УДК 530.1; 536.7; 544.2

 $DOI: https://doi.org/10.54341/20778708_2023_4_57_20$

EDN: CPVAEW

ПРИВЕДЕННЫЕ ТЕРМОДИНАМИЧЕСКИЕ КОЭФФИЦИЕНТЫ В ТЕОРИИ РЕАЛЬНЫХ ГАЗОВ

Е.А. Дей, Г.Ю. Тюменков

Гомельский государственный университет имени Франциска Скорины

REDUCED THERMODYNAMIC COEFFICIENTS IN THE THEORY OF REAL GASES

E.A. Dey, G.Yu. Tyumenkov

Francisk Skorina Gomel State University

Аннотация. На основании использования уравнений состояния реальных газов получены аналитические выражения для их физических параметров (термодинамических коэффициентов), выраженных в приведенных переменных. Рассмотрены уравнения Пенга – Робинсона, Исикавы – Чанга – Лу и Фогельсона – Лихачева.

Ключевые слова: термодинамический коэффициент, приведенные переменные, уравнение состояния реального газа, уравнение Пенга – Робинсона, уравнение Исикавы – Чанга – Лу, уравнение Фогельсона – Лихачева.

Для цитирования: Дей, Е.А. Приведенные термодинамические коэффициенты в теории реальных газов / Е.А. Дей, Г.Ю. Тюменков // Проблемы физики, математики и техники. — 2023. — № 4 (57). — С. 20—24. — DOI: https://doi.org/10.54341/20778708 2023 4 57 20. — EDN: CPVAEW

Abstract. Based on the use of equations of state of real gases, analytical expressions for their physical parameters (thermodynamic coefficients) expressed in the reduced variables are obtained. The Peng – Robinson equation, Ishikawa – Chung – Lu equation and Fogelson – Likhachev equation are considered.

Keywords: thermodynamic coefficient, reduced variables, real gas equation of state, Peng – Robinson equation, Ishikawa – Chung – Lu equation, Vogelson – Likhachev equation.

For citation: Dey, E.A. Reduced thermodynamic coefficients in the theory of real gases / E.A. Dey, G.Yu. Tyumenkov // Problems of Physics, Mathematics and Technics. – 2023. – № 4 (57). – P. 20–24. – DOI: https://doi.org/10.54341/20778708_2023_4_57_20 (in Russian). – EDN: CPVAEW

Введение

Безразмерные приведенные термодинамические переменные основаны на использовании в качестве единиц измерения объема V, температуры T и давления P реального газа соответственно критической температуры $T_{\kappa p}$, критического давления P_{kp} и критического объема V_{kp}

$$\tilde{V} = \frac{V}{V_{\kappa p}}, \ \tilde{T} = \frac{T}{T_{\kappa p}}, \ \tilde{P} = \frac{P}{P_{\kappa p}}.$$
 (0.1)

Определение и использование этих переменных для записи уравнений состояния в приведенной форме содержатся практически во всех учебниках по термодинамике [1], [2]. На этой основе сформулирован принцип соответственных состояний, согласно которому вещества, имеющие одинаковые приведенные термодинамические параметры состояния, имеют и одинаковые свойства.

В работе [3] были введены определения приведенного изобарного коэффициента объёмного расширения $\tilde{\alpha}_P$, приведенного изохорного термического коэффициента давления $\tilde{\beta}_V$, приведенной изотермической сжимаемости \tilde{k}_T и

приведенной разности изобарной и изохорной теплоемкостей $\Delta ilde{c}$

$$\tilde{\alpha}_{P} = \frac{1}{\tilde{V}} \left(\frac{\partial \tilde{V}}{\partial \tilde{T}} \right)_{\tilde{P}} = -\frac{1}{\tilde{V}} \left(\frac{\partial \tilde{P}}{\partial \tilde{T}} \right)_{\tilde{V}} \left(\frac{\partial \tilde{P}}{\partial \tilde{V}} \right)_{\tilde{T}}^{-1};$$

$$\tilde{\beta}_{V} = \frac{1}{\tilde{P}} \left(\frac{\partial \tilde{P}}{\partial \tilde{T}} \right)_{\tilde{V}}; \quad \tilde{k}_{T} = -\frac{1}{\tilde{V}} \left(\frac{\partial \tilde{V}}{\partial \tilde{P}} \right)_{\tilde{T}} = -\frac{1}{\tilde{V}} \left(\frac{\partial \tilde{P}}{\partial \tilde{V}} \right)_{\tilde{T}}^{-1};$$

$$\Delta \tilde{c} = -\tilde{T} \left(\frac{\partial \tilde{P}}{\partial \tilde{T}} \right)_{\tilde{V}}^{2} \left(\frac{\partial \tilde{P}}{\partial \tilde{V}} \right)_{\tilde{T}}^{-1}. \quad (0.2)$$

