Учреждение образования «Гомельский государственный университет имени Франциска Скорины»

АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ: ВЕКТОРЫ, ПРЯМАЯ НА ПЛОСКОСТИ

Практическое пособие

для студентов математических специальностей ВУЗов

> Гомель ГГУ им. Ф. Скорины 2024

УДК 514.12(076) ББК 22.151.54я73 А64

Авторы:

А. В. Бузланов, И. В. Близнец, Р. В. Бородич, Е. Н. Бородич

Репензенты:

доктор физико-математических наук А. П. Старовойтов, кандидат физико-математических наук И. М. Дергачева

Рекомендовано к изданию научно-методическим советом учреждения образования «Гомельский государственный университет имени Франциска Скорины»

Аналитическая геометрия: векторы, прямая на плоскости: практическое пособие / А. В. Бузланов [и др.]; Гомельский гос. ун-т им. Ф. Скорины. — Гомель: ГГУ им. Ф. Скорины, 2024. — 43 с.

ISBN 978-985-32-0041-6

Практическое пособие включает следующие разделы аналитической геометрии: векторы и действия над ними, прямая на плоскости. По каждой теме изложены элементы теории, приведены образцы решения типовых задач, предложены 15 индивидуальных заданий.

Адресовано студентам математических специальностей ВУЗов и может быть также использовано студентами других специальностей, изучающими вопросы аналитической геометрии.

УДК 514.12(076) ББК 22.151.54я73

ISBN 978-985-32-0041-6 © Учреждение образования «Гомельский государственный университет имени Франциска Скорины», 2024

ОГЛАВЛЕНИЕ

1 Векторы и действия над ними	4
1.1 Элементы теории	4
1.1.1 Направленные отрезки	4
1.1.2 Векторы	5
1.1.3 Линейные операции над векторами	6
1.1.4 Координаты вектора	7
1.1.5 Разложение вектора по ортам координатных осей	9
1.1.6 Скалярное произведение векторов	9
1.1.7 Векторное произведение векторов	10
1.1.8 Смешанное произведение векторов	11
1.2 Примеры решения задач	13
1.3 Индивидуальные задания	19
2 Прямая на плоскости	24
2.1 Элементы теории	24
2.1.1 Простейшие задачи аналитической геометрии	
на плоскости	24
2.1.2 Линия на плоскости	25
2.1.3 Виды уравнений прямой на плоскости	25
2.1.4 Угол между прямыми на плоскости	28
2.1.5 Расстояние от точки до прямой на плоскости	29
2.2 Примеры решения задач	30
2.3 Индивидуальные задания	40

1 ВЕКТОРЫ И ДЕЙСТВИЯ НАД НИМИ

1.1 Элементы теории

1.1.1 Направленные отрезки

Отрезок прямой, для которого указано, какая из двух ограничивающих его точек является началом и какая концом, называется направленным отрезком. Направленный отрезок, началом которого является точка A, а концом — точка B, обозначается AB и изображается отрезком с указанием направления (рисунок 1.1). Если точки A и B совпадают, то говорят о нулевом направленном отрезке AA. Два направленных отрезка AB и CD будем называть равными и писать AB = CD, если точка A совпа-

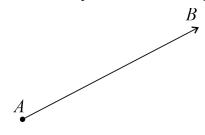
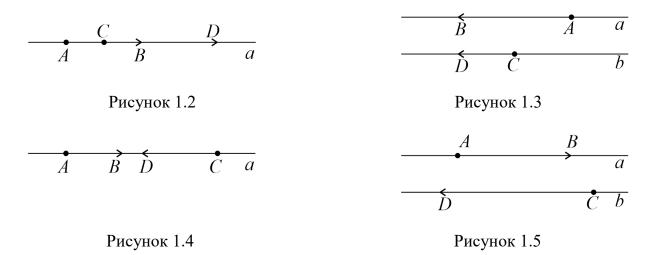


Рисунок 1.1

B дает с точкой C и точка B совпадает с D. Длину направленного отрезка AB будем обозначать |AB|. Длина нулевого направленного отрезка равна нулю. Если длина направленного отрезка равна 1, то отрезок называют единичным направленным отрезком.

Два ненулевых направленных отрезка AB и CD будем называть одинаково направленными, если они лежат на одной и той же прямой или на параллельных прямых и имеют одно и то же направление (рисунки 1.2, 1.3). Если же направление у них разное, то отрезки AB и CD называют противоположно направленными (рисунки 1.4, 1.5).



Нулевой отрезок считают одинаково направленным с любым направленным отрезком.

1.1.2 Векторы

Два направленных отрезка AB и CD будем называть эквивалентными, если они одинаково направлены и имеют одинаковую длину. При этом пишут $AB \sim CD$. Это отношение на множестве всех направленных отрезков является отношением эквивалентности и разбивает это множество на непересекающиеся классы эквивалентных друг другу отрезков. Вектором называется класс эквивалентных направленных отрезков.

Представителем вектора может быть любой входящий в него направленный отрезок. Вектор, представленный направленным отрезком AB, обозначается \overrightarrow{AB} . Если при этом вектор \overrightarrow{AB} содержит направленный отрезок CD, то этот вектор также обозначается \overrightarrow{CD} . Таким образом, равенство $\overrightarrow{AB} = \overrightarrow{CD}$ означает, что $AB \sim CD$ и векторы \overrightarrow{AB} и \overrightarrow{CD} состоят из одних и тех же направленных отрезков.

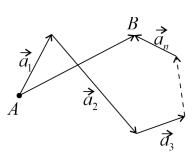
Изобразить вектор можно любым направленным отрезком, входящим в него. Это позволяет нам изображать вектор из любой точки пространства.

Для обозначения векторов часто используют малые буквы латинского алфавита: \vec{a} , \vec{b} , \vec{c} и т. д. Класс нулевых направленных отрезков образует *нулевой вектор*, который обозначают $\vec{0}$. Длиной вектора \vec{a} называют длину любого направленного отрезка из вектора \vec{a} и обозначают её $|\vec{a}|$. Вектор называется *единичным*, если его длина равна единице. Векторы называются *одинаково* или *противоположно направленными*, если таковыми являются направленные отрезки из этих векторов. Векторы \vec{a} и \vec{b} называются *коллинеарными*, если они одинаково или противоположно направлены. Три вектора в пространстве называются *компланарными*, если их можно изобразить в одной плоскости.

Пусть \vec{a} и \vec{b} — ненулевые векторы. Изобразим их из точки O (рисунок 1.6). Углом между векторами \vec{a} и \vec{b} будем называть меньший из углов, образованных при этом. Очевидно, что угол ϕ между векторами \vec{a} и \vec{b} принадлежит $[0,\pi]$. Если угол $\phi = 90^{\circ}$, то будем говорить, что векторы \vec{a} и \vec{b} о \vec{b} лерпендикулярны и писать $\vec{a} \perp \vec{b}$.

