Sylow tower of supersoluble type, a Sylow r-subgroup R of G is
normal in G for r = maxπ(G). It is clear that R = F (G) and Op(G) = 1 for all
p ∈ π(G) \ {r}. In view of Lemma 7, R is Uk-subnormal in G.
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Let Q be a Sylow q-subgroup of G for q ̸= r. Since G/Φ(G) ∈ wUk, we deduce
that QΦ(G)/Φ(G) is Uk-subnormal in G/Φ(G). By Lemma 6,

(QΦ(G)/Φ(G))Uk = QUkΦ(G)/Φ(G)

is subnormal in G/Φ(G). Consequently,

QUkΦ(G)/Φ(G) ≤ F (G/Φ(G)) = F (G)/Φ(G), QUk = 1.

Therefore exponents of all Sylow r′-subgroup of G belong to Nk. Since QR/R is
a Sylow q-subgroup of G/R ∈ wUk, QR/R is Uk-subnormal in G/R. According to
Lemma 5 (2), QR is Uk-subnormal in G. In view of QR ≤ G ∈ wU, we have Q is
U-subnormal in QR. Therefore there is a subgroup chain

Q = M0 ⋖M1 ⋖ . . .⋖Mi ⋖Mi+1 ⋖ . . .⋖Mn = QR

such that |Mi+1 : Mi| ∈ P for every i. Denote Mi = A and Mi+1 = B. Clearly,
|B : A| = r. In view of Lemma 8, B/AB

∼= Cr ⋊ Ct, where t divides r − 1. Since
exp(Q) ∈ Nk, we deduce that exp(B/AB) ∈ Nk and B/AB ∈ Uk. Hence Q is
Uk-subnormal in QR. Consequently, Q is Uk-subnormal in G by Lemma 5 (1). Thus
all Sylow subgroups of G are Uk-subnormal in G and G ∈ wUk. □

Proof of Theorem 1. (1) ⇒ (2): Assume that every Sylow subgroup of G is Uk-sub-
normal in G, i. e. G ∈ wUk. Use induction on |G| to prove G/Φ(G) ∈ (wUk)k.
Suppose that there is a maximal subgroup M of G such that MG = 1. In that
case, G is a primitive group, Φ(G) = 1, G = F (G)⋊M , where F (G) is the unique
minimal normal subgroup of G. Since G has a Sylow tower of supersoluble type, a
Sylow r-subgroup R is normal in G for r = maxπ(G). Hence R = F (G) and R is
an elementary abelian r-subgroup. If Q is a Sylow q-subgroup of G for q ̸= r, Q
is Uk-subnormal in G and QUk is subnormal in G by Lemma 6. Therefore QUk ≤
F (G) = R in view of [11, Theorem 2.2]. Consequently, QUk = 1 and the exponent
of every Sylow r′-subgroup of G belongs to Nk. Thus all Sylow subgroups of G have
exponents from Nk and G ∈ (wUk)k by Lemma 2 (2).

Now assume that MG ̸= 1 for every maximal subgroup M of G. Since G/MG ∈
wUk, by induction,

(G/MG)/Φ(G/MG) ∈ (wUk)k.

ButG/MG is a primitive group, hence Φ(G/MG) = 1 andG/MG ∈ (wUk)k for every
maximal subgroup M of G. Since Φ(G) =

⋂
M⋖G MG and (wUk)k is a formation,

we get G/Φ(G) ∈ (wUk)k.
(1) ⇐ (2): Let G/Φ(G) ∈ (wUk)k. Since (wUk)k ⊆ wUk and wUk is a saturated

formation in view of Proposition 1, we get G ∈ wUk.
Thus, (1) ⇔ (2) is proved.
(1) ⇒ (3): Assume that G ∈ wUk and A is a metanilpotent subgroup of G. In

that case, G ∈ wU, and by Lemma 9 (1), A ∈ U. Since wUk is a subgroup-closed
formation in view of Proposition 1, we get A ∈ wUk. According proved Statement
(1) ⇒ (2), A/Φ(A) ∈ (wUk)k. Consequently, A/Φ(A) ∈ U ∩ (wUk)k ⊆ Uk.

