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A process of growth and division of cells is modelled
by an initial boundary value problem that involves
a first-order linear functional partial differential
equation, the so-called sell growth equation. The
analytical solution to this problem was given in the
paper Zaidi et al. (Zaidi et al. 2015 Solutions to
an advanced functional partial differential equation
of the pantograph type (Proc. R. Soc. A 471,
20140947 (doi:10.1098/rspa.2014.0947)). In this note,
we simplify the arguments given in the paper
mentioned above by using the theory of operator
semigroups. This theory enables us to prove the
existence and uniqueness of the solution and to
express this solution in terms of Dyson–Phillips series.
The asymptotics of the solution is also discussed from
the point of view of the theory of operator semigroups.

1. Introduction
The analytical solution to the initial-boundary value
problem for the cell growth equation was given at the
first time by Zaidi et al. [1]. They proved also the
uniqueness of the solution and find its asymptotics (for
the asymptotic result, see also [2]).

A cell growth model under consideration was
developed in [3]. See [1] for the history of the issue and a
detailed bibliography.

Let n(x, t) denote the number density functions of cells
of size x at time t. Then

∂n(x, t)
∂t

+ g
∂n(x, t)

∂x
= bα2n(αx, t) − (b + μ)n(x, t), (1.1)

where g > 0 is the rate of growth, μ > 0 is the rate of
death and b > 0 is the rate at which cells divide into α > 1
equally sized daughter cells.

2023 The Author(s) Published by the Royal Society. All rights reserved.
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The above equation is supplemented by a given initial distribution

n(x, 0) = n0(x), (1.2)

where n0 is a probability distribution function, and the boundary condition,

n(0, t) = 0. (1.3)

The main goal of this note, is to simplify the arguments given in [1] on the existence and
uniqueness of the solution of the initial boundary value problem (1.1), (1.2), (1.3) and to discuss
its asymptotics from the point of view of the theory of operator semigroups.

The results were announced in [4].

2. Existence and uniqueness of the solution
Following [1], we put

n(x, t) = e−(b+μ)tu(x, t). (2.1)

Then,
∂u(x, t)

∂t
= −g

∂u(x, t)
∂x

+ bα2u(αx, t), (2.2)

and conditions (1.2) and (1.3) take the form

u(x, 0) = n0(x) (2.3)

and
u(0, t) = 0. (2.4)

Note that each solution u to the initial-boundary value problem (2.2)–(2.4) for x ≥ 0 can be
extended to a solution to the initial problem (2.2), (2.3) for x ∈ R if we put u(x, t) = 0 and n0(x) = 0
for all x ≤ 0, t ≥ 0. Thus, we shall seek the solutions u(x, t) to the problem (2.2), (2.3) for x ∈ R, t ≥ 0
putting n0(x) = 0 for x ≤ 0.

We rewrite the Cauchy problem (2.2), (2.3) with x ∈ R in an abstract form in the usual manner.
Let X = Lp(R), 1 ≤ p < ∞ or X = Cub(R) the space of uniformly continuous bounded functions on
R endowed with the sup norm. Consider the vector-valued function u(t) := u(·, t), u : R+ → X and
the following operator on X:

Hf (x) = bα2f (αx).

Then equation (2.2) takes the form

du(t)
dt

=
(

−g
d
dx

+ H
)

u(t).

The operator

G := −g
d
dx

+ H

is a generator of a C0-group S(t) on X, since the operator A = −gd/dx with an appropriate domain
D(A)1 is a generator of a C0-group of shifts S0(t)f (x) = f (x − gt) on X, ||S0(t)|| = 1, and H is
bounded on X [6, theorem 13.2.2]. Therefore,

u(t) = S(t)u0 (2.5)

is the unique solution to the Cauchy problem

du(t)
dt

= Gu(t), u(0) = u0, (2.6)

for any u0 ∈ D(A) (recall that u0 = n0 by (2.3)). The formula (2.5) gives also a so-called mild
solution to the Cauchy problem for any u0 ∈ X.

1For instance for X = Lp(R), we have D(A) = {f ∈ Lp(R) : f absolutely continuous and f ′ ∈ Lp(R)} (e.g. [5, p. 66]).
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We shall assume that u0(x) = n0(x) for x ∈ R+ and u0(x) = 0 for x < 0.
The group S(t) can be calculated via the Dyson–Phillips series

S(t) =
∞∑

n=0

Sn(t), (2.7)

where ||Sn(t)|| ≤ ||H||ntn/n! for t ≥ 0 (see [6, (13.2.5)]) and

Sn+1(t) =
∫ t

0
S0(t − s)HSn(s) ds, n ∈ Z+ (2.8)

(see [6, (13.2.4)] or [5, theorem III.1.10]).
Thus,

u(x, t) =
∞∑

n=0

Sn(t)u0(x). (2.9)

Note that S0(t)u0(x) = u0(x − gt) ≥ 0 for all x ∈ R, t ≥ 0 if u0(x) ≥ 0 for all x ∈ R, and S0(t)u0(x) = 0
if x ≤ 0, t ≥ 0. Now it follows from (2.8) by induction that u(x, t) is non-negative for all x ∈ R, t ≥ 0
and equals zero for all x ≤ 0, t ≥ 0.

