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FINITE GROUPS WITH FORMATIONAL SUBNORMAL
PRIMARY SUBGROUPS OF BOUNDED EXPONENT

V.S. MONAKHOV, I.L. SOKHOR

ABSTRACT. Let 4 be the class of all supersoluble groups in which
exponents are not divided by the (k-+1)-th powers of primes. We investi-
gate the classes wil, and vil; that contain all finite groups in which every
Sylow and, respectively, every cyclic primary subgroup is {;-subnormal.
We prove that wil; and vil, are subgroup-closed saturated formations
and obtain the characterizations of these formations.
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1. INTRODUCTION

All groups in this paper are finite. A primary group is a group of prime power
order. All fragments of the theory of group classes that we used correspond to [1].

Let § be a non-empty formation. A subgroup H of a group G is called §-
subnormal in G if either G = H or there is a subgroup chain

(1) H=Hy<...<H;<Hj1<...<H,=(G

such that Hi1/(H;)p,, , € § for all i, [1, Definition 6.1.2]. We write X <Y if X is
a maximal subgroup of a group Y, and Xy = Nycy XY is the core of a subgroup X
in a group Y. If X and %) are formations and X C %), then, clearly, every X-
subnormal subgroup is 9)-subnormal. If § is a soluble formation (i.e. all groups in
§ are soluble) and H is a soluble §-subnormal subgroup of a group G, then G is
soluble, [2, Lemma 2.13].
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Let P be the set of all primes. If |H,; 11 : H;| € P for every i in (1), then H is
P-subnormal in G, [3, Definition 1].

The class of groups with all Sylow subgroups (all cyclic primary subgroups) §-
subnormal is denoted by w§ (v, respectively). If § = &l is the formation of all
supersoluble groups, then the class wil (vil) coincides with the class of all groups
in which every Sylow subgroup (every cyclic primary subgroup, respectively) is P-
subnormal, [6, lemma 1.12]. The classes wil and vil are quite well investigated [3]—
[9]. In particular, these classes are subgroup-closed saturated formations, wil C vil
and every group from vil has a Sylow tower of supersoluble type. The inclusion
wil C vil is proper, every biprimary minimal non-supersoluble group with non-
cyclic non-normal Sylow subgroup belongs to vil\wil, see [9, Example 2, Example 3].

The exponent of a group G is the least common multiple of the orders of all
elements of G and denoted by exp(G). The set of all positive integers is denoted
by N and the set of all positive integers not divided by the (k + 1)-th powers of
primes for £ € N is denoted by Ni. If X is a formation, then Xj is the class of all
groups from X with exponents from Ng. It is clear that X; = X N &, where € is
the formation of all finite groups.

Introduce the following classes of groups:

e §l; is the class of all supersoluble groups with exponents from Ny;

o wily = w(ily) is the class of all groups in which every Sylow subgroup is
$g-subnormal;

e vilp = v(y) is the class of all groups in which every cyclic primary subgroup
is Ug-subnormal.

Since U C U, we have wil, C wil and vl C vil. Hence groups in wily and vily
possess the properties of groups from wil and vil, respectively. In particular, groups
in wil; and vil; have Sylow towers of supersoluble type. In addition, wily C vily
(Lemma 10) and this inclusion is proper for every k (Example 4).

Although 4} is a subgroup-closed non-saturated formation, wily and vil; are
subgroup-closed saturated formations (Proposition 1 and Proposition 2). The follow-
ing theorems contain the characterizations of groups from these formations.

Theorem 1. For a group G, the following statements are equivalent.
(1) Every Sylow subgroup of G is Uy-subnormal in G, i.e. G € wily.
(2) G/®(G) € (wtlx )k
(3) A/®(A) € Uy, for every metanilpotent subgroup A of G;

(4) B/®(B) € iy, for every biprimary subgroup B of G.

Corollary 1. If G € wily, then G/F(G) € Ay.

Here Ay is the class of all groups with abelian Sylow subgroups of exponent
from Np.

Corollary 2. For a metanilpotent group G, the following statements are equivalent.
(1) Every Sylow subgroup of G is Uy -subnormal in G.
(2) G/®(G) € Uy.
(3) G € il and G/F(QG) € Ay.

Here 2}, is the class of all abelian groups with exponents from Nj.

Theorem 2. For a group G, the following statements are equivalent.
(1) Every cyclic primary subgroup of G is y-subnormal in G, i.e. G € vily.