1.1.3 Линейные операции над векторами

Сумма векторов



Пусть заданы векторы $\vec{a}_1, \vec{a}_2, ..., \vec{a}_n$, где $n \in \mathbb{N}$, $n \ge 2$. От произвольной точки A отложим вектор \vec{a}_1 . От конца вектора \vec{a}_1 отложим вектор \vec{a}_2 , от конца \vec{a}_2 отложим \vec{a}_3 и так далее. Получим ломаную линию (рисунок 1.7). Пусть B — конец вектора \vec{a}_n . Суммой векторов $\vec{a}_n + \vec{a}_n +$

Рисунок 1.7

 $\vec{a}_1 + \vec{a}_2 + \ldots + \vec{a}_n$ называется вектор \overrightarrow{AB} , где A — начало вектора \vec{a}_1 , B — конец вектора \vec{a}_n . Это

правило сложения векторов называется *правилом замыкания ломаной*. В случае сложения двух векторов правило называют *правилом треугольника* (рисунок 1.8).

При сложении двух векторов можно также применять *правило параллелограмма*. В этом случае изображаем векторы \vec{a}_1 и \vec{a}_2 из точки A (рисунок 1.9), достраиваем фигуру до параллелограмма и вектор $\overrightarrow{AB} = \vec{a}_1 + \vec{a}_2$.

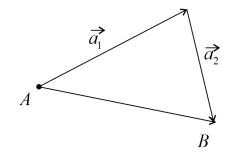


Рисунок 1.8

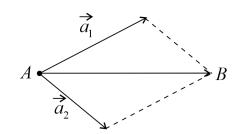


Рисунок 1.9

Лемма 1.1. Операция сложения векторов обладает следующими свойствами:

- 1) свойство коммутативности, то есть $\vec{a}+\vec{b}=\vec{b}+\vec{a}$ для всех векторов \vec{a} и \vec{b} ;
- 2) свойство ассоциативности, то есть $\vec{a} + (\vec{b} + \vec{c}) = (\vec{a} + \vec{b}) + \vec{c}$ для всех векторов \vec{a} , \vec{b} , \vec{c} ;
- 3) нулевой вектор $\vec{0}$ является нулевым элементом при сложении векторов, то есть $\vec{a} + \vec{0} = \vec{0} + \vec{a} = \vec{a}$ для всех векторов \vec{a} .

Умножение вектора на действительное число

Произведением вектора \vec{a} на действительное число k называется вектор, который обозначается $k\vec{a}$ и определяется следующими двумя условиями:

$$\begin{array}{ccc}
 & \overrightarrow{a} \\
 & \xrightarrow{k\overrightarrow{a}} & (k > 0) \\
 & \longleftarrow & (k < 0)
\end{array}$$

- 1) $|k\vec{a}| = |k| \cdot |\vec{a}|$;
- 2) если k > 0, то векторы $k\vec{a}$ и \vec{a} одинаково направлены, если же k < 0, то противоположно направлены (рисунок 1.10).

Лемма 1.2. Если $k \in \mathbb{R}$ и \vec{a} — вектор, то $k\vec{a} = \vec{0}$ тогда и только тогда, когда k = 0 или $\vec{a} = \vec{0}$.

Лемма 1.3. Справедливы утверждения:

- 1) $(kl)\vec{a} = k(l\vec{a}) = l(k\vec{a})$ для всех $k, l \in \mathbb{R}$ и всех векторов \vec{a} ;
- 2) $(k+l)\vec{a} = k\vec{a} + l\vec{a}$ для всех $k,l \in \mathbb{R}$ и всех векторов \vec{a} ;
- 3) $k(\vec{a} + \vec{b}) = k\vec{a} + k\vec{b}$ для всех $k \in \mathbb{R}$ и всех векторов \vec{a} , \vec{b} .

Вектор $(-1)\vec{a}$ обозначают $-\vec{a}$ и называют *противоположным* для вектора \vec{a} . Нетрудно заметить, что $\vec{a} + (-\vec{a}) = -\vec{a} + \vec{a} = \vec{0}$. Такое обозначение для противоположного вектора позволяет говорить о *разности векторов*, понимая разность как сумму $\vec{a} - \vec{b} = \vec{a} + (-\vec{b})$.

Лемма 1.4 (критерий коллинеарности векторов). Два вектора \vec{a} и \vec{b} коллинеарны тогда и только тогда, когда существует число $k \in \mathbb{R}$ такое, что $\vec{a} = k\vec{b}$.

Лемма 1.5 (критерий компланарности векторов). Три вектора \vec{a} , \vec{b} и \vec{c} компланарны тогда и только тогда, когда существуют числа $k,l \in \mathbb{R}$ такие, что $\vec{a} = k\vec{b} + l\vec{c}$.

1.1.4 Координаты вектора

Пусть задана координатная прямая l \overrightarrow{AB} . Пусть A_1 A, B_1 B на ось l.

 \overrightarrow{AB} на ось l | $\overrightarrow{A_lB_l}$ |, если вектор $\overrightarrow{A_lB_l}$ одинаково направлен с осью l (рисунок 1.11), и число $-|\overrightarrow{A_lB_l}|$, если вектор $\overrightarrow{A_lB_l}$ и ось l противоположно направлены (рисунок 1.12). Если вектор \overrightarrow{AB} лежит на прямой, перпендикулярной координатной прямой l (рисунок 1.13), то точки A_l и B_l совпадают, вектор $\overrightarrow{A_lB_l} = \overrightarrow{0}$ и проекция

 \overrightarrow{AB} на ось l равна нулю. Проекция вектора \overrightarrow{AB} на ось l обозначается пр $_{l}\overrightarrow{AB}$.

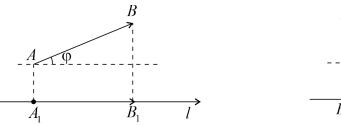


Рисунок 1.11

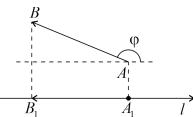


Рисунок 1.12

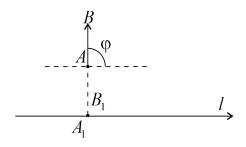


Рисунок 1.13

Нетрудно видеть (рисунки 1.11, 1.12, 1.13), что $\ \ \operatorname{пр}_l \overrightarrow{AB} = |\overrightarrow{AB}| \cos \varphi$, где $\ \ \phi$ есть угол между вектором $|\overrightarrow{AB}|$ и положительным направлением оси l.

 $Koopдинатами\ вектор a\ \vec{a}\$ в прямоугольной декартовой системе координат называют проекции вектор a \vec{a} на координатные оси.

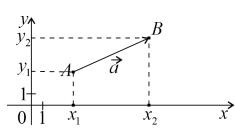


Рисунок 1.14

В прямоугольной декартовой системе координат на плоскости (рисунок 1.14) вектор $\vec{a} = \overline{AB}$ имеет две координаты $a_x = \operatorname{пp}_{Ox} \vec{a}$ и $a_y = \operatorname{пp}_{Oy} \vec{a}$. При этом пишут: $\vec{a} = (a_x, a_y)$.

В прямоугольной декартовой системе координат в пространстве вектор \vec{a} имеет три координаты $a_x = \pi p_{Ox} \vec{a}$, $a_y = \pi p_{Oy} \vec{a}$ и

 $a_z = \operatorname{пр}_{Oz} \vec{a}$. Пишут: $\vec{a} = (a_x, a_y, a_z)$.

Теорема 1.1. Если $A(x_1,y_1)$ и $B(x_2,y_2)$ – произвольные точки плоскости, то вектор $\overrightarrow{AB}=(x_2-x_1,y_2-y_1)$. Если $A(x_1,y_1,z_1)$ и $B(x_2,y_2,z_2)$ – произвольные точки пространства, то вектор $\overrightarrow{AB}=(x_2-x_1,y_2-y_1,z_2-z_1)$.