Moreover, since ||S0(t)||X→X = 1, it follows ([6, corollary of the theorem 13.2.1], or [5, theorem
III.1.3]), that

||S(t)||X→X ≤ et||H||X→X (t ≥ 0). (2.10)

This yields

||u(·, t)||X ≤ et||H||X→X ||u0||X (t ≥ 0). (2.11)

In particular, if we assume as in [1] that u0 ∈ L1(R+) we get for X = L1(R) that

||u(·, t)||L1 ≤ ebαt||u0||L1 (t ≥ 0).

This estimate is consistent with the asymptotics for u(x, t) proven in [1].
On the other hand, let X = Cub(R) and u0 ∈ Cub(R). Then we deduce from (2.11) that

|u(x, t)| ≤ ebα2t sup
R+

|u0| for all x, t ∈ R+.

In summary, we have the following result.

Theorem 2.1. Let X = Lp(R), 1 ≤ p < ∞, or X = Cub(R). Let n0 ∈ X be non-negative. Then formula
(2.9) presents a non-negative solution u to the initial–boundary value problem (2.2)–(2.4) such that u(·, t) ∈
X for t ≥ 0. Moreover, this solution is unique and the estimate (2.11) holds.

Remark 2.2. It follows from (2.9) that

u(·, t) ≈
n∑

k=0

Sk(t)u0,

and by [6, (13.2.6)]

||u(·, t) −
n∑

k=0

Sk(t)u0||X ≤ ||H||n+1
X→Xtn+1 et||H||X→X

(n + 1)!
(t ≥ 0).

3. On the asymptotics of the solution as t → ∞
It was proven in [1] (cf. [2]) for the case n0 ∈ L1(R+) that u(x, t) ∼ ebαty(x) pointwise as t → ∞.
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On can derive several complements to this result from a general theory of operator semigroups,
as well. Recall that a function f in L1

loc(R+, X) converges to an element y ∈ X (X is a Banach space)
in a sense of Cesàro as t → ∞ if

C- lim
t→∞

f (t) := lim
t→∞

1
t

∫ t

0
f (s) ds = y,

(convergence in the norm of X; e.g. [7]). Let X = L1(R). Note that T(t) := e−bαtS(t) is a bounded
C0-semigroup in L1(R+) by (2.10) with the generator B := G − bαI that satisfies the condition (4.5)
from [7, p. 261]. Let u0 ∈ KerB + RanB with KerB and RanB denoting the kernel and the closure of
the range of B. Since u(·, t) = S(t)u0, we have by [7, proposition 4.3.1] that u(·, t) ∼ ebαty for some
y ∈ L1(R) as t → ∞ in a sense that

C- lim
t→∞

e−bαtu(·, t) = y,

(convergence in L1(R)). Moreover, by this Proposition

y = lim
t→∞

1
t

∫ t

0
e−bαsS0(s)u0 ds,

and y is non-negative if n0 is non-negative. Next, this Proposition states that y ∈ KerB. In other
words, y is a non-negative solution of the classical pantograph equation

y′(x) = py(x) + ay(αx), (3.1)

with p = −bα/g, a = bα2/g, which agrees with a result by Hall & Wake [3]. Well-posedness,
stability, oscillation, continuity and asymptotic boundedness of the solution of the Cauchi
problem as well as analytical and numerical methods for solving this equation have been studied
extensively (see [8–11] and the bibliography therein). It is important for us that if p < 0, then the
equation (3.1) has a unique (up to a constant factor) solution in L1(R+), non-negative on R+ and
this solution y is equal to the solution obtained by Kato & McLeod [10] (see [11]). More precisely,
y = Ly∗, where L is a positive constant and

y∗(x) = exp(px) +
∞∑

n=1

an exp(pαnx)
(−p)n ∏n

m=1(1 − αm)
.

This is consistent with the result obtained in [1].
Finally, by Arendt [7, proposition 4.3.1]

y = lim
λ↓0

λR(λ, G − bαI)u0 = lim
λ↓0

λR(λ + bα, G)u0.

Thus, the problem of the asymptotics of the solution of our equation is closely related to the
asymptotics of the resolvent of the operator G.

The results detailed above follow mutatis mutandis for several other choices of X, e.g. for
C0(R), Lp(R+), Cub(R+) (in the last two cases we consider spaces of functions on R that vanish
outside R+) and corresponding semigroup generators and for a more general choice of constants
(e.g. b ∈ R).
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