FINITE GROUPS WITH FORMATIONAL SUBNORMAL ... 787

(2) G/O(G) € (vik)k-
(3) A/®(A) € Uy, for every subgroup A with nilpotent derived subgroup.
(4) B/®(B) € Ly, for every biprimary subgroup B with cyclic Sylow subgroup.

Corollary 3. $Nwily = N2 Nwily = UNvily = NAN V. In particular, every
Sylow subgroup of a supersoluble group G is Uy-subnormal in G if and only if every
cyclic primary subgroup of G is U-subnormal in G.

Here 9% is the class of all metanilpotent groups and 92 is the class of all
groups with nilpotent derived subgroup. Both of these classes are subgroup-closed
saturated formations.

2. PRELIMINARIES

Throughout this paper, k denotes an positive integer. We write H < G (H < G)
if H is a (proper) subgroup of G. A subgroup H of G is non-trivial if H # 1
and H # G. By 7w(k) we denote the set of all primes dividing k. For a group G,
m(G) = 7(|G]), where |G| is the order of G. If

|G| = pT'pe® . ..o, p1<p2<...<pn,

and G has a normal series G = Gy > G; > ... > Gp,—1 > G, = 1 such that
G;_1/G; is isomorphic to a Sylow p;-subgroup of G for every i, then we say that
G has a Sylow tower of supersoluble type. It is easy to check that the class © of
all groups with Sylow tower of supersoluble type is a subgroup-closed saturated
Fitting formation. The class A of all groups with abelian Sylow subgroups is a
subgroup-closed formation, but it is not a saturated formation and it is not a
Fitting formation.

The greatest common divisor (ged) and the least common multiple (lcm) of
integers a and b are denoted by (a, b) and [a, b], respectively. We repeatedly use the
following simplest properties of N.

Lemma 1. (1) If n € N and d divides n, then d € N and n/d € Ny.
(2) If a,b € Ny, then (a,b) € Ny, and [a,b] € Ny.

Lemma 2. (1) 7n(G) = 7(exp(G)) and exp(G) divides |G|.

(2) The exponent of G is equal to lem of orders of primary elements of G.

(3) If H is a subgroup of G and N is a normal subgroup of G, then exp(H)
and exp(G/N) divide exp(QG).

(4) If G = G1 X Gy, where G1 < G and Gy < G, then exp(G) = [exp(G1), exp(G2)].

Proof. (1) For every p € 7(G), there is an element of order p in G by Sylow’s
Theorem. Hence n(G) = 7(exp(G)). In view of Lagrange’s Theorem, the order of
every element of G divides |G|. Therefore exp(G) divides |G| by Lemma 1 (2).

(2) Assume that 7(G) = {p1,p2,---,Pm}; P1 < P2 < ... < pPm, and exp(G) =
pitpy? ... pkm. For every ¢ = 1,2,...,m, there is an element z; in G such that
|z;| = p;“t; and p; does not divide t;. It is clear that xf’ is a primary element of
order p and [z%, 252, ... aln] = exp(G).

(3) This statement true in view of Lagrange’s Theorem.

(4) According to Statement (3), exp(G1) and exp(Gs) divide exp(G). Hence
[exp(G1), exp(G2)] divides exp(G). Since any element g € G can be represented
as g = g192, where g1 € G1, g2 € G2 and |g| = [|g1], |g2|], we conclude that exp(G)
divides [exp(G1), exp(G2)]. Consequently, [exp(G1), exp(Gz)] = exp(G). O
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A class X is saturated if G € X whenever G/®(G) € X. Here ®(G) is the Frattini
subgroup of a group G. If H € X whenever H < G and G € X, then X is a
subgroup-closed class.

Lemma 3. (1) & is a subgroup-closed formation.

(2) If X is a (subgroup-closed) formation, then X, = XN&y is a (subgroup-closed)
formation.

(3) If X and Q) are formations, then (XNY)r = Xp N Y and (XY)ir C X1k

Proof. (1) Assume that G € &, and N is a normal subgroup of G. Then exp(G) €
Ny and exp(G/N) divides exp(G) by Lemma 2 (3). Hence exp(G/N) € Nj by
Lemma 1(1), and G/N € €. Consequently, € is a homomorph.

Let N7 and Ny be normal subgroups of G and let G/Ny, G/Nsy € €. By Remak’s
Lemma, G/(N1NN3) is isomorphic to a subgroup which is a subdirect product of the
direct product G/Ny x G/Ns. Since exp(G/N;) € Ny, for i = 1,2 and exp(G/N;y x
G/N3) = [exp(G/N1),exp(G/N2)] by Lemma 2 (4), we get exp(G/N1 x G/N3) € Ny,
by Lemma 1(2). Consequently, & is a formation.

