Список литературы

- 1. Романкевич, Ю.А. Влияние нормативно очищенных сточных вод г. Несвижа на химический состав вод р. Уши / Ю.А. Романкевич // Весці Нац. акад. навук Беларусі, Сер. хім. навук [прил. к журн.]. –2014. Ч. 1. С 86–90.
- 2. Романкевич, Ю.А. Эколого-геохимическая оценка технологических водоемов в малых городах Беларуси / Ю.А. Романкевич // Природопользование. 2014. Вып. 25. Минск, 2014. С. 98-107.
- 3. Струк, М.И. Геоэкологическая оценка пригородных водохранилищ Минска / М.И. Струк, С.Г. Живнач, Г.М. Бокая // Природопользование. -2013.- Вып. 23. Минск, 2013.- С. 48-55.

УДК 504.45(476.2)

М. А. ЕФИМОВИЧ

ГЕОЭКОЛОГИЧЕСКАЯ ОЦЕНКА СОСТОЯНИЯ РОДНИКОВ ЧЕЧЕРСКОГО РАЙОНА ГОМЕЛЬСКОЙ ОБЛАСТИ

УО «Гомельский государственный университет имени Ф. Скорины», г. Гомель, Республика Беларусь, Efimowitch.m@yandex.by

В статье представлены результаты полевых исследований родников Чечерского района. Составлена физико-химическая характеристика родников и родниковых вод. Выявлены источники загрязнения родниковых вод. Произведена оценка техногенного воздействия на литологическую основу района и физических свойств литогенной основы. Проведена комплексная геоэкологическая оценка состояния родников района.

Местоположение и природные условия Чечерского района. Чечерский район, представляет собой небольшую территорию на северо-востоке Гомельской области, с волнистым рельефом, хорошо развитой гидрологической сетью.

Рельеф имеет высоты 140–190 м над уровнем моря, поверхность волнистая, местами холмисто-волниста. Относительные высоты 5–7 м, реже до 15 м. Преобладающие ландшафты – вторично-моренные равнины, местами перекрыты маломощным чехлом из лёссовидных суглинков (средневысотные). Наиболее низкий уровень рельефа приурочен к озерно-аллювиальным низинам и аллювиально-террасированным ландшафтам – до 15 % территории. Встречаются денудационные моренные гряды от 20 до 30 м.

В тектоническом отношении южная и центральная части района приурочены к Жлобинской седловине, крайний север – к южным склонам Оршанской впадины. Антропогеновая толща (20–100 м), включая отложения морен (красно-бурые валунные супеси, суглинки с прослойками песка, песчано-гравийной смеси) днепровского и сожского оледенений.

По возрастным показателям, подземные воды Чечерского района относятся к позднемеловым на западе и к раннемеловым на востоке района.

Размещение родников по территории района. В большинстве случаев родники приурочены к пойменным ландшафтам, наибольшая концентрация их вдоль р. Сож и ее притоков на юге района и р. Покоть в его восточной части. Прослеживается определенная закономерность разгрузки грунтовых вод, наибольшая плотность родников находится в Чечерском и Мозырском районах. При этом, большинство родников (до 80 %) расположены в близи долин рек, таких как Чечера и Припять. Эти района характеризуются достаточно глубоким залеганием грунтовых вод, в Чечерском районе 50–60 м, в Мозырском 40–60 м.

Исходя из значений неотектонических движений на территории Гомельской области, наибольшими структурными неоднородностями выделяются север области — Чечерский, Кормянский, Рогачевский районы, и юг — Мозырский район. Центральную и юго-восточную часть представляют суммарные деформации земной коры от 75 до 100 м, северо-восток и юго-запад от 100 до 150 м, что в свою очередь увеличивает фактор разгрузки грунтовых вод. Большая часть родников расположены за пределами населенных пунктов.