Соответственно, связь приведенных коэффициентов с экспериментально измеряемыми физическими параметрами газов задаётся соотношениями

$$\alpha_{P} = \frac{1}{V} \left(\frac{\partial V}{\partial T} \right)_{P} = \frac{1}{T_{\kappa p}} \tilde{\alpha}_{P}; \quad \beta_{V} = \frac{1}{P} \left(\frac{\partial P}{\partial T} \right)_{V} = \frac{1}{T_{\kappa p}} \tilde{\beta}_{V};$$

$$k_{T} = -\frac{1}{V} \left(\frac{\partial V}{\partial P} \right)_{T} = \frac{1}{P_{\kappa p}} \tilde{k}_{T}; \quad \Delta c = \frac{P_{\kappa p} V_{\kappa p}}{T_{\kappa p}} \Delta \tilde{c}.$$

Несложно убедиться в выполнении соотношений

$$\tilde{\alpha}_{P} = \tilde{\beta}_{V} \tilde{k}_{T} \tilde{P}; \ \Delta \tilde{c} = \tilde{P} \tilde{V} \tilde{T} \tilde{\alpha}_{P} \tilde{\beta}_{V} \tag{0.3}$$

для рассматриваемых приведенных характеристик реальных газов.

На основе (0.2) в [3] были получены выражения для приведенных термодинамических коэффициентов и приведенной разности изобарной и изохорной теплоемкостей реальных газов в рамках уравнений состояния Ван-дер-Ваальса [1], [2], Редлиха – Квонга [4] и Соаве – Редлиха – Квонга [5].

В уравнении Соаве — Редлиха — Квонга впервые был введен параметр $a(\tilde{T})$, зависящий от приведенной безразмерной температуры. В дальнейшем эта идея получила позитивное развитие в уравнении Пенга — Робинсона [6], [7] и других. Более того, температурная зависимость была распространена и на параметр $b(\tilde{T})$, что успешно реализовано в уравнении Исикавы — Чанга — Лу [8], [9].

Данная работа является продолжением работы [3] и посвящена получению аналогичных результатов на основе уравнений Пенга – Робинсона, Исикавы – Чанга – Лу и Фогельсона – Лихачева [10].

Предполагается, что вводимые далее вспомогательные обозначения действуют в пределах раздела, посвященного отдельному уравнению состояния.

1 Приведенные формы термодинамических коэффициентов и разности изобарной и изохорной теплоёмкостей в модели Пенга — Робинсона

Уравнение состояния Пенга – Робинсона широко используется в теории и имеет высокую прикладную значимость в технологии нефтегазодобычи, криогенике и ряде других областей. Молярная форма уравнения имеет вид [6]

$$P = \frac{RT}{V - b} - \frac{a(T)}{V(V + b) + b(V - b)}.$$
 (1.1)

Параметр b является постоянным, а параметр a(T) зависит от приведенной температуры

$$a(T) = a_c \alpha(\tilde{T});$$

$$\alpha(\tilde{T}) = \left[1 + k \left(1 - \sqrt{\tilde{T}} \right) \right]^2; \quad \alpha(1) = 1. \quad (1.2)$$

Здесь, в соответствии с [6], коэффициент

$$k = 0,37464 + 1,54226\omega - 0,26992\omega^2$$

содержит параметр ω – ацентрический фактор Питцера. Для конкретного газа это есть фиксированное число и поэтому не рассматривается как переменная величина.

Следует отметить, что явный вид $\alpha(\tilde{T})$ в последние годы активно используется как инструмент адаптации уравнения состояния к более детальному описанию свойств реальных газов. В связи с этим в литературе широко обсуждаются десятки модификаций этой функции [7], [11], [12]. По этой причине в получаемых формулах функции вида $\alpha(\tilde{T})$ рассматриваются в общем виде и не конкретизируются.