Assume that G € €, and H is a subgroup of G. In that case, exp(G) € N and
exp(H) divides exp(G). Consequently, exp(H) € Ni by Lemma 1(1) and H € &.
Thus €, is a subgroup-closed formation.

(2) Since the intersection of (subgroup-closed) formations is a (subgroup-closed)
formation and in view of Statement (1), Statement (2) is true.

(3) Let G € (XN9). In that case, G € (XNY) and exp(G) € Ni. Hence G € X,
u G € Qy. It follows that G € X N Yy and (XN Y)r C X NYx. Now assume
that G € X N Y. Then G € X, C X and G € Y, C 9, exp(G) € Ni. Therefore
Ge(XNY)k and (XNY)r = Xk N Y.

Let G € (X9)k. In that case, G € X9 u exp(G) € Ni. Since G € X9), we get
GY € X. From exp(G) € Ny, it follows that exp(G¥) € Ny, and exp(G/G?) € N;.
Hence G? € X, G/G® € Q; and GP* < G¥. But i C 2. Therefore GY < GY*.
Consequently, G¥* = G? and G € XYs. Thus, (X9)r € XxDs. O

Example 1. Note that the reverse inclusion in Lemma 3 (3) does not hold, an
example is Dg € M9 \ (MN)1. Here Dy is the dihedral group of order 8.

Note that wil, and (wil), are distinct classes: wily, = w(lly) is the class of all
groups in which every Sylow subgroup is 4l;-subnormal; the class (wil), = wilN €&
consists of all groups with i{-subnormal Sylow subgroups and exponent that is not
divided by the (k + 1)-th powers of primes.

Similarly, vil; and (vil) are also distinct classes: vil, = v(Lly) is the class of all
groups in which every primary cyclic subgroup is {-subnormal; (vil), = vilN &
consists of all groups with $l-subnormal primary cyclic subgroups and exponent
that is not divided by the (k + 1)-th powers of primes.

Lemma 4. (1) (wil)y and (vil)y are subgroup-closed formations for any k.
(2) (wil), C wily and (vil)y, C vily for any k.

Proof. (1) Since wil and vil are subgroup-closed saturated formations, (wil), =
wil N & and (vil)p = vilN &, we deduce that (wil), and (vil); are subgroup-
closed formations by Lemma 3 (2).

(2) Let G € (will)g. In that case, exp(G) € Ny and every Sylow subgroup of G is
$l-subnormal in G. Assume that R is a Sylow subgroup of G. By hypothesis, there
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is a subgroup chain
R=Hy<...<H;<Hjy1<...<H,=G

such that Hi+1/(Hi)Hi+1 € il for every i. By Lemma 1, exp (Hi“/(Hi)HiH) € Nj.
Hence Hi+1/(Hi)Hi+1 € i, for every i. Thus R is {-subnormal in G and G € wily.

Let G € (vil)g. Then exp(G) € Ny and every cyclic primary subgroup of G is
$l-subnormal in G. Assume that A is a cyclic primary subgroup of G. By hypothesis,
there is a subgroup chain A = Hy<...< H; < Hyy1 < ... < H, = G such
that Hi+1/(Hi)Hi+1
HiJrl/(Hi)Hi+1 € 4 for every i. Therefore A is iUi-subnormal in G and G €
Vﬂk. |

€ U for every i. Since exp (Hi+1/(Hi)H,i+1) € Ng, we get

Example 2. In Lemma 4(2), the inclusion is proper. In the non-cyclic group
G = Cy % Cor = {a,b | a® =" =1, a® = a?), a Sylow 3-subgroup Cj
is normal. Therefore C5 is $;-subnormal in G. A Sylow 2-subgroup Chyx+1 is also
$l;-subnormal in G, since

(CQk+1)G = Cor, G/(CQk+1)G >~ S5 e 4.
Thus, G € wil; C wilg, but G ¢ (wil) in view of exp(G) = 3 - 2~ +1,
Remind the properties of F-subnormal subgroups that we use.

Lemma 5. Let § be a formation, let H and K be subgroups of G and let N be a
normal subgroup of G. The following statement hold.

(1) If K is §-subnormal in H and H is §-subnormal in G, then K is §-subnormal
in G [1, 6.1.6(1)].

(2) If K/N is §-subnormal in G/N, then K is §-subnormal in G [1, 6.1.6(2)].
(3) If H is §-subnormal in G, then HN/N is §-subnormal in G/N [1, 6.1.6(3)].

(4) If § is a subgroup-closed formation and H is F-subnormal in G, then HNK
is §-subnormal in K [1, 6.1.7(2)].