Свойства координат векторов при линейных операциях даёт следующая теорема.

Теорема 1.2. Если $\vec{a} = (a_x, a_y, a_z)$ и $\vec{b} = (b_x, b_y, b_z)$, то:

1)
$$\vec{a} + \vec{b} = (a_x + b_x, a_y + b_y, a_z + b_z);$$

2)
$$\vec{a} - \vec{b} = (a_x - b_x, a_y - b_y, a_z - b_z);$$

3)
$$\lambda \vec{a} = (\lambda a_x, \lambda a_y, \lambda a_z)$$
 для всех $\lambda \in \mathbb{R}$.

Аналогичные утверждения верны для векторов $\vec{a}=(a_x,a_y)$ и $\vec{b}=(b_x,b_y)$ на плоскости.

1.1.5 Разложение вектора по ортам координатных осей

В прямоугольной декартовой системе координат Oxyz на координатных осях Ox, Oy, Oz от начала координат отложим единичные векторы \vec{i} , \vec{j} , \vec{k} соответственно (рисунок 1.15). Эти векторы называют *ортами координатных осей*.

Если вектор $\vec{a}=(a_x,a_y,a_z)$, то нетрудно показать, что $\vec{a}=a_x\vec{i}+a_y\vec{j}+a_z\vec{k}$.

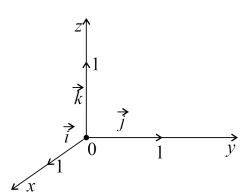


Рисунок 1.15

Такое представление вектора \vec{a} называют разложением вектора \vec{a} по ортам координатных осей. Верно и обратное: если вектор $\vec{a} = x_0 \vec{i} + y_0 \vec{j} + z_0 \vec{k}$, то x_0 , y_0 , z_0 – координаты вектора \vec{a} .

Аналогично, в прямоугольной декартовой системе координат Oxy на плоскости вектор $\vec{a}=(a_x,a_y)$ тогда и только тогда, когда $\vec{a}=a_x\vec{i}+a_y\vec{j}$.

1.1.6 Скалярное произведение векторов

Скалярным произведением векторов \vec{a} и \vec{b} называется число, обозначаемое $\vec{a} \cdot \vec{b}$, равное произведению длин этих векторов и косинуса угла между ними, то есть $\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos \phi$, где ϕ — угол между векторами \vec{a} и \vec{b} .

Свойства скалярного произведения:

1)
$$\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{a}$$
;

$$2) \mid \vec{a} \mid = \sqrt{\vec{a} \cdot \vec{a}};$$

- 3) векторы \vec{a} и \vec{b} перпендикулярны тогда и только тогда, когда $\vec{a} \cdot \vec{b} = 0;$
 - 4) $(\lambda \vec{a}) \cdot b = \vec{a} \cdot (\lambda \vec{b}) = \lambda (\vec{a} \cdot \vec{b})$ для любого $\lambda \in \mathbb{R}$;
 - 5) $\vec{a} \cdot (\vec{b} + \vec{c}) = \vec{a} \cdot \vec{b} + \vec{a} \cdot \vec{c}$.

Теорема 1.3. Справедливы утверждения:

- 1) если $\vec{a} = (a_x, a_y)$ и $\vec{b} = (b_x, b_y)$, то $\vec{a} \cdot \vec{b} = a_x b_x + a_y b_y$;
- 2) если $\vec{a} = (a_x, a_y, a_z)$ и $\vec{b} = (b_x, b_y, b_z)$, то $\vec{a} \cdot \vec{b} = a_x b_x + a_y b_y + a_z b_z$.

Следствие 1.3.1. Справедливы утверждения:

- 1) если $\vec{a} = (a_x, a_y)$, то $|\vec{a}| = \sqrt{a_x^2 + a_y^2}$;
- 2) если $\vec{a} = (a_x, a_y, a_z)$, то $|\vec{a}| = \sqrt{a_x^2 + a_y^2 + a_z^2}$.

Следствие 1.3.2. Справедливы утверждения:

- 1) расстояние между точками $A(x_1,y_1)$ и $B(x_2,y_2)$ вычисляется по формуле $AB = \sqrt{(x_2-x_1)^2+(y_2-y_1)^2}$;
- 2) расстояние между точками $A(x_1,y_1,z_1)$ и $B(x_2,y_2,z_2)$ вычисляется по формуле $AB=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2+(z_2-z_1)^2}$.

1.1.7 Векторное произведение векторов

Три некомпланарных вектора \vec{a} , \vec{b} , \vec{c} , взятые в указанном порядке, образуют *правую тройку векторов*, если с конца третьего вектора \vec{c} кратчайший поворот от первого вектора \vec{a} ко второму вектору \vec{b} виден совершающимся против хода часовой стрелки (рисунок 1.16), и образуют *певую тройку векторов*, если указанный поворот совершается по ходу часовой стрелки (рисунок 1.17).

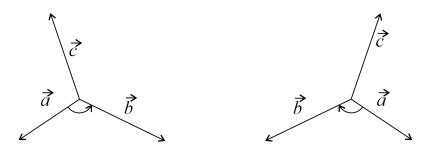


Рисунок 1.16

Рисунок 1.17

Векторным произведением векторов \vec{a} и \vec{b} называется вектор, обозначаемый $\vec{a} \times \vec{b}$, удовлетворяющий трём условиям:

- 1) $|\vec{a} \times \vec{b}| = |\vec{a}| |\vec{b}| \sin \phi$, где ϕ угол между векторами \vec{a} и \vec{b} ;
- 2) вектор $\vec{a} \times \vec{b}$ перпендикулярен каждому из векторов \vec{a} и \vec{b} ;
- 3) векторы \vec{a} , \vec{b} , $\vec{a} \times \vec{b}$ образуют правую тройку векторов, если они не компланарны.

Свойства векторного произведения:

- 1) $\vec{a} \times \vec{b} = -(\vec{b} \times \vec{a});$
- 2) $\vec{a} \times \vec{a} = \vec{0}$;
- 3) векторы \vec{a} и \vec{b} коллинеарны тогда и только тогда, когда $\vec{a} \times \vec{b} = \vec{0}$;
 - 4) $(\vec{a} + \vec{b}) \times \vec{c} = \vec{a} \times \vec{c} + \vec{b} \times \vec{c}$:
 - 5) $(\lambda \vec{a}) \times \vec{b} = \vec{a} \times (\lambda \vec{b}) = \lambda (\vec{a} \times \vec{b}).$

Теорема 1.4. Если $\vec{a} = (a_x, a_y, a_z)$ и $\vec{b} = (b_x, b_y, b_z)$, то

$$\vec{a} \times \vec{b} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ a_x & a_y & a_z \\ b_x & b_y & b_z \end{vmatrix}.$$

Следствие 1.4.1. Eсли $\vec{a} = (a_x, a_y, a_z)$ и $\vec{b} = (b_x, b_y, b_z)$, то

$$\vec{a} \times \vec{b} = \begin{pmatrix} \begin{vmatrix} a_y & a_z \\ b_y & b_z \end{vmatrix}, - \begin{vmatrix} a_x & a_z \\ b_x & b_z \end{vmatrix}, \begin{vmatrix} a_x & a_y \\ b_x & b_y \end{vmatrix}.$$

 $B_{\overline{a}}$ — неколлинеарных \overline{a} \overline{b} — \overline{b} (рисунок 1.18), равна длине векторного про-изведения $\overline{a} \times \overline{b}$ и вычисляется \overline{b} $S_{ABCD} = |\overrightarrow{a} \times \overrightarrow{b}|$ Следствие 1.4.2. Площадь параллело-

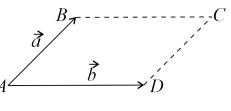


Рисунок 1.18

1.1.8 Смешанное произведение векторов

Смещанным произведением векторов $\vec{a}, \vec{b}, \vec{c}$ называется число $(\vec{a} \times \vec{b}) \cdot \vec{c}$.