Параметры уравнения Пенга – Робинсона можно выразить через параметры критического состояния газа, для которого $\tilde{T}=1$, $\alpha(1)=1$ и должны выполняться условия

$$\left(\frac{\partial P}{\partial V}\right)_{T_{lm}} = 0, \, \left(\frac{\partial^2 P}{\partial V^2}\right)_{T_{lm}} = 0. \tag{1.3}$$

Для этого удобно параметр b выразить через величину критического объема

$$V_{\kappa n} = \varphi b. \tag{1.4}$$

Условия (1.3) позволяют получить соотношения между параметрами уравнения и параметрами критического состояния

$$b = \Omega_b \frac{RT_{\kappa p}}{P_{\kappa n}}; \quad a_c = \Omega_a \frac{R^2 T_{\kappa p}^2}{P_{\kappa n}}$$
 (1.5)

где постоянные множители равны

$$\Omega_b = \frac{1}{3\phi + 1} = 0,07779607;$$

$$\Omega_a = \frac{3\varphi^2 + 6\varphi + 5}{(3\varphi + 1)^2} = 0,45723553.$$
(1.6)

Введенный числовой параметр ϕ получается в результате решения кубического уравнения и имеет значение

$$\phi = \sqrt[3]{4 + 2\sqrt{2}} + \sqrt[3]{4 - 2\sqrt{2}} + 1 = 3.95137304.$$

Критические параметры уравнения Пенга – Робинсона (см., например [13]), равны соответственно:

$$T_{\kappa p} = \frac{a_c \Omega_b}{b \Omega_L R}; \quad P_{\kappa p} = \frac{a_c \Omega_b^2}{b^2 \Omega_L}. \tag{1.7}$$

Критический коэффициент сжимаемости для газов Пенга – Робинсона имеет значение, более близкое к экспериментальным значениям реальных газов, чем для уравнения Ван-дер-Ваальса

$$Z_{\kappa p} = \frac{P_{\kappa p} V_{\kappa p}}{R T_{\kappa p}} = 0,3074.$$

Для упрощения последующих выкладок введем новые константы

$$\sigma_1 = \frac{1}{\Omega_b} = 12,85411911,$$

$$\sigma_2 = \frac{\Omega_a}{\Omega_b^2} = 75,54828481.$$
(1.8)

Подставляя (1.4)–(1.8) в (1.1), получим приведенную форму уравнения Пенга – Робинсона

$$\tilde{P} = \frac{\sigma_1 \tilde{T}}{\left(\phi \tilde{V} - 1\right)} - \frac{\sigma_2 \alpha(\tilde{T})}{\phi^2 \tilde{V}^2 + 2\phi \tilde{V} - 1}.$$
 (1.9)

Выражения (1.6) и (1.7) позволяют найти фигурирующие в (0.1) частные производные

$$\begin{split} \left(\frac{\partial \tilde{P}}{\partial \tilde{T}}\right)_{\tilde{V}} &= \frac{\sigma_{1}}{\left(\phi \tilde{V} - 1\right)} - \frac{\sigma_{2}\alpha'(\tilde{T})}{\phi^{2}\tilde{V}^{2} + 2\phi \tilde{V} - 1};\\ \alpha'(\tilde{T}) &= \frac{d}{d\tilde{T}}\alpha(\tilde{T}); \end{split}$$

$$\left(\frac{\partial \tilde{P}}{\partial \tilde{V}}\right)_{\tilde{T}} = -\frac{\phi \sigma_1 \tilde{T}}{\left(\phi \tilde{V} - 1\right)^2} + \frac{2\phi \sigma_2 (\phi \tilde{V} + 1)\alpha(\tilde{T})}{\left(\phi^2 \tilde{V}^2 + 2\phi \tilde{V} - 1\right)^2}. (1.10)$$

С учетом предложенных к настоящему времени весьма многочисленных модификаций функции $\alpha(\tilde{T})$ явный расчет ее производной на основании только представления (1.2) не является целесообразным.