(1) ⇐ (3): Let A/Φ(A) ∈ Uk for every metanilpotent subgroup A of G. Since
Uk ⊆ U, every metanilpotent subgroup A of G is supersoluble. In view of Lemma
9 (1), G ∈ wU. Choose G of least order such that G ∈ wU \ wUk. Since G ∈ wU, a
Sylow r-subgroup R of G is normal in G for r = maxπ(G). In view of Lemma 7,
R is Uk-subnormal in G. Assume that Q is a Sylow q-subgroup of G for q ̸= r.
In that case, R ⋊ Q is metanilpotent and R ⋊ Q/Φ(R ⋊ Q) ∈ Uk ⊆ wUk by the
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choice of G. Since wUk is a saturated formation by Proposition 1, we get R⋊Q ∈
wUk. Hence QR is a proper subgroup of G and Q is Uk-subnormal in QR. Let
U1/R be a metanilpotent subgroup of G/R. Since (|U1/R|, |R|) = 1, by the Schur-
Zassenhaus Theorem, there is a subgroup U such that U1 = R⋊ U and U1/R ∼= U
is metanilpotent. By the choice of G, U/Φ(U) ∈ Uk. Hence

(U1/R)/Φ(U1/R) ∼= U/Φ(U) ∈ Uk.

Thus G/R satis�es Statement (3) and G/R ∈ wUk by the choice of G. Hence a
Sylow subgroup QR/R is Uk-subnormal in G/R. According to Lemma 5 (2), QR is
Uk-subnormal in G, and Q is Uk-subnormal in G by Lemma 5 (1). Thus all Sylow
subgroups of G is Uk-subnormal in G and G ∈ wUk.

Statement (1) ⇔ (3) is proved.
(1) ⇒ (4): Assume that G ∈ wUk and B is a biprimary subgroup of G. In that

case, G ∈ wU, and by Lemma 9 (2), B is supersoluble. Since wUk is a subgroup-
closed formation by Proposition 1, we have B ∈ wUk. By proved Statement (1) ⇒
(2), B/Φ(B) ∈ (wUk)k. Consequently, B/Φ(B) ∈ U ∩ (wUk)k ⊆ Uk.

(1) ⇐ (4): Let G be a group of least order such that B/Φ(B) ∈ Uk for every
biprimary subgroup B of G and G /∈ wUk. In that case, G has a Sylow q-subgroup
Q for a prime q ∈ π(G) that is not Uk-subnormal in G. Since Uk ⊆ U, every
biprimary subgroup of G is supersoluble. By Lemma 9 (2), G ∈ wU, in particular,
G has a Sylow tower of supersoluble type. Consequently, for r = maxπ(G), a Sylow
r-subgroup R of G is normal in G. In view of Lemma 7, R is Uk-subnormal in G
and r > q. By the choice of G, QR/Φ(QR) ∈ Uk ⊆ wUk. Hence QR ∈ wUk by
Proposition 1, in particular, Q is Uk-subnormal in QR and QR < G. Assume that
H/R is a biprimary subgroup of G/R. By the Schur-Zassenhaus Theorem, there is
a biprimary subgroup B of H such that H = R ⋊ B, H/R ∼= B. By the choice of
G, B/Φ(B) ∈ Uk. Therefore

(H/R)/Φ(H/R) ∼= B/Φ(B) ∈ Uk.

By induction,G/R ∈ wUk, henceQR/R is Uk-subnormal inG/R. It follows thatQR
is Uk-subnormal in G by Lemma 5 (2), and Q is Uk-subnormal in G by Lemma 5 (1),
a contradiction.

Statement (1) ⇔ (4) is proved. □

Proof of Corollary 1. Since G ∈ wUk ⊂ wU, we get G/F (G) ∈ A by Lemma 9 (3).
In view of theorem 1 ((1) ⇒ (2)) G/Φ(G) ∈ (wUk)k. Therefore

G/F (G) ∼= (G/Φ(G))/(F (G)/Φ(G)) ∈ A ∩ (wUk)k ⊆ Ak. □

Proof of Corollary 2. (1) ⇔ (2): If G ∈ N2 and every Sylow subgroup of G is
Uk-subnormal in G, then G/Φ(G) ∈ Uk by Theorem 1 ((1) ⇒ (3)). Conversely, if
G/Φ(G) ∈ Uk, then G ∈ wUk by Theorem 1 ((1) ⇐ (2)).