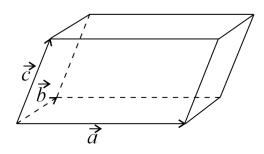
Свойства смешанного произведения:

- 1) смешанное произведение не меняется при перемене местами знаков произведения, то есть $(\vec{a} \times \vec{b}) \cdot \vec{c} = \vec{a} \cdot (\vec{b} \times \vec{c})$. Ввиду этого свойства смешанное произведение обозначают $\vec{a}\vec{b}\vec{c}$, не ставя знаки между векторами;
- 2) смешанное произведение меняет знак при перемене местами любых двух векторов, то есть $\vec{a}\vec{b}\vec{c} = -\vec{a}\vec{c}\vec{b}$, $\vec{a}\vec{b}\vec{c} = -\vec{b}\vec{a}\vec{c}$, $\vec{a}\vec{b}\vec{c} = -\vec{c}\vec{b}\vec{a}$;
- 3) смешанное произведение не меняется при циклической перестановке множителей, то есть $\vec{a}\vec{b}\vec{c}=\vec{c}\vec{a}\vec{b}=\vec{b}\vec{c}\vec{a}$;
- 4) смешанное произведение ненулевых векторов равно нулю тогда и только тогда, когда они компланарны.

Теорема 1.5. Если $\vec{a}=(a_x,a_y,a_z), \vec{b}=(b_x,b_y,b_z)$ и $\vec{c}=(c_x,c_y,c_z),$ то

$$ec{a}ec{b}ec{c} = egin{vmatrix} a_x & a_y & a_z \ b_x & b_y & b_z \ c_x & c_y & c_z \ \end{pmatrix}.$$

Геометрический смысл смешанного произведения некомпланарных векторов \vec{a} , \vec{b} и \vec{c} состоит в том, что смешанное произведение $\vec{a}\vec{b}\vec{c}$ равно объёму параллелепипеда, построенного на векторах \vec{a} , \vec{b} , \vec{c} (рисунок 1.19), взятому со знаком «+» если тройка векторов \vec{a} , \vec{b} , \vec{c} правая, и со знаком «-», если тройка векторов \vec{a} , \vec{b} , \vec{c} левая.



Теорема 1.6. Справедливы следующие утверждения:

1) если $\vec{a}\vec{b}\vec{c}>0$, то тройка векторов \vec{a} , \vec{b} , \vec{c} правая; если же $\vec{a}\vec{b}\vec{c}<0$, то тройка векторов \vec{a} , \vec{b} , \vec{c} левая;

2) объём параллелепипеда, построенного на векторах \vec{a} , \vec{b} , \vec{c} (рисунок 1.19) вычисляется по формуле

$$V = |\vec{a}\vec{b}\vec{c}|;$$

3) объём треугольной пирамиды, построенной на векторах \vec{a} , \vec{b} , \vec{c} (рисунок 1.20), вычисляется по формуле

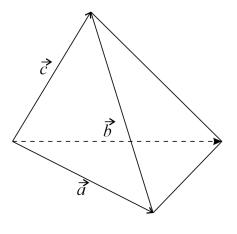
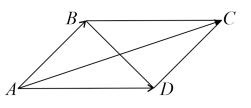


Рисунок 1.20

$$V = \frac{1}{6} |\vec{a}\vec{b}\vec{c}|.$$

1.2 Примеры решения задач

Пример 1. Найдите длины диагоналей параллелограмма ABCD, построенного на векторах $\overrightarrow{AB} = (-5,8,3)$ и $\overrightarrow{AD} = (1,-4,-1)$.



 \Box В параллелограмме ABCD (рисунок Рисунок 1.21 1.21) вектор $\overrightarrow{AC} = \overrightarrow{AB} + \overrightarrow{BC}$. По свойствам параллелограмма $\overrightarrow{BC} = \overrightarrow{AD} = (1, -4, -1)$. Тогда $\overrightarrow{AC} = \overrightarrow{AB} + \overrightarrow{BC} = (-5, 8, 3) + (1, -4, -1) = (-4, 4, 2)$. Отсюда $AC = |\overrightarrow{AC}| = \sqrt{(-4)^2 + 4^2 + 2^2} = \sqrt{36} = 6$. Аналогично, $\overrightarrow{AB} + \overrightarrow{BD} = \overrightarrow{AD}$, откуда $\overrightarrow{BD} = \overrightarrow{AD} - \overrightarrow{AB} = (1, -4, -1) - (-5, 8, 3) = (6, -12, -4)$ и длина диагонали $BD = |\overrightarrow{BD}| = \sqrt{6^2 + (-12)^2 + (-4)^2} = \sqrt{36 + 144 + 16} = \sqrt{196} = 14$.

OTBET:
$$AC = 6$$
, $BD = 14$.

Пример 2. Найдите длину медианы треугольника \overrightarrow{ABC} , проведённой из вершины C, если $\overrightarrow{AB} = (-4,6)$ и $\overrightarrow{AC} = (-2,4)$.

Пак как CM — медиана треугольника ABC, то AM = MB (рисунок 1.22). Тогда $\overrightarrow{AM} = \frac{1}{2}\overrightarrow{AB} = \frac{1}{2}(-4,6) = (-2,3)$. Поскольку $\overrightarrow{AM} + \overrightarrow{MC} = \overrightarrow{AC}$, то

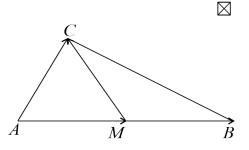


Рисунок 1.22

 $\overrightarrow{MC} = \overrightarrow{AC} - \overrightarrow{AM} = (-2,4) - (-2,3) = (0,1).$ Тогда длина медианы $CM = |\overrightarrow{MC}| = \sqrt{0^2 + 1^2} = 1.$

Other: CM = 1.