(5) If § is a subgroup-closed formation and H and K are §-subnormal in G, then
HnN K is §-subnormal in G [1, 6.1.7(3)].

Lemma 6. If § is a subgroup-closed formation and H is §-subnormal in G, then
HS is subnormal in G.

Proof. Use induction on |G|. If H = G, then HS = G¥ is normal in G. Let H be a
proper subgroup of G. In that case, there is a maximal subgroup M of G such that
M contains H and G¥. By induction, HY is subnormal in M. Since HS < G¥ < M,
we deduce that H¥ is subnormal in G¥. But G¥ is normal in G. Therefore HY is
subnormal in G. |

Lemma 7. If H is a subnormal subgroup of a soluble group G, then H is i -subnor-
mal in G.

Proof. Assume that H is a subnormal subgroup of a soluble group G. In that case,
there is a composition series such that

l=Hy<H, <..<Hj=H<Hj, <...<H,=0G.

Since G is soluble, we get |HJ’+1/(HJ)H]-+1| = |Hj;1/H;| € Pand Hj1/H; € Y.
Therefore H is Ui-subnormal in G. [l
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Example 3. In the Frobenius group F5 = C5 x Cy, a Sylow subgroup Cj is
$l-subnormal, but Cy is not i{;-subnormal and not subnormal.

We repeatedly use the following lemma.

Lemma 8. If H is a non-normal subgroup of a soluble group G and |G : H| =r € P,
then G/Hg = C,. x Cy, where t divides r — 1. In particular, G/Hg is supersoluble.

Proof. According to |G : H| € P, we deduce that H is a maximal subgroup of
G and é = G/HE is a soluble primitive group. Therefore G iﬁix H, where
N = F(G) = C4(N) is the unique minimal normal subgroup of G, H = H/Hg is
a maximal subgroup of G. Hence

IN|=|G:H|=|G:H|=r, N2C,, Ng(N)/C5(N)=G/N=~H
and H is isomorphic to a subgroup of the automorphism group of N. Therefore

H = C; and t divides r — 1. Thus, G/Hg = C, x Cy, in particular, G/Hg is
supersoluble. O

3. GROUPS WITH -SUBNORMAL SYLOW SUBGROUPS

We repeatedly use the following properties of groups with {-subnormal Sylow
subgroups.

Lemma 9. (1) A group G € wil if and only if every metanilpotent subgroup of G
is supersoluble, [6, Theorem 2.6 (2)]. In particular, 4 = wil N N2,

(2) A group G € wil if and only if every biprimary subgroup of G is supersoluble,
[4, Theorem B (1)], [9, Theorem 1 (2)].

(3) If G € wil, then G has a Sylow tower of supersoluble type and every Sylow
subgroup of G/F(G) is abelian, [3, Proposition 2.8; Theorem 2.13 (3)].

(4) Every minimal non-supersoluble subgroup of G is threeprimary if and only if
G € wil, [9, Corollary 1(2)].

Proposition 1. wil is a subgroup-closed saturated formation.

Proof. By Lemma 3(2), ;. is a subgroup-closed formation. Therefore wil; is a
subgroup-closed formation by [10, Theorem 3.1 (5)].

Now we prove that wily is a saturated formation. Assume the contrary and let
G be a group of least order such that G/®(G) € wil, and G ¢ wily.

Assume that N # 1 is a normal subgroup of G and ®(G/N) = K/N. Since

®(G)N/N = (Nm<cM)N/N < (Nn<u<cH) /N = ®(G/N) = K/N,
we get ®(G)N < K. Since
G/K = (G/2(G))/(K/2(G)), G/®(G) € wil
and wily is a homomorph, we have G/K € wil;,. Hence
(G/N)/(B(G/N)) = (G/N)/(K/N) = G/K € wil.

Since |G/N| < |G|, we get G/N € wili. Thus G/N € wil;, for every non-identity
normal subgroup N of G. Since wily is a formation, G has the unique minimal
normal subgroup.

Since G has a Sylow tower of supersoluble type, a Sylow r-subgroup R of G is
normal in G for r = maxn(G). It is clear that R = F(G) and O,(G) = 1 for all
p € 7(G)\ {r}. In view of Lemma 7, R is {;-subnormal in G.
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Let @ be a Sylow g-subgroup of G for g # r. Since G/®(G) € wily, we deduce
that Q®(G)/®(G) is Ug-subnormal in G/P(G). By Lemma 6,

(Q2(G)/2(G))™ = Q™ ®(G)/2(q)
is subnormal in G/®(G). Consequently,
QM 0(G)/2(G) < F(G/®(G)) = F(G)/2(G), @™ =1.