Производные (1.10) и уравнение (1.9), в свою очередь, дают явный вид термодинамических характеристик (0.2), удобный для организации вычислений, например

$$\tilde{\beta}_{V}(\tilde{V}, \tilde{T}) = \frac{1 - \frac{\sigma_{2}(\varphi \tilde{V} - 1)\alpha'(\tilde{T})}{\sigma_{1}(\varphi^{2}\tilde{V}^{2} + 2\varphi \tilde{V} - 1)}}{\tilde{T} - \frac{\sigma_{2}(\varphi \tilde{V} - 1)\alpha(\tilde{T})}{\sigma_{1}(\varphi^{2}\tilde{V}^{2} + 2\varphi \tilde{V} - 1)}}$$

В полученном выражении повторяющиеся элементы формул определим как самостоятельные функции

$$A(\tilde{V}) = \frac{\sigma_2(\varphi \tilde{V} - 1)}{\sigma_1(\varphi^2 \tilde{V}^2 + 2\varphi \tilde{V} - 1)};$$
$$B(\tilde{V}) = \frac{2\sigma_1}{\sigma_2}(\varphi \tilde{V} + 1).$$

Тогда получаем компактные выражения для рассматриваемых термодинамических параметров

$$\begin{split} \tilde{\beta}_{V}(\tilde{V},\tilde{T}) &= \frac{1 - A(\tilde{V})\alpha'(\tilde{T})}{\tilde{T} - A(\tilde{V})\alpha(\tilde{T})}; \\ \tilde{\alpha}_{P}(\tilde{V},\tilde{T}) &= \frac{(\phi\tilde{V} - 1)\left[1 - A(\tilde{V})\alpha'(\tilde{T})\right]}{\phi\tilde{V}\left[\tilde{T} - A^{2}(\tilde{V})B(\tilde{V})\alpha(\tilde{T})\right]}; \\ \tilde{k}_{T}(\tilde{V},\tilde{T}) &= \frac{(\phi\tilde{V} - 1)^{2}}{\sigma_{1}\phi\tilde{V}\left[\tilde{T} - A^{2}(\tilde{V})B(\tilde{V})\alpha(\tilde{T})\right]}. \end{split}$$

Несложно убедиться в выполнении первого соотношения (0.4) для полученных коэффициентов.

Значение $\Delta \tilde{c}$ получим на основании второго соотношения (0.3)

$$\Delta \tilde{c} = \frac{\sigma_1 \tilde{T} \left[1 - A(\tilde{V}) \alpha'(\tilde{T}) \right]^2}{\varphi \left[\tilde{T} - A^2(\tilde{V}) B(\tilde{V}) \alpha(\tilde{T}) \right]}.$$

2 Приведенные формы термодинамических коэффициентов и разности изобарной и изохорной теплоёмкостей в модели Исикавы -Чанга – Лу

Как отмечено выше, использование температурно-зависимых параметров получило дальнейшее развитие в работах Т. Исикавы, У.К. Чанга и Б. Лу [8], [9], в которых было предложено уравнение состояния с двумя температурно-зависимыми параметрами. Молярная форма этого уравнения записывается как

$$P = \frac{RT(2V + b(T))}{V(2V - b(T))} - \frac{a(T)}{\sqrt{T}V(V + b(T))}$$
 (2.1)

с параметрами, имеющими структуру

$$a(T) = \Omega_a \alpha(\tilde{T}) \frac{R^2 T_k^{5/2}}{P_k}, \quad b(T) = \Omega_b \beta(\tilde{T}) \frac{R T_k}{P_k},$$

$$\alpha(1) = \beta(1) = 1.$$

Функции $\alpha(\tilde{T})$, $\beta(\tilde{T})$ в работе [8] рассматривались в виде полиномов

$$\alpha(\tilde{T}) = \sum_{k=0}^{3} a_k \tilde{T}^k, \quad \beta(\tilde{T}) = \sum_{k=0}^{3} b_k \tilde{T}^k,$$

коэффициенты которых для каждого вещества подбирались по критерию наилучшего совпадения с экспериментальными данными, например, о теплоте парообразования. При этом приведентемпература изменялась $0,6 \le \tilde{T} \le 1,6$. В работе [9] при описании свойств газа в сверхкритической области зависимость параметров от приведенной температуры была иной

$$\alpha(\tilde{T}) = \sum_{k=0}^{2} c_k \tilde{T}^{-k}, \quad \beta(\tilde{T}) = \sum_{k=0}^{2} d_k \tilde{T}^{-k}.$$

Таким образом, уравнение Исикавы – Чанга – Лу предполагает определенную свободу формы для $\alpha(\tilde{T})$ и $\beta(\tilde{T})$ в зависимости от исследуемой физической ситуации.