Пример 3. Даны точки A(1,-2), B(-4,0), C(5,-3), D(-3,4). Найдите:

- 3.1) значение k, при котором вектор $\vec{a} = \overrightarrow{AD} k\overrightarrow{AC}$ коллинеарен вектору $\vec{b} = \overrightarrow{BC} + 3\overrightarrow{CD}$;
- 3.2) точку N в плоскости четырёхугольника ABCD такую, что $\overrightarrow{AN}+\overrightarrow{BN}+\overrightarrow{CN}+\overrightarrow{DN}=\vec{0};$
- 3.3) ответ на вопрос: лежат ли точки A, B, D на одной прямой? $\exists 3.1$) Найдем вектор $\vec{a} = \overrightarrow{AD} k\overrightarrow{AC} = (-4,6) k \cdot (4,-1) = (-4,6) (4k,-k) = (-4-4k,6+k)$ и вектор $\vec{b} = \overrightarrow{BC} + 3\overrightarrow{CD} = (9,-3) + (-24,21) = (-15,18)$. По критерию коллинеарности вектор \vec{a} коллинеарен вектору \vec{b} , если существует действительное число t такое, что $\vec{a} = t\vec{b}$, т. е. (-4-4k,6+k) = t(-15,18). Из последнего равенства имеем систему уравнений

$$\begin{cases} -4 - 4k = -15t, \\ 6 + k = 18t. \end{cases}$$

Домножим первое уравнение на 6, второе на 5.

$$\begin{cases} -24 - 24k = -90t, \\ 30 + 5k = 90t. \end{cases}$$

Складывая уравнения, получим 6-19k=0, откуда $k=\frac{6}{19}$.

3.2) Обозначим координаты искомой точки N(x,y). Тогда $\overrightarrow{AN} = (x-1,y+2), \ \overrightarrow{BN} = (x+4,y), \ \overrightarrow{CN} = (x-5,y+3), \ \overrightarrow{DN} = (x+3,y-4).$ По условию $\overrightarrow{AN} + \overrightarrow{BN} + \overrightarrow{CN} + \overrightarrow{DN} = \overrightarrow{0}$, поэтому (x-1,y+2) + (x+4,y) + (x-5,y+3) + (x+3,y-4) = (0,0), откуда

$$\begin{cases} x-1+x+4+x-5+x+3=0, \\ y+2+y+y+3+y-4=0. \end{cases}$$

Вычисляем: $x = -\frac{1}{4}$, $y = -\frac{1}{4}$. Следовательно, точка $N\left(-\frac{1}{4}, -\frac{1}{4}\right)$.

3.3) Очевидно, что точки A, B и D лежат на одной прямой, если векторы \overrightarrow{AB} и \overrightarrow{AD} коллинеарны. Вектор $\overrightarrow{AB} = (-5,2)$, вектор $\overrightarrow{AD} = (-4,6)$. Если эти векторы коллинеарны, то существует действительное число t такое, что $\overrightarrow{AB} = t \overrightarrow{AD}$, то есть (-5,2) = t(-4,6). Тогда получаем систему

$$\begin{cases}
-5 = -4t, \\
2 = 6t,
\end{cases} \Rightarrow \begin{cases}
t = \frac{5}{4}, \\
t = \frac{1}{3}.
\end{cases}$$

Эта система не имеет решений, поэтому векторы \overrightarrow{AB} и \overrightarrow{AD} неколлинеарные и точки A, B, D не лежат на одной прямой.

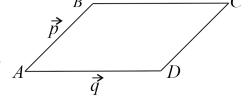
Otbet: 3.1)
$$k = \frac{6}{19}$$
. 3.2) $N\left(-\frac{1}{4}, -\frac{1}{4}\right)$. 3.3) Het.

Пример 4. Угол между векторами \vec{a} и \vec{b} равен 120°, $|\vec{a}|$ = 4, $|\vec{b}|$ = 3. Вычислите:

- 4.1) значение выражений $(3\vec{a}-2\vec{b})\cdot(\vec{a}+2\vec{b})$, $(4\vec{a}-3\vec{b})^2$;
- 4.2) площадь параллелограмма, построенного на векторах $\vec{p} = -2\vec{a} + \vec{b}$ и $\vec{q} = \vec{a} 3\vec{b}$.
- \Box 4.1) Используя свойства скалярного произведения векторов, имеем $(3\vec{a}-2\vec{b})\cdot(\vec{a}+2\vec{b})=3(\vec{a}\cdot\vec{a})-2(\vec{b}\cdot\vec{a})+6(\vec{a}\cdot\vec{b})-4(\vec{b}\cdot\vec{b})=3\mid\vec{a}\mid^2+$ $+4(\vec{a}\cdot\vec{b})-4\mid\vec{b}\mid^2=3\cdot4^2+4\mid\vec{a}\mid\mid\vec{b}\mid\cos 120^\circ-4\cdot3^2=48+4\cdot4\cdot3\cdot\left(-\frac{1}{2}\right)-36=$ =12-24=-12.

Аналогично, $(4\vec{a}-3\vec{b})^2=(4\vec{a}-3\vec{b})\cdot(4\vec{a}-3\vec{b})=16(\vec{a}\cdot\vec{a})-24(\vec{a}\cdot\vec{b})+$ $+9(\vec{b}\cdot\vec{b})=16|\vec{a}|^2-24|\vec{a}||\vec{b}|\cos 120^\circ+9|\vec{b}|^2=16\cdot 4^2-24\cdot 4\cdot 3\cdot \left(-\frac{1}{2}\right)+$ $+9\cdot 3^2=256+144+81=481.$

4.2) Пусть параллелограмм ABCD построен на векторах \vec{p} и \vec{q} (рисунок 1.23). Площадь параллелограмма можно найти по формуле



 $S_{ABCD} = |\overrightarrow{p} \times \overrightarrow{q}|.$

Рисунок 1.23

Используя свойства векторного произведения, находим $\vec{p} \times \vec{q} = (-2\vec{a} + \vec{b}) \times \times (\vec{a} - 3\vec{b}) = -2(\vec{a} \times \vec{a}) + \vec{b} \times \vec{a} + 6(\vec{a} \times \vec{b}) - 3(\vec{b} \times \vec{b}) = \vec{b} \times \vec{a} - 6(\vec{b} \times \vec{a}) = -5(\vec{b} \times \vec{a}).$ Тогда $S_{ABCD} = |\vec{p} \times \vec{q}| = |-5(\vec{b} \times \vec{a})| = |-5||\vec{b}||\vec{a}| \sin 120^\circ = 5 \cdot 4 \cdot 3 \cdot \frac{\sqrt{3}}{2} = 30\sqrt{3}.$

Ответ: 4.1) -12 и 481. 4.2) $30\sqrt{3}$. \boxtimes

Пример 5. Даны точки A(-1,1,6), B(1,2,-4) и C(-2,1,3). Найдите:

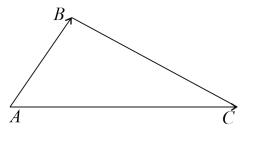
- 5.1) длину вектора $\vec{a} = 2\overrightarrow{AB} + \overrightarrow{BC}$;
- 5.2) скалярное произведение векторов \vec{a} и $\vec{b} = \overrightarrow{AC}$;
- 5.3) угол между векторами \vec{a} и \vec{b} ;
- 5.4) проекцию вектора \vec{b} на вектор $\vec{c} = \overrightarrow{AB}$;
- 5.5) площадь треугольника АВС.
- \Box 5.1) По теореме 1.1 вектор $\overrightarrow{AB} = (1-(-1),2-1,-4-6) = (2,1,-10),$ $\overrightarrow{BC} = (-2-1,1-2,3-(-4)) = (-3,-1,7).$ Тогда вектор $\overrightarrow{a} = 2\overrightarrow{AB} + \overrightarrow{BC} = 2(2,1,-10) + (-3,-1,7) = (4,2,-20) + (-3,-1,7) = (1,1,-13).$ Теперь находим длину вектора $\overrightarrow{a}: |\overrightarrow{a}| = \sqrt{1^2+1^2+(-13)^2} = \sqrt{171} = 3\sqrt{19}.$
- 5.2) Вектор $\vec{b} = \overrightarrow{AC} = (-1,0,-3)$. По теореме 1.3 имеем $\vec{a} \cdot \vec{b} = (1,1,-13) \cdot (-1,0,-3) = 1 \cdot (-1) + 1 \cdot 0 + (-13) \cdot (-3) = 38$.
- 5.3) Пусть ϕ угол между векторами \vec{a} и \vec{b} . По определению скалярного произведения $\vec{a}\cdot\vec{b}=\mid\vec{a}\mid\mid\vec{b}\mid\cos\phi$, откуда

$$\cos \varphi = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|} = \frac{38}{3\sqrt{19} \cdot \sqrt{(-1)^2 + 0^2 + (-3)^2}} = \frac{38}{3\sqrt{190}}.$$

Теперь $\varphi = \arccos \frac{38}{3\sqrt{190}}$.