Therefore exponents of all Sylow 7/-subgroup of G belong to Nj. Since QR/R is
a Sylow g¢-subgroup of G/R € wili, QR/R is i-subnormal in G/R. According to
Lemma 5 (2), QR is $g-subnormal in G. In view of QR < G € wil, we have @Q is
$l-subnormal in QR. Therefore there is a subgroup chain

Q=My<My<..<M;<Mij1<...<M,=QR

such that |M;y1 : M;| € P for every i. Denote M; = A and M;;; = B. Clearly,
|B : Al = r. In view of Lemma 8, B/Ap = C, x Cy, where t divides r — 1. Since
exp(Q) € Ng, we deduce that exp(B/Ap) € Ny, and B/Ap € ;. Hence Q is
$g-subnormal in QR. Consequently, @ is {Ux-subnormal in G by Lemma 5 (1). Thus
all Sylow subgroups of G are {-subnormal in G and G € wil. a

Proof of Theorem 1. (1) = (2): Assume that every Sylow subgroup of G is Ll;-sub-
normal in G, i.e. G € wilg. Use induction on |G| to prove G/®(G) € (wily).
Suppose that there is a maximal subgroup M of G such that Mg = 1. In that
case, G is a primitive group, ®(G) =1, G = F(G) x M, where F(G) is the unique
minimal normal subgroup of G. Since G has a Sylow tower of supersoluble type, a
Sylow r-subgroup R is normal in G for r = max 7 (G). Hence R = F(G) and R is
an elementary abelian r-subgroup. If @ is a Sylow g-subgroup of G for ¢ # r, @
is {z-subnormal in G' and Q** is subnormal in G by Lemma 6. Therefore Q%+ <
F(G) = R in view of [11, Theorem 2.2]. Consequently, @*** = 1 and the exponent
of every Sylow r’-subgroup of G belongs to Ni. Thus all Sylow subgroups of G have
exponents from Ny and G € (wily); by Lemma 2 (2).

Now assume that Mg # 1 for every maximal subgroup M of G. Since G/M¢ €

wilk, by induction,

(G/Mg)/®(G/Mg) € (W)
But G/Mj is a primitive group, hence ®(G/M¢) = 1 and G/Mg € (wily ) for every
maximal subgroup M of G. Since ®(G) = (), Mc and (wily)y is a formation,
we get G/P(G) € (wilg)g-

(1) <= (2): Let G/®(G) € (wilg)g- Since (wily)r C wily and wily is a saturated
formation in view of Proposition 1, we get G € wily.

Thus, (1) < (2) is proved.

(1) = (3): Assume that G € wil;, and A is a metanilpotent subgroup of G. In
that case, G € wil, and by Lemma 9 (1), A € 4. Since wil; is a subgroup-closed
formation in view of Proposition 1, we get A € wili. According proved Statement
(1) = (2), A/P(A) € (wilg). Consequently, A/P(A) € N (wily)r C L.

(1) <= (3): Let A/®(A) € 4}, for every metanilpotent subgroup A of G. Since
;. C 4L every metanilpotent subgroup A of G is supersoluble. In view of Lemma
9(1), G € wil. Choose G of least order such that G € wil \ wil;. Since G € wil, a
Sylow r-subgroup R of G is normal in G for r = max 7 (G). In view of Lemma 7,
R is Ug-subnormal in G. Assume that @ is a Sylow ¢-subgroup of G for g # r.
In that case, R x @ is metanilpotent and R x Q/P(R x Q) € U C wily by the
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choice of G. Since wily is a saturated formation by Proposition 1, we get R x @ €
wili. Hence QR is a proper subgroup of G and @ is Ug-subnormal in QR. Let
U1/R be a metanilpotent subgroup of G/R. Since (|U1/R|,|R]|) = 1, by the Schur-
Zassenhaus Theorem, there is a subgroup U such that U; = R x U and U; /R = U
is metanilpotent. By the choice of G, U/®(U) € 4. Hence

(Ui/R)/®(U1/R) = U/®(U) € Us.

Thus G/R satisfies Statement (3) and G/R € wil; by the choice of G. Hence a
Sylow subgroup QR/R is Uj-subnormal in G/R. According to Lemma 5 (2), QR is
$-subnormal in G, and Q is Yg-subnormal in G by Lemma 5 (1). Thus all Sylow
subgroups of G is Ug-subnormal in G and G € wil.

Statement (1) < (3) is proved.