Параметры критического состояния связаны с параметрами уравнения (2.1) соотношениями [14]

$$V_{\kappa n} = \chi b(T_{\kappa n})$$

$$T_{\kappa p} = \sigma^2 \left(\frac{a(T_{\kappa p})}{b(T_{\kappa p})R} \right)^{\frac{2}{3}}, \ P_{\kappa p} = \phi \left(\frac{a(T_{\kappa p})^2 R}{b(T_{\kappa p})^5} \right)^{\frac{1}{3}},$$

где использованы обозначения для коэффициентов

$$\chi = 2,89812, \quad \sigma = \frac{2\chi - 1}{2\chi + 2} = 0,61520,$$

$$\varphi = \frac{3}{(\chi + 1)^2 (2\chi - 1)} = 0,04116,$$

$$\Omega_a = \frac{8(\chi + 1)^3}{3(6\chi + 1)^2} = 0,46712, \quad \Omega_b = \frac{2}{6\chi + 1} = 0,10876.$$

В приведенных переменных уравнение Исика-

вы – Чанга – Лу принимает вид [14]
$$\tilde{P} = \frac{\tilde{T}(2\chi\tilde{V} + \beta(\tilde{T}))}{\Omega_b\chi\tilde{V}(2\chi\tilde{V} - \beta(\tilde{T}))} - \frac{\Omega_a\alpha(\tilde{T})}{\Omega_b^2\sqrt{\tilde{T}}\chi\tilde{V}(\chi\tilde{V} + \beta(\tilde{T}))}. (2.2)$$

Введём ряд дополнительных обозначений

$$\begin{split} &\alpha_{1}(\tilde{T}) = \frac{\alpha(\tilde{T})}{\sqrt{\tilde{T}}}; \quad \alpha_{1}'(\tilde{T}) = \frac{d}{d\tilde{T}} \left(\frac{\alpha(\tilde{T})}{\sqrt{\tilde{T}}} \right) = \\ &= \frac{\alpha'(\tilde{T})}{\sqrt{\tilde{T}}} - \frac{\alpha(\tilde{T})}{2\tilde{T}^{3/2}} = \frac{\alpha'(\tilde{T})}{\sqrt{\tilde{T}}} - \frac{\alpha_{1}(\tilde{T})}{2\tilde{T}}; \\ &A(\tilde{V}, \tilde{T}) = \frac{2\chi\tilde{V} + \beta(\tilde{T})}{\Omega_{b}\chi\tilde{V}^{2}(2\chi\tilde{V} - \beta(\tilde{T}))}; \\ &B(\tilde{V}, \tilde{T}) = \frac{\Omega_{a}}{\Omega_{b}^{2}\chi\tilde{V}(\chi\tilde{V} + \beta(\tilde{T}))^{2}}; \\ &C(\tilde{V}, \tilde{T}) = \frac{4}{\Omega_{b}(2\chi\tilde{V} - \beta(\tilde{T}))^{2}}. \end{split}$$