5.4) Вектор $\vec{c} = \overrightarrow{AB} = (2,1,-10)$. По определению проекция вектора \vec{b} на вектор \vec{c} равна пр $_{\vec{c}}\vec{b} = |\vec{b}|\cos\varphi$, где φ – угол между векторами \vec{b} и \vec{c} . Тогда $\vec{c} \cdot \vec{b} = |\vec{c}| |\vec{b}| \cos\varphi = |\vec{c}| \operatorname{пр}_{\vec{c}}\vec{b}$, откуда пр $_{\vec{c}}\vec{b} = \frac{\vec{c} \cdot \vec{b}}{|\vec{c}|} = \frac{(2,1,-10) \cdot (-1,0,-3)}{\sqrt{2^2+1^2}+(-10)^2} = \frac{2 \cdot (-1) + 1 \cdot 0 + (-10) \cdot (-3)}{\sqrt{4+1+100}} = \frac{28}{\sqrt{105}} = \frac{4\sqrt{105}}{15}$.

5.5) Треугольник ABC можно рассматривать как треугольник, построенный на векторах \overrightarrow{AB} и \overrightarrow{AC} . Поскольку площадь этого треугольника равна половине площади параллелограмма, построенного на векторах \overrightarrow{AB} и \overrightarrow{AC} , то



 $S_{ABC} = \frac{1}{2} |\overrightarrow{AB} \times \overrightarrow{AC}|$. Найдём

Рисунок 1.24

$$\overrightarrow{AB} \times \overrightarrow{AC} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 2 & 1 & -10 \\ -1 & 0 & -3 \end{vmatrix} = -3\vec{i} + 16\vec{j} + \vec{k} = (-3, 16, 1).$$

Теперь
$$S_{ABC} = \frac{1}{2}\sqrt{(-3)^2 + 16^2 + 1^2} = \frac{1}{2}\sqrt{9 + 256 + 1} = \frac{\sqrt{266}}{2}.$$

Other: 5.1) $3\sqrt{19}$. 5.2) 38. 5.3) $\arccos \frac{38}{3\sqrt{190}}$. 5.4) $\frac{4\sqrt{105}}{15}$.

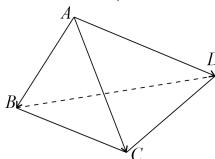
$$5.5) \ \frac{\sqrt{266}}{2}. \boxtimes$$

Пример 6. Даны точки A(2,0,4), B(0,3,7), C(0,0,6), D(4,3,5), E(6,0,0).

- (6.1) выясните, лежат ли точки (A, B, C, E) в одной плоскости?
- 6.2) найдите объём пирамиды ABCD;
- 6.3) найдите площадь грани ABC в пирамиде ABCD;
- 6.4) найдите длину высоты пирамиды ABCD, проведённой из вершины D;
- 6.5) найдите значение t, при котором векторы \overrightarrow{AB} , BC и $\overrightarrow{a} = (-4,1,t)$ будут компланарны.
- \Box 6.1) Если четыре точки лежат в одной плоскости, то три различных вектора \overrightarrow{AB} , \overrightarrow{AC} , \overrightarrow{AE} должны быть компланарны, а значит их смешанное произведение должно быть равно нулю. Находим $\overrightarrow{AB} = (-2,3,3)$, $\overrightarrow{AC} = (-2,0,2)$, $\overrightarrow{AE} = (4,0,-4)$. Тогда смешанное произведение этих векторов равно

$$\overrightarrow{ABACAE} = \begin{vmatrix} -2 & 3 & 3 \\ -2 & 0 & 2 \\ 4 & 0 & 4 \end{vmatrix} = 0 + 0 + 24 - 0 - 0 - 24 = 0.$$

Это означает, что точки A, B, C, E лежат в одной плоскости.



6.2) Пирамида ABCD построена на векторах \overrightarrow{AB} , \overrightarrow{AC} , \overrightarrow{AD} (рисунок 1.25). По теореме 1.6 объём треугольной пирамиды ABCD равен $V = \frac{1}{6} |\overrightarrow{AB}\overrightarrow{AC}\overrightarrow{AD}|$. Так как $\overrightarrow{AB} = (-2,3,3), \ \overrightarrow{AC} = (-2,0,2), \ \overrightarrow{AD} = (2,3,1),$

Рисунок 1.25

To
$$V = \frac{1}{6} \begin{vmatrix} -2 & 3 & 3 \\ -2 & 0 & 2 \\ 2 & 3 & 1 \end{vmatrix} = \frac{1}{6} \begin{vmatrix} 0 - 18 + 12 - 0 + 1 \end{vmatrix}$$

$$+12+6$$
| $=\frac{1}{6}$ |12|=2.

6.3) Грань ABC в пирамиде ABCD является треугольником, построенным на векторах \overrightarrow{AB} и \overrightarrow{AC} (рисунок 1.25). По следствию 1.4.2 пло-

щадь треугольника
$$ABC$$
 равна $S_{ABC} = \frac{1}{2} |\overrightarrow{AB} \times \overrightarrow{AC}| = \frac{1}{2} |\overrightarrow{i} \quad \overrightarrow{j} \quad \overrightarrow{k}|_{-2} = \frac{1}{2} |\overrightarrow{6i} - 6\overrightarrow{j} + 6\overrightarrow{k} + 4\overrightarrow{j}| = \frac{1}{2} |6\overrightarrow{i} - 2\overrightarrow{j} + 6\overrightarrow{k}| = \frac{1}{2} |(6, -2, 6)| = \frac{1}{2} \sqrt{6^2 + (-2)^2 + 6^2} = \frac{1}{2} \sqrt{76} = \sqrt{19}.$

6.4) Пусть h — длина высоты пирамиды ABCD, проведённой из вершины D на грани ABC. Тогда $V = \frac{1}{3} S_{ABC} \cdot h$, откуда

$$h = \frac{3V}{S_{ABC}} = \frac{3 \cdot 2}{\sqrt{19}} = \frac{6\sqrt{19}}{19}.$$

6.5) Так как векторы \overrightarrow{AB} , \overrightarrow{BC} и \overrightarrow{a} должны быть компланарны, то их смешанное произведение должно быть равно нулю. Находим $\overrightarrow{AB} = (-2,3,3), \ \overrightarrow{BC} = (0,-3,-1).$ Тогда

$$\overrightarrow{ABBC}\overrightarrow{a} = \begin{vmatrix} -2 & 3 & 3 \\ 0 & -3 & -1 \\ -4 & 1 & t \end{vmatrix} = 6t + 12 - 36 - 2 = 6t - 26.$$

Из уравнения 6t - 26 = 0, находим $t = \frac{13}{3}$.