(1) = (4): Assume that G € wil, and B is a biprimary subgroup of G. In that
case, G € wil, and by Lemma 9 (2), B is supersoluble. Since wil; is a subgroup-
closed formation by Proposition 1, we have B € wil,. By proved Statement (1) =
(2), B/®(B) € (will). Consequently, B/®(B) € N (wily)r C LUy.

(1) <= (4): Let G be a group of least order such that B/®(B) € i, for every
biprimary subgroup B of G and G ¢ wili. In that case, G has a Sylow g-subgroup
Q for a prime ¢ € 7(G) that is not Lg-subnormal in G. Since i C 4, every
biprimary subgroup of G is supersoluble. By Lemma 9 (2), G € wil, in particular,
G has a Sylow tower of supersoluble type. Consequently, for r = max 7 (G), a Sylow
r-subgroup R of G is normal in G. In view of Lemma 7, R is {Ug-subnormal in G
and r > ¢. By the choice of G, QR/®(QR) € L C wili. Hence QR € wil;, by
Proposition 1, in particular, @ is Ug-subnormal in QR and QR < G. Assume that
H/R is a biprimary subgroup of G/R. By the Schur-Zassenhaus Theorem, there is
a biprimary subgroup B of H such that H = R x B, H/R = B. By the choice of
G, B/®(B) € Y. Therefore

(H/R)/®(H/R) = B/®(B) € Uj.

By induction, G/R € wily, hence QR/R is Uj-subnormal in G/R. It follows that QR
is {lg-subnormal in G by Lemma 5 (2), and @ is {x-subnormal in G by Lemma 5 (1),
a contradiction.

Statement (1) < (4) is proved. O

Proof of Corollary 1. Since G € wil, C wil, we get G/F(G) € A by Lemma 9 (3).
In view of theorem 1((1) = (2)) G/®(G) € (wily)y. Therefore

G/F(G) = (G/2(G)/(F(G)/®(G)) € AN (wily) C Ap. O

Proof of Corollary 2. (1) & (2): If G € M? and every Sylow subgroup of G is
ig-subnormal in G, then G/®(G) € 4, by Theorem 1((1) = (3)). Conversely, if
G/®(G) € Yy, then G € wily, by Theorem 1((1) < (2)).

(1) & (3): If G € M2 Nwily, then G/P(G) € 4y, by proved Statement (1) = (2).
Since G/F(G) is abelian, we get G/F(G) = (G/®(G))/(F(G)/®(G)) € ANl =
.. Conversely, let G/F(G) € Ay and let G € 4. Use induction on |G| to prove
that every Sylow subgroup of G is Ui-subnormal in G. Assume that P is a Sylow
p-subgroup and N is a minimal normal subgroup of G such that |[N| = r and
r = max7(G). By induction, PN/N is ${p-subnormal in G/N. Hence PN is -
subnormal in G and p < r. Since

F(G) < Cg(N), PN/Cpn(N)=PN/(PNNCg(N))= PCg(N)/Ca(N) <
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< G/Cq(N) = (G/F(G)/(Ca(N)/F(G)) € 2,
and G/C¢(N) is cyclic, we deduce that PN/Cpy(N) is cyclic and |PN/Cpn(N)| =
p! < p*. Next,

Cpn(N) =P, x N, P, = Ppy < P < PN, PN/P; 2 C, x Cp € $ly,
therefore P ii-subnormal in PN. By Lemma 5 (1), P is {-subnormal in G. O

4. GROUPS WITH ;-SUBNORMAL CYCLIC PRIMARY SUBGROUPS

Groups with {l-subnormal cyclic primary subgroups were first considered in [4].
The class of such groups was later denoted by vil. In Introduction, we indicate that
wil C vil and this inclusion is proper.

Lemma 10. wil;, C vil.

Proof. Let G € wilg. Then every Sylow subgroup of G is {i-subnormal in G. In
view of Lemma 7, every p-subgroup is 4;-subnormal in a Sylow p-subgroup. Hence
every primary subgroup of G is U-subnormal in G and G € vil;. O

Example 4. In GL(3,7), there is a non-abelian subgroup @ of order 33 and
exponent 3 that acts irreducibly on an elementary abelian group P of order 73 [12].
The semidirect product G = P x @ is a minimal non-supersoluble group and
G € vil according to [9, Corollary 2(2)]. It corresponds to the group from [13,
Theorem 9 (Type 10)]. Since exp(G) = 3 -7, we have G € vil;. Biprimary groups
in wil are supersoluble, therefore G ¢ wil, and G ¢ wil;. Clearly, G € vily \ wilg
for any k.