(1) ⇔ (3): If G ∈ N2 ∩wUk, then G/Φ(G) ∈ Uk by proved Statement (1) ⇒ (2).
Since G/F (G) is abelian, we get G/F (G) ∼= (G/Φ(G))/(F (G)/Φ(G)) ∈ A ∩ Uk =
Ak. Conversely, let G/F (G) ∈ Ak and let G ∈ U. Use induction on |G| to prove
that every Sylow subgroup of G is Uk-subnormal in G. Assume that P is a Sylow
p-subgroup and N is a minimal normal subgroup of G such that |N | = r and
r = maxπ(G). By induction, PN/N is Uk-subnormal in G/N . Hence PN is Uk-
subnormal in G and p < r. Since

F (G) ≤ CG(N), PN/CPN (N) = PN/(PN ∩ CG(N)) ∼= PCG(N)/CG(N) ≤
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≤ G/CG(N) ∼= (G/F (G))/(CG(N)/F (G)) ∈ Ak,

and G/CG(N) is cyclic, we deduce that PN/CPN (N) is cyclic and |PN/CPN (N)| =
pt ≤ pk. Next,

CPN (N) = P1 ×N, P1 = PPN ≤ P ⋖ PN, PN/P1
∼= Cr ⋊ Cpt ∈ Uk,

therefore P Uk-subnormal in PN . By Lemma 5 (1), P is Uk-subnormal in G. □

4. Groups with Uk-subnormal cyclic primary subgroups

Groups with U-subnormal cyclic primary subgroups were �rst considered in [4].
The class of such groups was later denoted by vU. In Introduction, we indicate that
wU ⊂ vU and this inclusion is proper.

Lemma 10. wUk ⊂ vUk.

Proof. Let G ∈ wUk. Then every Sylow subgroup of G is Uk-subnormal in G. In
view of Lemma 7, every p-subgroup is U1-subnormal in a Sylow p-subgroup. Hence
every primary subgroup of G is Uk-subnormal in G and G ∈ vUk. □

Example 4. In GL(3, 7), there is a non-abelian subgroup Q of order 33 and
exponent 3 that acts irreducibly on an elementary abelian group P of order 73 [12].
The semidirect product G = P ⋊ Q is a minimal non-supersoluble group and
G ∈ vU according to [9, Corollary 2 (2)]. It corresponds to the group from [13,
Theorem 9 (Type 10)]. Since exp(G) = 3 · 7, we have G ∈ vU1. Biprimary groups
in wU are supersoluble, therefore G /∈ wU, and G /∈ wU1. Clearly, G ∈ vUk \ wUk

for any k.

We repeatedly use the following properties of groups with U-subnormal primary
cyclic subgroups.

Lemma 11. (1) A group G ∈ vU if and only if every subgroup of G with nilpotent
derived subgroup is supersoluble, [6, Theorem 2.6 (1)],[9, Theorem 2 (1)]. In particu-
lar, U = vU ∩NA.

(2) A group G ∈ vU if and only if every biprimary subgroup of G with cyclic
Sylow subgroup is supersoluble, [4, Theorem B (3)],[9, Theorem 2 (2)].

(3) The quotient group H/HU is non-cyclic for every minimal non-supersoluble
subgroup H of G if and only if G ∈ vU, [9, Corollary 2 (2)].

(4) wU = vU ∩ NA and every group of vU has a Sylow tower of supersoluble
type, [9, Theorem 3 (1)].

Proposition 2. vUk is a subgroup-closed saturated formation.

Proof. By Lemma 3 (2), Uk is a subgroup-closed formation. Therefore vUk is a
subgroup-closed formation by [7, Theorem A (3)].

Now we prove that vUk is a saturated formation. Assume the contrary and let G
be a group of least order such thatG/Φ(G) ∈ vUk andG /∈ vUk. By analogy with the
proof of Proposition 1, we can easily prove that G has the unique minimal normal
subgroup. Since G has a Sylow tower of supersoluble type, a Sylow r-subgroup R
is normal in G for r = maxπ(G). It is clear that R = F (G) and Op(G) = 1 for all
p ∈ π(G) \ {r}.

Let A be a cyclic q-subgroup for a prime q ∈ π(G). If q = r, then A is Uk-
subnormal in G in view of Lemma 7. Analogously, if A ≤ Φ(G), then A is Uk-
subnormal in G by Lemma 7. Assume that q ̸= r and A is not contained in Φ(G).
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Since G/Φ(G) ∈ vUk, we deduce that AΦ(G)/Φ(G) is Uk-subnormal in G/Φ(G).
By Lemma 6,

(AΦ(G)/Φ(G))Uk = AUkΦ(G)/Φ(G)

is subnormal in G/Φ(G). Consequently,

AUkΦ(G)/Φ(G) ≤ F (G/Φ(G)) = F (G)/Φ(G) = R/Φ(G), AUk = 1.