Тогда уравнение (2.2) принимает вид

$$\begin{split} \tilde{P} &= \tilde{V}\tilde{T}A(\tilde{V},\tilde{T}) - \alpha_1(\tilde{T})(\chi\tilde{V} + \beta(\tilde{T}))B(\tilde{V},\tilde{T}). \ (2.3) \end{split}$$
 Далее на основе (2.3) и (0.2) получаем явный вид искомых термодинамических коэффициентов и разности теплоёмкостей в приведенной форме:
$$\tilde{\alpha}_P(\tilde{V},\tilde{T}) = \left(\tilde{V}A(\tilde{V},\tilde{T}) + \tilde{T}\beta'(\tilde{T})C(\tilde{V},\tilde{T}) - \alpha_1'(\tilde{T})(\chi\tilde{V} + \beta(\tilde{T}))B(\tilde{V},\tilde{T}) + \alpha_1(\tilde{T})\beta'(\tilde{T})B(\tilde{V},\tilde{T})\right) / \left(\tilde{V}\tilde{T}A(\tilde{V},\tilde{T}) + \tilde{T}\beta(\tilde{T})C(\tilde{V},\tilde{T}) - \alpha_1(\tilde{T})(2\chi\tilde{V} + \beta(\tilde{T}))B(\tilde{V},\tilde{T})\right); \\ \tilde{\beta}_V(\tilde{V},\tilde{T}) &= \left(\tilde{V}A(\tilde{V},\tilde{T}) + \tilde{T}\tilde{V}\beta'(\tilde{T})C(\tilde{V},\tilde{T}) - \alpha_1'(\tilde{T})(\chi\tilde{V} + \beta(\tilde{T}))B(\tilde{V},\tilde{T}) + \alpha_1(\tilde{T})\beta'(\tilde{T})B(\tilde{V},\tilde{T})\right) / \left(\tilde{V}\tilde{T}A(\tilde{V},\tilde{T}) - \alpha_1(\tilde{T})(2\chi\tilde{V} + \beta(\tilde{T}))B(\tilde{V},\tilde{T})\right); \\ \tilde{k}_T(\tilde{V},\tilde{T}) &= \left(\tilde{V}\tilde{T}A(\tilde{V},\tilde{T}) + \tilde{T}\beta(\tilde{T})C(\tilde{V},\tilde{T}) - \alpha_1'(\tilde{T})(\chi\tilde{V} + \beta(\tilde{T}))B(\tilde{V},\tilde{T})\right)^{-1}; \\ \Delta \tilde{c} &= \tilde{V}\tilde{T} \left[\tilde{V}A(\tilde{V},\tilde{T}) + \tilde{T}\beta'(\tilde{T})C(\tilde{V},\tilde{T}) - \alpha_1'(\tilde{T})(\chi\tilde{V} + \beta(\tilde{T}))B(\tilde{V},\tilde{T}) + \alpha_1(\tilde{T})\beta'(\tilde{T})B(\tilde{V},\tilde{T})\right]^2 / \left(\tilde{V}\tilde{T}A(\tilde{V},\tilde{T}) + \tilde{T}\beta(\tilde{T})C(\tilde{V},\tilde{T}) - \alpha_1'(\tilde{T})(2\chi\tilde{V} + \beta(\tilde{T}))B(\tilde{V},\tilde{T})\right). \end{split}$$

3 Приведенные формы термодинамических коэффициентов и разности изобарной и изохорной теплоёмкостей в модели Фогельсона – Лихачева

В работе [10] было рассмотрено молярное уравнение состояния реального газа, содержащее пять параметров и имеющее смысл обобщения уравнения Ван-дер-Ваальса

$$\left(P + \frac{a}{(V+c)^k T^m}\right)(V-b) = RT. \tag{3.1}$$

Авторами работы [10] было показано, что уравнение хорошо передает количественные соотношения между параметрами реальных газов. Рассчитанные путем обработки табличных данных для значений $P,\ V,\ T$ критические параметры большинства газов оказались близкими по величине к экспериментальным параметрам.

Частными случаями уравнения (3.1) оказываются [1], [2], [10]: уравнение Ван-дер-Ваальса $(c=0,\ k=2,\ m=0),$ уравнение Бертло $(c=0,\ k=2,\ m=1),$ уравнение Клаузиуса $(k=2,\ m=1).$

В работе [15] для уравнения (3.1) получена форма записи в приведенных переменных и изучено поведение инверсионной кривой эффекта Джоуля – Томсона.

Характеристики критического состояния могут быть выражены через параметры уравнения состояния:

$$V_{kp} = \frac{(k+1)b+2c}{k-1}; \quad P_{kp} = \frac{RT_{kp}(k-1)^2}{4k(b+c)};$$
$$T_{kp}^{m+1} = \frac{4ka(k-1)^{k-1}}{R(k+1)^{k+1}(b+c)^{k-1}}.$$
 (3.2)

Из выражений (3.2) несложно получить формулы, связывающие значения некоторых параметров уравнения состояния

$$a = \frac{(k+1)^{k+1}(b+c)^{k-1}}{4k(k-1)^{k-1}}RT_{kp}^{m+1}; \quad b+c = \frac{(k-1)^2}{4k}\frac{RT_{kp}}{P_{kp}};$$

$$(k+1)(V_{kp}-b) = 2(V_{kp}+c).$$
(3.3)

Из (3.3) следует, в частности, что параметры a, b и с для уравнения, корректно описывающего критическое состояние вещества, не являются независимыми.