We repeatedly use the following properties of groups with {-subnormal primary
cyclic subgroups.

Lemma 11. (1) A group G € vil if and only if every subgroup of G with nilpotent
derived subgroup is supersoluble, [6, Theorem 2.6 (1)],[9, Theorem 2 (1)]. In particu-
lar, L = v NINA.

(2) A group G € vil if and only if every biprimary subgroup of G with cyclic
Sylow subgroup is supersoluble, [4, Theorem B (3)],[9, Theorem 2 (2)].

(3) The quotient group H/H" is non-cyclic for every minimal non-supersoluble
subgroup H of G if and only if G € vil, [9, Corollary 2 (2)].

(4) wil = vUNNA and every group of vil has a Sylow tower of supersoluble
type, [9, Theorem 3 (1)].

Proposition 2. vil; is a subgroup-closed saturated formation.

Proof. By Lemma 3(2), i is a subgroup-closed formation. Therefore vily is a
subgroup-closed formation by [7, Theorem A (3)].

Now we prove that vil; is a saturated formation. Assume the contrary and let G
be a group of least order such that G/®(G) € vil, and G ¢ vil;. By analogy with the
proof of Proposition 1, we can easily prove that G has the unique minimal normal
subgroup. Since G has a Sylow tower of supersoluble type, a Sylow r-subgroup R
is normal in G for r = max7(G). It is clear that R = F(G) and O,(G) =1 for all
pem(G)\{r}.

Let A be a cyclic g-subgroup for a prime ¢ € n(G). If ¢ = r, then A is Ly~
subnormal in G in view of Lemma 7. Analogously, if A < ®(G), then A is Lly-
subnormal in G by Lemma 7. Assume that ¢ # r and A is not contained in ®(G).
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Since G/®(G) € vilg, we deduce that A®P(G)/P(G) is Ug-subnormal in G/P(G).
By Lemma 6,
(AR(G)/2(G))™ = A (G)/2(G)
is subnormal in G/®(G). Consequently,
AMD(G)/B(G) < F(G/®(Q)) = F(G)/®(G) = R/®(G), A% =1.

Therefore A € 4. Since AR/R is a cyclic ¢g-subgroup of G/R € vili, we deduce
that AR/R is $x-subnormal in G/R. By Lemma 5(2), AR is {5-subnormal in G.
Since AR < G € vi, we get A is {-subnormal in AR. Hence there is a subgroup
chain

A=My<Mi<...<M; <M1 <...<M,=AR

such that |M;; : M;| € P for every i. Denote M; = H and M;; = K. Clearly,
|K : H| = r. It follows that K/Hgk = C, x Cy, where ¢ divides r — 1 in view of
Lemma 8. Since exp(A) € Ng, we have exp(K/Hg) € Ny and K/Hg € 8. Hence
A is Ug-subnormal in AR. Consequently, A is ilg-subnormal in G by Lemma 5 (1).
Thus all primary cyclic subgroups of G are {i-subnormal in G and G € vil,. O

Proof of Theorem 2. (1) = (2): Let G € vil. Use induction on |G| to prove
G/®(G) € (vily)k. Suppose that there is a maximal subgroup M of G such that
Mg = 1. In that case, G is a primitive group, ®(G) = 1, G = F(G) x M, where
F(G) is the unique minimal normal subgroup of G. In view of Lemma 11 (1), a
Sylow r-subgroup R is normal in G for » = max7(G). Hence R = F(G) and R is
an elementary abelian r-subgroup.

Let A be a cyclic g-subgroup for a prime g € 7(G), ¢ # r. In that case, A is LUy-
subnormal in G, and by Lemma 6, A** is subnormal in G. Hence A** < F(G) = R
by [11, Theorem 2.2]. Consequently, A** = 1 and the exponent of every primary
cyclic r’-subgroup belongs to Nj. Thus all primary cyclic subgroups of G have
exponents from Ny and G € (vily); by Lemma 2 (2).

Now assume that Mg # 1 for every maximal subgroup M of G. Since G/Mg €
vili, we get (G/Mg)/®(G/Mg)) € (vig)r by induction. But G/Mg is a primitive
group, therefore ®(G/M¢g) = 1 and G/Mg € (vily)y, for every maximal subgroup M
of G. Since ®(G) = Ny;ee Mg and (vily), is a formation, we conclude that
G/(I)(G) S (Vﬂk)k.

(1) < (2): Let G/®(G) € (vily)g. Since (vily)r C vili and vily is a saturated
formation by Proposition 2, we get G € vily.

Statement (1) < (2) is proved.