Анализ физико-химических показателей родниковых вод. Традиционно для оценки качества воды в водном объекте или в источнике водоснабжения, если речь идет о получении воды для питья, используются физические, химические и санитарно-бактериологические показатели. К физическим показателям качества воды относят температуру, запах и привкус, цветность и мутность. Химические показатели характеризуют химический состав воды. К числу химических показателей относят водородный показатель воды рН, жесткость и щелочность, минерализацию (сухой остаток), а также содержание главных ионов. К санитарно-бактериологическим показателям – общую бактериальную загрязненность воды и загрязненность ее кишечной палочкой, содержание в воде токсичных и радиоактивных микрокомпонентов.

Длинна исследуемых водотоков родников колеблется от 1–2 м до 400. Площадь водосбора не превышает 1 км². Ширина большинства водотоков до 1,5 м, она не меняется в период летней и зимней межени, кроме сезонных родников. Глубина водотоков варьирует от 2–4 до 15 см. Малая глубина обеспечивает всем ручьям прозрачность дна.

Расход воды не превышает 0.3 м^3 , поэтому все водотоки относятся к классу ручьёв. По дебиту родники делятся на четыре категории: 1) более $1\pi/c$; 2) от $0.5 \text{ до } 1 \pi/c$; 3) от $0.1 \text{ до } 0.5 \pi/c$; 4) до $0.1 \pi/c$.

Скорость течения в ручьях варьирует от 0 м/с до 0,19 м/с. Небольшой расход воды закономерно связан с малой глубиной и высоким трением потока о дно. Таким образом, в родниках, где скорость течения небольшая формируется песчано-илистое дно, а где скорость течения более высокая каменистая и с большей фракцией частиц.

Содержание нитратов незначительно, концентрация нитритов находится в пределах от 0 до 60 мг/л при ПДК 45 мг/л. В родниках, расположенных в пределах сельскохозяйственных угодий умеренного землепользования, либо его отсутствия, наблюдается тенденция уменьшения содержания всех элементов, что вполне может быть связано с поступление биогенных веществ с прилегающих территорий (таблица 1) [1].

Таблица 1 – Физико-химические показатели родников Чечерского район

Родник	рН	Жесткость	NO ₃	NO ₂ мг/л	СL ₂ мг/л	Fе мг/л	to
1	2	3	4	5	6	7	8
Замковый	8,3	5,0	60	0	1	0	9,1
На Маркса	8,0	5,0	0	0	2	0	11,0
Вознесенский	7,5	7,0	0	0	0	0	10,0
Бердыж	6,5	6,0	38	0	8	0	8,9
Шоховский	6,5	3,0	0	0	0	0	9,3
Залесье 1	7,0	10,0	45	0	3	0	9,4
Залесье 2	7,5	7,0	50	0	1	0	9,3
Святая криница	7,5	7,0	30	0	0	0	10,0
Мотневичи 1	7,0	5,5	20	0	0	0	9,9
Мотневичи 2	7,0	7,4	40	0	0	0	10,4
Святая криница 2	7,0	5,3	19	0	0	0	12,0
Степанова	8,0	5,6	20	10	0	0	11,2

Окончание таблицы 1

1	2	3	4	5	6	7	8
Лекарка	7,7	7,0	15	0	1	0	11,0
Сергеева 1	8,0	7,0	38	0	0	0	12,0
Сергеева 2	7,0	6,0	25	4	0	0	9,0
Молодых	8,5	6,5	20	0	0	0	10,3
Гибусовых	6,5	5,0	0	0	0	0	9,1
Сивая криница	8,5	8,0	48	0	0,5	0	8,3
У стадиона	6,0	7,0	10	0	0	0	9,7
Полесье 4	8,0	5,9	0	10	1	0	9,0
Полесье 3	7,8	6,0	20	0	0	0	11,0
Полесье 2	7,0	6,5	25	0	0	0	10,2
Полесье 5	7,0	7,0	0	0	0	0	8,9
Святая криница 3	6,5	6,0	5	0	0	0	11,0

Природными источниками закисления воды могут быть избыточное накопление диоксида углерода при активном разложении органических веществ, поступление стоков болотных вод, содержащих много органических кислот, а также разложение железистых вод. Показатель рН болотных и железистых вод менее 4,0. Низкие значения рН наблюдаются весной в период таяния снега.