В приведенных переменных (0.1) уравнение (3.1) принимает вид, соответствующий исходному

$$\left[\tilde{P} + \frac{A}{\left(\tilde{V} + \tilde{c}\right)^{k} \tilde{T}^{m}}\right] \left(\tilde{V} - \tilde{b}\right) = B\tilde{T}, \quad (3.4)$$

где использованы обозначения

$$ilde{b} = rac{b}{V_{\kappa p}}, \quad ilde{c} = rac{c}{V_{\kappa p}};$$

$$A = rac{\left(k+1\right)\left(1+ ilde{c}\right)^k}{\left(k-1\right)}, \quad B = rac{4k\left(1+ ilde{c}\right)}{k^2-1}.$$

Тогда критический коэффициент сжимаемости газа Фогельсона – Лихачева определяется выражением

$$Z_{\kappa p} = \frac{P_{\kappa p} V_{\kappa p}}{R T_{\kappa p}} = \frac{k^2 - 1}{4k \left(1 + \tilde{c}\right)}.$$

При нахождении аналитических выражений для частных производных, входящих в (0.2), и далее для приведенных термодинамических коэффициентов, будем использовать вспомогательную функцию

$$D(\tilde{V}, \tilde{T}) = \frac{A(\tilde{V} - \tilde{b})}{B\tilde{T}^{m+1}(\tilde{V} + \tilde{c})^k}.$$

Тогда уравнение (3.4) принимает вид

$$\tilde{P} = \frac{B\tilde{T}}{\left(\tilde{V} - \tilde{b}\right)} \left[1 - D(\tilde{V}, \tilde{T})\right].$$

С учетом введенных обозначений получаем явный вид искомых термодинамических коэффициентов и разности теплоёмкостей в приведенной форме, определяемых уравнением состояния Фогельсона – Лихачева

$$\begin{split} \tilde{\beta}_{V}(\tilde{V},\tilde{T}) &= \frac{1 + mD(\tilde{V},\tilde{T})}{\tilde{T} \left[1 - D(\tilde{V},\tilde{T}) \right]}; \\ \tilde{\alpha}_{P}(\tilde{V},\tilde{T}) &= \frac{(\tilde{V} + \tilde{c})(\tilde{V} - \tilde{b}) \left[1 + mD(\tilde{V},\tilde{T}) \right]}{\tilde{V}\tilde{T} \left[\tilde{V} + \tilde{c} - k(\tilde{V} - \tilde{b})D(\tilde{V},\tilde{T}) \right]}; \\ \tilde{k}_{T}(\tilde{V},\tilde{T}) &= \frac{(\tilde{V} - \tilde{b})^{2}(\tilde{V} + \tilde{c})}{B\tilde{V}\tilde{T} \left[\tilde{V} + \tilde{c} - k(\tilde{V} - \tilde{b})D(\tilde{V},\tilde{T}) \right]}; \\ \Delta \tilde{c} &= \frac{B(\tilde{V} + \tilde{c}) \left[1 + mD(\tilde{V},\tilde{T}) \right]^{2}}{\tilde{V} + \tilde{c} - k(\tilde{V} - \tilde{b})D(\tilde{V},\tilde{T})}. \end{split}$$

На основании полученных результатов несложно записать явные выражения для термодинамических коэффициентов и разности изобарной и изохорной теплоёмкостей, соответствующие частным случаям уравнения Фогельсона — Лихачева, а именно, уравнению Ван-дер-Ваальса, уравнению Бертло и уравнению Клаузиуса.

Заключение

Таким образом, в данной работе получены аналитические выражения для приведенного изобарного коэффициента объёмного расширения $\tilde{\alpha}_P$, приведенного изохорного термического коэффициента давления $\tilde{\beta}_V$, приведенной изотермической сжимаемости \tilde{k}_T и приведенной разности изобарной и изохорной теплоемкостей $\Delta \tilde{c}$ реальных газов, определяемые уравнениями состояния Пенга — Робинсона, Исикавы — Чанга — Лу и Фогельсона — Лихачева. Аналитические соотношения получены в удобной для проведения вычислений форме.