Ответ: 6.1) Да. 6.2) 2. 6.3)
$$\sqrt{19}$$
. 6.4) $\frac{6\sqrt{19}}{19}$. 6.5) $\frac{13}{3}$.

1.3 Индивидуальные задания

1 Найдите длины диагоналей параллелограмма ABCD, если известны векторы \vec{a} и \vec{b} .

1.1
$$\vec{a} = \overrightarrow{BC} = (-1,3,4), \ \vec{b} = \overrightarrow{AB} = (2,0,1);$$

1.2
$$\vec{a} = \overrightarrow{DC} = (2, -1, 4), \ \vec{b} = \overrightarrow{BC} = (0, 3, 1);$$

1.3
$$\vec{a} = \overrightarrow{BA} = (-3,1,1), \vec{b} = \overrightarrow{DA} = (2,-1,2);$$

1.4
$$\vec{a} = \overrightarrow{CD} = (0, -1, 2), \ \vec{b} = \overrightarrow{AD} = (3, 1, 0);$$

1.5
$$\vec{a} = \overrightarrow{DA} = (1, 2, -4), \ \vec{b} = \overrightarrow{AB} = (2, 3, 0).$$

1.6
$$\vec{a} = \overrightarrow{CB} = (2,0,-1), \vec{b} = \overrightarrow{AB} = (1,-3,4);$$

1.7
$$\vec{a} = \overrightarrow{CD} = (-2.1.4), \vec{b} = \overrightarrow{BC} = (0.-3.1);$$

1.8
$$\vec{a} = \overrightarrow{AB} = (-3,1,0), \vec{b} = \overrightarrow{DA} = (4,-2,1);$$

1.9
$$\vec{a} = \overrightarrow{BC} = (-1, 2, 4), \ \vec{b} = \overrightarrow{DC} = (3, 0, 1).$$

1.10
$$\vec{a} = \overrightarrow{DA} = (1, -3, 1), \vec{b} = \overrightarrow{BA} = (-1, 2, 2);$$

1.11
$$\vec{a} = \overrightarrow{AD} = (-1,0,2), \vec{b} = \overrightarrow{CD} = (1,-3,0);$$

1.12
$$\vec{a} = \overrightarrow{AB} = (1, -4, 2), \vec{b} = \overrightarrow{DA} = (2, 0, 3);$$

1.13
$$\vec{a} = \overrightarrow{BA} = (2, -1, 0), \ \vec{b} = \overrightarrow{CB} = (1, 4, -3);$$

1.14
$$\vec{a} = \overrightarrow{BC} = (1, -3, 0), \ \vec{b} = \overrightarrow{CD} = (4, 1, -2);$$

1.15
$$\vec{a} = \overrightarrow{DA} = (0, -3, 1), \ \vec{b} = \overrightarrow{AB} = (1, -2, 3).$$

2 Треугольник ABC построен на векторах \vec{a} и \vec{b} . Найдите длину медианы треугольника ABC, проведенной из указанной вершины.

2.1
$$\vec{a} = \overrightarrow{AB} = (0, -3)$$
, $\vec{b} = \overrightarrow{CB} = (-1, 2)$, вершина B ;

2.2
$$\vec{a} = \overrightarrow{AC} = (4,1), \ \vec{b} = \overrightarrow{AB} = (1,-3),$$
 вершина *A*;

2.3
$$\vec{a} = \overrightarrow{CB} = (2,-1), \vec{b} = \overrightarrow{CA} = (-1,4),$$
 вершина C ;

2.4
$$\vec{a} = \overrightarrow{CA} = (1, -4), \ \vec{b} = \overrightarrow{BA} = (2, 0),$$
 вершина B ;

2.5
$$\vec{a} = \overrightarrow{AC} = (-1,3), \ \vec{b} = \overrightarrow{BC} = (2,-4),$$
 вершина *A*;

2.6
$$\vec{a} = \vec{BA} = (3,1), \vec{b} = \vec{CA} = (-2,-2),$$
 вершина C ;

2.7
$$\vec{a} = \overrightarrow{BC} = (-1,4), \ \vec{b} = \overrightarrow{BA} = (3,0),$$
 вершина *B*;

2.8
$$\vec{a} = \overrightarrow{CA} = (-2,3), \ \vec{b} = \overrightarrow{BA} = (4,1),$$
 вершина *A*;

2.9
$$\vec{a} = \overrightarrow{AC} = (-2,5), \ \vec{b} = \overrightarrow{AB} = (4,-3),$$
 вершина C ; $\vec{a} = \overrightarrow{CB} = (2,-1), \ \vec{b} = \overrightarrow{BA} = (-3,5),$ B ;

2.11
$$\vec{a} = \overrightarrow{BA} = (1,-1)$$
, $\vec{b} = \overrightarrow{AC} = (-3,2)$, вершина *A*;

2.12
$$\vec{a} = \overrightarrow{AC} = (0, -3), \ \vec{b} = \overrightarrow{CB} = (4, 1),$$
 вершина C ;

2.13
$$\vec{a} = \overrightarrow{BC} = (-4,3), \vec{b} = \overrightarrow{AC} = (1,-2),$$
 вершина *B*;

2.14
$$\vec{a} = \overrightarrow{AB} = (-1,4), \ \vec{b} = \overrightarrow{CB} = (2,2),$$
 вершина *A*;

2.15
$$\vec{a} = \overrightarrow{CA} = (3,2), \vec{b} = \overrightarrow{BA} = (0,-4),$$
 вершина *C*.

- 3 Даны точки A, B, C, D. Найдите:
- 1) значение k, при котором вектор $\vec{a} = \overrightarrow{BC} + 2k\overrightarrow{CA}$ коллинеарен вектору $\vec{b} = -2\overrightarrow{CD} + \overrightarrow{BD}$;
- 2) координаты точки N в плоскости треугольника ACD такой, что $2\overrightarrow{AN}-3\overrightarrow{CN}=\overrightarrow{DN};$
 - 3) ответ на вопрос: лежат ли точки B, C, D на одной прямой?
 - 3.1 A(-3,2), B(1,4), C(2,0), D(4,-8);
 - 3.2 A(1,2), B(-2,-3), C(5,-1), D(3,4);
 - 3.3 A(2,5), B(-3,1), C(-6,4), D(0,-2);
 - 3.4 A(4,-3), B(2,1), C(-1,5), D(8,-7);
 - 3.5 A(-1,5), B(4,2), C(2,1), D(10,5);
 - 3.6 A(-5,2), B(1,-3), C(4,3), D(-2,1);
 - 3.7 A(0,-2), B(-4,1), C(2,7), D(-3,1);
 - 3.8 A(2,-3), B(1,-1), C(-4,3), D(0,-5);
 - 3.9 A(3,-1), B(-1,-1), C(5,2), D(1,-2);
 - 3.10 A(-2,-3), B(4,1), C(0,-2), D(5,3);
 - 3.11 A(4,-1), B(-2,3), C(-1,1), D(0,-1);
 - 3.12 A(1,-3), B(-2,-1), C(4,0), D(-3,-1);
 - 3.13 A(-3,5), B(-2,1), C(1,4), D(-3,0);
 - 3.14 A(-4,3), B(1,-2), C(2,3), D(0,-7);
 - 3.15 A(0,-4), B(2,-3), C(1,-1), D(3,1).
- 4 Известны длины векторов \vec{a} и \vec{b} , а также угол ϕ между ними. Вычислите:

- 1) значения выражений $(2\vec{a} + \vec{b})^2$, $(-\vec{a} + 2\vec{b}) \cdot (3\vec{b} + \vec{a})$;
- 2) площадь треугольника, построенного на векторах $\vec{p} = \vec{a} + 3\vec{b}$ и $\vec{q} = 2\vec{a} \vec{b}$.