Смещение величины рН природных пресных вод в кислую сторону определяется не только избыточным накоплением свободной угольной кислоты. В болотных водах, например, повышенная кислотность обусловлена наличием серной кислоты. Также, болотные переувлажнённые почвы черного цвета привносят свой гумус, что придает воде кислую среду. Жесткость воды варьирует от 3 до 10 мг-экв/л, что соответствует умеренно жестким водам [2].

В ручьях умеренного землепользования либо его отсутствия наблюдается тенденция к уменьшения содержания всех элементов, что вполне может быть связано с поступление биогенных веществ с прилегающих территорий. Наличие хлора может говорить о породах, которые слагаю родник. В данном случае высокое содержание хлора в роднике Бердых на меловом месторождении.

Гоэкологические условия формирования родникового стока. Питание большинства родников происходит за счет вод, приуроченных к верхнему мощному покрову рыхлых четвертичных (QI-IV) отложений, наиболее подверженных техногенному воздействию и загрязнению, что сказывается на их состоянии. В частности, по физико-химическим характеристикам воды родников можно судить о состоянии питающих их грунтовых вод, о степени антропогенной нагрузки на территорию.

В первую очередь оценивается наличие на поверхности водосбора опасных объектов – источников загрязнения родниковых вод, в частности промышленных предприятий, сельскохозяйственных объектов (гаражи сельскохозяйственной техники, животноводческие фермы), дачных поселков с выгребными ямами, свалок твердых бытовых отходов (ТБО), крупных автодорог.

Большинство родников характеризуются умеренным техногенным воздействием на поверхность водосбора. Наиболее опасные объекты расположены в самом городе и отдельных участков животноводческих ферм, которые могут являться потенциальными источниками загрязнения при просачивании загрязняющих элементов (поступление азота в форме нитрат-иона и бактериологическое загрязнение) из смежных водоносных горизонтов через гидрогеологические окна.

Для определения степени защищенности родниковых вод от загрязнений Чечерского района, были изучены следующие сведения о защитной зоне и грунтовых водах: рельеф местности; характер гидрографической сети; величина атмосферных осадков; литологическое строение защитной зоны; фильтрационные свойства пород, слагающих защитную зону; глубина залегания грунтовых вод.

В результате исследования было проведено районирование территории по типам литологического строения участков расположения родников. На схеме были выделены типовые участки, характеризующиеся определенным строением защитной зоны.

Чечерский район в основном перекрывают два вида почв, это сильно оподзоленные почвы на лессовидных суглинках, подстилаемых моренным суглинком или песком на западе района и слабо оподзоленные почвы на древне-аллювиальных песках с близким залеганием грунтовых вод (мокрые пески).

По типу литологического строения и глубине залегания грунтовых вод определены следующие категории защитного потенциала защитной зоны:

- высокий;
- слабый;
- чрезвычайно слабый (рисунок 1).

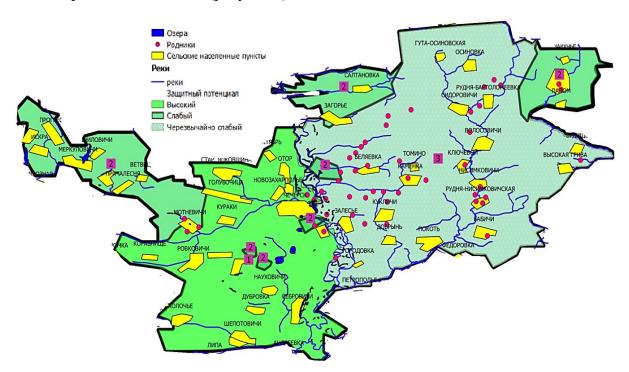


Рисунок 1 – Схема районирования Чечерского района по литологическому строению защитной зоны

При составлении карты учитывалось, что слобопроницаемые породы (суглинки, глины) обуславливают наличие защитных свойств, проницаемые (пески, супеси) – их отсутствие.