Полученные результаты в определенном смысле расширяют область применимости закона соответственных состояний и могут быть использованы в качестве основы для анализа применимости различных уравнений состояния реальных газов к описанию экспериментальных данных, а также для предсказания физических параметров новых веществ на основе закона соответственных состояний.

ЛИТЕРАТУРА

- 1. *Румер*, *Ю.Б.* Термодинамика, статистическая физика и кинетика / Ю.Б. Румер, М.Ш. Рывкин. Новосибирск: Издательство Новосибирского университета, 2000. 608 с.
- 2. *Кудинов*, *В.А.* Техническая термодинамика и теплопередача / В.А. Кудинов, Э.М. Карташов, Е.В. Стефанюк. – Москва: Издательство Юрайт, 2021. – 454 с.
- 3. Дей, Е.А. О приведенной форме термодинамических коэффициентов реальных газов / Е.А. Дей, Г.Ю. Тюменков // Проблемы физики, математики и техники. -2022. -№ 4 (53). -C. 25–29.
- 4. *Redlich*, *O*. On the thermodynamics of solutions V. equation of state: fugacity of gaseous solutions / O. Redlich, J.N.S. Kwong // Chemical Reviews. –1949. Vol. 44. P. 233–244.
- 5. Soave, G. Equilibrium constants from a modified Redlich Kwong equation of state / G. Soave // Chem. Engng. Sci. 1972. Vol. 2. P. 1197–1203.

- 6. *Peng*, *D.Y*. A new two-constant equation of state / D.Y. Peng, D.B. Robinson // Ind. Eng. Chem. Fundam. 1976. Vol. 15, № 1. P. 59–64.
- 7. Lopez-Echeverry, J.S. Peng Robinson equation of state: 40 years through cubics / J.S. Lopez-Echeverry, S. Reif-Acherman, E. Araujo-Lopez // Fluid Phase Equilibria. 2017. Vol. 447. P. 39–71.
- 8. *Ishikawa*, *T.A.* Cubic Perturbed, Hard Sphere Equation of State for Thermodynamic Properties and Vapor-Liquid Equilibrium Calculations / T. Ishikawa, W.K. Chung, B.C.Y. Lu // AIChE Journal. 1980. Vol. 26. P. 372–378.
- 9. *Ishikawa*, *T*. Simple and generalized Equation of State for Vapor–Liquid Equilibrium Calculations / T. Ishikawa, W.K. Chung, B.C.Y. Lu // Advances in Cryogenic Engineering. 1980. Vol. 25. P. 671–681.
- 10. Фогельсон, Р.Л. Уравнение состояния реального газа. / Р.Л. Фогельсон, Е.Р. Лихачев // ЖТФ. -2004. Т. 74, вып. 7. С. 129–130.
- 11. Sun, X. New Alpha Functions for the Peng Robinson Cubic Equation of State / X. Sun, Y. Fang, W. Zhao, S. Xiang // ACS Omega. 2022. Vol. 7 (6). P. 5332–5339.
- 12. A Review of the Alpha Functions of Cubic Equations of State for Diferent Research Systems / Zhao Wenying, Xia LI, Sun Xiaoyan, Xiang Shuguang // International Journal of Thermophysics. 2019. Vol. 40. P. 105–118.
- 13. Новикова, О.В. Анализ приведенных модификаций уравнения состояния Пенга Робинсона в рамках процесса Джоуля Томсона / О.В. Новикова, Г.Ю. Тюменков // Проблемы физики, математики и техники. 2013. № 3 (16). С. 30–33.
- 14. Дей, Е.А. Свойства неидеального газа в модели Исикавы Чанга Лу / Е.А. Дей, Г.Ю. Тюменков // Проблемы физики, математики и техники. 2017. № 4 (33). С. 11–16.
- 15. Дей, Е.А. Кривые инверсии эффекта Джоуля Томсона для обобщенного уравнения Ван-дер-Ваальса / Е.А. Дей, Г.Ю. Тюменков // Известия Гомельского государственного университета имени Ф. Скорины. 2015. № 6 (93). С. 117–120.

Поступила в редакцию 02.09.2023.

Информация об авторах

Дей Евгений Александрович – к.ф.-м.н., доцент Тюменков Геннадий Юрьевич – к.ф.-м.н., доцент