Therefore A ∈ Uk. Since AR/R is a cyclic q-subgroup of G/R ∈ vUk, we deduce
that AR/R is Uk-subnormal in G/R. By Lemma 5 (2), AR is Uk-subnormal in G.
Since AR ≤ G ∈ vU, we get A is U-subnormal in AR. Hence there is a subgroup
chain

A = M0 ⋖M1 ⋖ . . .⋖Mi ⋖Mi+1 ⋖ . . .⋖Mn = AR

such that |Mi+1 : Mi| ∈ P for every i. Denote Mi = H and Mi+1 = K. Clearly,
|K : H| = r. It follows that K/HK

∼= Cr ⋊ Ct, where t divides r − 1 in view of
Lemma 8. Since exp(A) ∈ Nk, we have exp(K/HK) ∈ Nk and K/HK ∈ Uk. Hence
A is Uk-subnormal in AR. Consequently, A is Uk-subnormal in G by Lemma 5 (1).
Thus all primary cyclic subgroups of G are Uk-subnormal in G and G ∈ vUk. □

Proof of Theorem 2. (1) ⇒ (2): Let G ∈ vUk. Use induction on |G| to prove
G/Φ(G) ∈ (vUk)k. Suppose that there is a maximal subgroup M of G such that
MG = 1. In that case, G is a primitive group, Φ(G) = 1, G = F (G) ⋊ M , where
F (G) is the unique minimal normal subgroup of G. In view of Lemma 11 (1), a
Sylow r-subgroup R is normal in G for r = maxπ(G). Hence R = F (G) and R is
an elementary abelian r-subgroup.

Let A be a cyclic q-subgroup for a prime q ∈ π(G), q ̸= r. In that case, A is Uk-
subnormal in G, and by Lemma 6, AUk is subnormal in G. Hence AUk ≤ F (G) = R
by [11, Theorem 2.2]. Consequently, AUk = 1 and the exponent of every primary
cyclic r′-subgroup belongs to Nk. Thus all primary cyclic subgroups of G have
exponents from Nk and G ∈ (vUk)k by Lemma 2 (2).

Now assume that MG ̸= 1 for every maximal subgroup M of G. Since G/MG ∈
vUk, we get (G/MG)/Φ(G/MG)) ∈ (vUk)k by induction. But G/MG is a primitive
group, therefore Φ(G/MG) = 1 and G/MG ∈ (vUk)k for every maximal subgroupM
of G. Since Φ(G) =

⋂
M⋖G MG and (vUk)k is a formation, we conclude that

G/Φ(G) ∈ (vUk)k.
(1) ⇐ (2): Let G/Φ(G) ∈ (vUk)k. Since (vUk)k ⊆ vUk and vUk is a saturated

formation by Proposition 2, we get G ∈ vUk.
Statement (1) ⇔ (2) is proved.
(1) ⇒ (3): Assume that G ∈ vUk and A is a subgroup of G with nilpotent derived

subgroup. In that case, G ∈ vU, and by Lemma 11 (1), A ∈ U. By proved Statement
(1) ⇒ (2), A/Φ(A) ∈ (vUk)k. Consequently, A/Φ(A) ∈ U ∩ (vUk)k ⊆ Uk.

(1) ⇐ (3): Let A/Φ(A) ∈ Uk for every subgroup A of G with nilpotent derived
subgroup. Since Uk ⊆ U, every subgroup A of G with nilpotent derived subgroup
is supersoluble. In view of Lemma 11 (1), G ∈ vU. Choose a group G of least order
such that G ∈ vU \ vUk. Since G ∈ vU, a Sylow r-subgroup R of G is normal
in G for r = maxπ(G). In view of Lemma 7, every cyclic r-subgroup of G is
Uk-subnormal in G. Let H be a cyclic q-subgroup of G for a prime q ∈ π(G),
q ̸= r. The derived subgroup (R ⋊ H)′ ≤ R ∈ N. Therefore by the choice of G,
R⋊H/Φ(R⋊H) ∈ Uk ⊆ wUk. By Proposition 2, we get R⋊H ∈ wUk. Hence HR
is a proper subgroup of G and H is Uk-subnormal in HR.
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Let U1/R be a subgroup with nilpotent derived subgroup in G/R. Since
(|U1/R|, |R|) = 1, by the Schur-Zassenhaus theorem, there is a subgroup U such
that U1 = R ⋊ U and U1/R ∼= U has the derived subgroup. By the choice of G,
U/Φ(U) ∈ Uk. Hence

(U1/R)/Φ(U1/R) ∼= U/Φ(U) ∈ Uk.