Из этого следует, что большая часть родников находится на древне-аллювиальных песках с близким залеганием грунтовых вод с низким защитным потенциалом [3].

Загрязняющие условия и факторы.

Основными видами загрязнения поверхностных и подземных вод в районе служат животноводческие комплексы, автомобильный транспорт, ведение пастбищного животноводства и несанкционированные свалки. Преобладающая часть загрязняющих веществ приходится на органические вещества, взвешенные вещества, соли аммония, фосфаты, хлориды.

В настоящее время в районе 34,9 тыс. га сельскохозяйственных земель, на которых ведется сельскохозяйственное производство 7 животноводческих хозяйств: ОАО «Отор», ОАО «МотневичиАгро», ОАО «Вознесенск», ОАО «Звезда», ОАО «Полесье», ОАО «Ботвиново», КСУП «РовковичиАгро».

Загрязненные грунты являются одним из долговременных индикаторов экологического неблагополучия территорий. Загрязнение почв тяжелыми металлами происходит в основном за счет пылевых выпадений. При этом форма зон загрязнения часто определяется метеорологическими и орографическими условиями

В ходе исследований было установлено, что Чечерский район находится в относительно благоприятной экологической обстановке, с минимальны количеством промышленных объектов, а те, что имеются, специализируются на лесной деятельности и сельском хозяйстве. Основную угрозу для родников представляют животноводческие комплексы и несанкционированные свалки бытовых отходов.

Развитие сельского хозяйства, промышленности и других видов хозяйства увеличивает техногенную нагрузку на окружающую среду, и, в частности, на водные ресурсы, вовлечённые в питьевое водоснабжение. Исходя из этого, актуальной является проблема обеспечения населения качественной питьевой водой.

Большинство родников характеризуются умеренным техногенным воздействием на поверхность водосбора. Основную опасность для родников представляют бытовые стоки с дачных и коттеджных участков, а также с животноводческих ферм (поступление азота в форме нитрат-иона и бактериологическое загрязнение). Наибольшую техногенную нагрузку, испытывают те родники, которые находятся в черте населенных пунктов.

Список литературы

- 1. Оценка качества родниковой воды [Электронный ресурс] / электронно графические данные. Режим доступа : https://infourok.ru/ocenka-kachestva-rodnikovoy-vodi-351215.html. Дата доступа : 03.05.2023.
- 2. Исследование физических свойств родниковой воды [Электронный ресурс] / электронно графические данные. Режим доступа: https://ypok.pф/library/issledovanie_fizicheskih svojstv rodnikovoj vodi po 072747.html. Дата доступа: 09.05.2023.
- 3. Литогенная основа как фактор ландшафтной дифференциации [Электронный ресурс] / электронно графические данные. Режим доступа: https://lektsia.com/1x5a90. html. Дата доступа: 12.05.2023.

УДК 543.3

М. А. ЕФИМОВИЧ

ГЕОЭКОЛОГИЧЕСКИЕ ПРОБЛЕМЫ ИСПОЛЬЗОВАНИЯ ВОДНЫХ РЕСУРСОВ И ПУТИ ДОСТИЖЕНИЯ ЦЕЛИ УСТОЙЧИВОГО РАЗВИТИЯ № 6 «ЧИСТАЯ ВОДА И САНИТАРИЯ» В РЕСПУБЛИКЕ БЕЛАРУСЬ

УО «Гомельский государственный университет имени Ф. Скорины», г. Гомель, Республика Беларусь, efimowitch.m@yandex.by

В статье представлены результаты работы выполнения национальной стратегии устойчивого развития водных ресурсов на повестке 2030. Рассмотрены достижения выполнения водной политики, рассмотрены вопросы водоснабжения населенных