(1) = (3): Assume that G € vil;, and A is a subgroup of G with nilpotent derived
subgroup. In that case, G € vil, and by Lemma 11 (1), A € $l. By proved Statement
(1) = (2), A/P(A) € (vilg)k. Consequently, A/P(A) € N (vily)r C Uy

(1) < (3): Let A/®(A) € 4y, for every subgroup A of G with nilpotent derived
subgroup. Since U C i, every subgroup A of G with nilpotent derived subgroup
is supersoluble. In view of Lemma 11 (1), G € vil. Choose a group G of least order
such that G € vil\ vil. Since G € vil, a Sylow r-subgroup R of G is normal
in G for r = max7(G). In view of Lemma 7, every cyclic r-subgroup of G is
{lg-subnormal in G. Let H be a cyclic g-subgroup of G for a prime ¢ € 7(G),
q # r. The derived subgroup (R x H) < R € 1. Therefore by the choice of G,
Rx H/®(Rx H) € 4}, C wilg. By Proposition 2, we get R x H € wil,. Hence HR
is a proper subgroup of G and H is i-subnormal in HR.
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Let Uy /R be a subgroup with nilpotent derived subgroup in G/R. Since
(|U1/R],|R]) = 1, by the Schur-Zassenhaus theorem, there is a subgroup U such
that Uy = R x U and U;/R = U has the derived subgroup. By the choice of G,
U/®(U) € Uy. Hence

(U1/R)/®(U1/R) =2 U/2(U) € U.

Thus G/ R satisfies Statement (3) and G/R € vil; by the choice of G. Therefore HR
is $lg-subnormal in G by Lemma 5 (2), and H is g-subnormal in G by Lemma 5 (1).
Thus, G € vil.

Statement (1) < (3) is proved.

(1) = (4): Assume that G € vil; and B is a biprimary subgroup with cyclic Sylow
subgroup in G. In that case, G € vil, and by Lemma 11 (2), B is supersoluble. Since
viy is a subgroup-closed formation by Proposition 2, we get B € vili. According
to proved Statement (1) = (3), we have B/®(B) € N (wily)r C L.

(1) <= (4): Let G be a group of least order such that B/®(B) € i, for every
biprimary B with cyclic Sylow subgroup and G ¢ vili. In that case, G contains a
cyclic g-subgroup H for a prime ¢ € 7(G) that is not ${x-subnormal in G. Since
;. C 4, every biprimary subgroup with cyclic Sylow subgroup in G is supersoluble.
By Lemma 11 (2), G € vil, in particular, G has a Sylow tower of supersoluble type.
Consequently, a Sylow r-subgroup R of G is normal in G for 7 = max7(G). In view
of Lemma 7, R is {U-subnormal in G and r > ¢. By the choice of G, HR/®(HR) €
U C vig. Hence HR € vl by Proposition 2. Consequently, HR is a proper
subgroup of G and H is i;-subnormal in HR. Let K;/R be a biprimary subgroup
with cyclic Sylow subgroup in G/R. By the Schur-Zassenhaus theorem, there is a
biprimary subgroup K with cyclic Sylow subgroup in K; such that K1 = R x K
and K;/R = K. By the choice of G, K/®(K) € 4. Therefore

(K1/R)/®(K1/R) = K/®(K) € .

By induction, G/R € vili. It follows that HR/R is {lx-subnormal in G/R. Hence
HR is Yg-subnormal in G by Lemma 5(2), and H is {i-subnormal in G by
Lemma 5 (1), a contradiction.

Statement (1) < (4) is proved. O

Proof of Corollary 3. Since every supersoluble group is metanilpotent, we have (N
wili, €2 Nwily. If G € M2 Nwily, then G/®(G) € Uy, by Theorem 1((1) = (3)).
Now G € {4 and YN wil, D N% N wil,. Hence 4 N wil, = N2 N wily.

Since the derived subgroup of a supersoluble group is nilpotent, we get LNvil, C
NANvily. If G € NAN vily, then G/P(G) € Ly, by Theorem 2 ((1) = (3)). Now
G e dand UNvil, O NANv,. Hence U N vily = NAN vily.

In view of Lemma 10, wily C vil. Therefore Y N wily C U N vil.

Conversely, let G € 4N vily. By Theorem 2 ((1) = (2)), G/®(G) € UnN (vily)x C
U CUN W, and G € UNwil, since 4N wily is a saturated formation.

Since U Nwily = UNvily, it follows that every Sylow subgroup of a supersoluble
group G is U-subnormal in G if and only if every cyclic primary subgroup of G is
$-subnormal in G. O
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