Thus G/R satis�es Statement (3) and G/R ∈ vUk by the choice of G. Therefore HR
is Uk-subnormal in G by Lemma 5 (2), and H is Uk-subnormal in G by Lemma 5 (1).
Thus, G ∈ vUk.

Statement (1) ⇔ (3) is proved.
(1) ⇒ (4): Assume thatG ∈ vUk andB is a biprimary subgroup with cyclic Sylow

subgroup in G. In that case, G ∈ vU, and by Lemma 11 (2), B is supersoluble. Since
vUk is a subgroup-closed formation by Proposition 2, we get B ∈ vUk. According
to proved Statement (1) ⇒ (3), we have B/Φ(B) ∈ U ∩ (wUk)k ⊆ Uk.

(1) ⇐ (4): Let G be a group of least order such that B/Φ(B) ∈ Uk for every
biprimary B with cyclic Sylow subgroup and G /∈ vUk. In that case, G contains a
cyclic q-subgroup H for a prime q ∈ π(G) that is not Uk-subnormal in G. Since
Uk ⊆ U, every biprimary subgroup with cyclic Sylow subgroup in G is supersoluble.
By Lemma 11 (2), G ∈ vU, in particular, G has a Sylow tower of supersoluble type.
Consequently, a Sylow r-subgroup R of G is normal in G for r = maxπ(G). In view
of Lemma 7, R is Uk-subnormal in G and r > q. By the choice of G, HR/Φ(HR) ∈
Uk ⊆ vUk. Hence HR ∈ vUk by Proposition 2. Consequently, HR is a proper
subgroup of G and H is Uk-subnormal in HR. Let K1/R be a biprimary subgroup
with cyclic Sylow subgroup in G/R. By the Schur-Zassenhaus theorem, there is a
biprimary subgroup K with cyclic Sylow subgroup in K1 such that K1 = R ⋊ K
and K1/R ∼= K. By the choice of G, K/Φ(K) ∈ Uk. Therefore

(K1/R)/Φ(K1/R) ∼= K/Φ(K) ∈ Uk.

By induction, G/R ∈ vUk. It follows that HR/R is Uk-subnormal in G/R. Hence
HR is Uk-subnormal in G by Lemma 5 (2), and H is Uk-subnormal in G by
Lemma 5 (1), a contradiction.

Statement (1) ⇔ (4) is proved. □

Proof of Corollary 3. Since every supersoluble group is metanilpotent, we have U∩
wUk ⊆ N2 ∩ wUk. If G ∈ N2 ∩ wUk, then G/Φ(G) ∈ Uk by Theorem 1 ((1) ⇒ (3)).
Now G ∈ U and U ∩ wUk ⊇ N2 ∩ wUk. Hence U ∩ wUk = N2 ∩ wUk.

Since the derived subgroup of a supersoluble group is nilpotent, we get U∩vUk ⊆
NA ∩ vUk. If G ∈ NA ∩ vUk, then G/Φ(G) ∈ Uk by Theorem 2 ((1) ⇒ (3)). Now
G ∈ U and U ∩ vUk ⊇ NA ∩ vUk. Hence U ∩ vUk = NA ∩ vUk.

In view of Lemma 10, wUk ⊂ vUk. Therefore U ∩ wUk ⊆ U ∩ vUk.
Conversely, let G ∈ U∩vUk. By Theorem 2 ((1) ⇒ (2)), G/Φ(G) ∈ U∩ (vUk)k ⊆

Uk ⊆ U ∩ wUk, and G ∈ U ∩ wUk since U ∩ wUk is a saturated formation.
Since U∩wUk = U∩ vUk, it follows that every Sylow subgroup of a supersoluble

group G is Uk-subnormal in G if and only if every cyclic primary subgroup of G is
Uk-subnormal in G. □
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