4.1.
$$\varphi = 30^{\circ}$$
, $|\vec{a}| = 3$, $|\vec{b}| = 2$;

4.2
$$\varphi = 45^{\circ}$$
, $|\vec{a}| = 1$, $|\vec{b}| = 3$;

4.3
$$\varphi = 60^{\circ}$$
, $|\vec{a}| = 4$, $|\vec{b}| = 2$;

4.4
$$\varphi = 90^{\circ}$$
, $|\vec{a}| = 4$, $|\vec{b}| = 3$;

4.5
$$\varphi = 120^{\circ}$$
, $|\vec{a}| = 5$, $|\vec{b}| = 1$;

4.6
$$\varphi = 150^{\circ}$$
, $|\vec{a}| = 1$, $|\vec{b}| = 3$;

4.7
$$\varphi = 30^{\circ}$$
, $|\vec{a}| = 2$, $|\vec{b}| = 4$;

4.8
$$\varphi = 45^{\circ}$$
, $|\vec{a}| = 3$, $|\vec{b}| = 1$;

4.9
$$\varphi = 60^{\circ}$$
, $|\vec{a}| = 1$, $|\vec{b}| = 4$;

4.10
$$\varphi = 90^{\circ}$$
, $|\vec{a}| = 4$, $|\vec{b}| = 3$;

4.11
$$\varphi = 120^{\circ}$$
, $|\vec{a}| = 5$, $|\vec{b}| = 2$;

4.12
$$\varphi = 135^{\circ}$$
, $|\vec{a}| = 3$, $|\vec{b}| = 5$;

4.13
$$\varphi = 150^{\circ}$$
, $|\vec{a}| = 4$, $|\vec{b}| = 1$;

4.14
$$\varphi = 60^{\circ}$$
, $|\vec{a}| = 2$, $|\vec{b}| = 3$;

4.15
$$\varphi = 135^{\circ}$$
, $|\vec{a}| = 1$, $|\vec{b}| = 5$.

- 5 Даны точки A, B, C. Найдите:
- 1) угол между векторами \vec{a} и \vec{b} ;
- 2) проекцию вектора \vec{c} на вектор \vec{a} ;
- 3) площадь треугольника АВС.
- 5.1 A(4,3,-2), B(-3,-1,-4), C(2,2,1), $\vec{a} = -5\overrightarrow{AC} + 2\overrightarrow{CB}$, $\vec{b} = \overrightarrow{BA}$, $\vec{c} = \overrightarrow{AC}$;
- 5.2 A(2,4,3), B(3,1,-4), C(-1,2,2), $\vec{a} = 2\overrightarrow{BA} + 4\overrightarrow{AC}$, $\vec{b} = \overrightarrow{AB}$, $\vec{c} = \overrightarrow{CA}$;
- 5.3 A(2,4,5), B(1,-2,3), C(-1,-2,4), $\vec{a} = 3\overrightarrow{AB} 4\overrightarrow{AC}$, $\vec{b} = \overrightarrow{BC}$, $\vec{c} = \overrightarrow{AB}$;
- 5.4 A(-1,-2,4), B(-1,3,5), C(1,4,2), $\vec{a} = 3\overrightarrow{AC} \overrightarrow{BC}$, $\vec{b} = \overrightarrow{AB}$, $\vec{c} = \overrightarrow{AC}$;

- 5.5 A(-2,-2,4), B(1,3,-2), C(1,4,2), $\vec{a} = 2\overrightarrow{AC} 3\overrightarrow{BA}$, $\vec{b} = \overrightarrow{BC}$, $\vec{c} = \overrightarrow{AC}$;
- 5.6 A(1,3,2), B(-2,4,-1), C(1,3,-2), $\vec{a} = 2\overrightarrow{AB} + \overrightarrow{CB}$, $\vec{b} = \overrightarrow{AC}$, $\vec{c} = \overrightarrow{AB}$;
- 5.7 A(3,4,-4), B(-2,1,2), C(2,-3,1), $\vec{a} = \overrightarrow{CB} + 2\overrightarrow{AC}$, $\vec{b} = \overrightarrow{BA}$, $\vec{c} = \overrightarrow{CA}$;
- 5.8 A(0,2,5), B(2,-3,4), C(3,2,-5), $\vec{a} = -\overrightarrow{AB} + 2\overrightarrow{CB}$, $\vec{b} = \overrightarrow{AC}$, $\vec{c} = \overrightarrow{AB}$;
- 5.9 A(-2,-3,-4), B(2,-4,0), C(1,4,5), $\vec{a} = 2\overrightarrow{AC} \overrightarrow{BC}$, $\vec{b} = \overrightarrow{AB}$, $\vec{c} = \overrightarrow{CB}$;
- 5.10 A(-2,-3,-2), B(1,4,2), C(1,-3,3), $\vec{a} = \overrightarrow{AC} 2\overrightarrow{CB}$, $\vec{b} = \overrightarrow{AB}$, $\vec{c} = \overrightarrow{CA}$;
- 5.11 A(3,2,4), B(-2,1,3), C(2,-2,-1), $\vec{a}=2\overrightarrow{BC}-\overrightarrow{CA}$, $\vec{b}=\overrightarrow{BA}$, $\vec{c}=\overrightarrow{BC}$;
- 5.12 A(-5,4,3), B(4,5,2), C(2,7,-4), $\vec{a} = 3\overrightarrow{BC} + 2\overrightarrow{AB}$, $\vec{b} = \overrightarrow{CA}$, $\vec{c} = \overrightarrow{AB}$;
- 5.13 A(3,5,4), B(4,2,-3), C(-2,4,1), $\vec{a} = 2\vec{BA} 4\vec{AC}$, $\vec{b} = \vec{AB}$, $\vec{c} = \vec{AC}$;
- 5.14 A(4,3,1), B(-4,-1,2), C(3,4,-3), $\vec{a} = 3\overrightarrow{AC} 2\overrightarrow{CB}$, $\vec{b} = \overrightarrow{CA}$, $\vec{c} = \overrightarrow{BA}$;
- 5.15 A(-4,2,-3), B(2,-4,1), C(-1,0,1), $\vec{a} = \overrightarrow{BA} 3\overrightarrow{AC}$, $\vec{b} = \overrightarrow{BC}$, $\vec{c} = \overrightarrow{BA}$.
 - 6 Даны точки A, B, C, D. Найдите:
 - 1) объём пирамиды АВСД;
 - 2) длину высоты пирамиды ABCD, проведённой из вершины D;
- 3) значение t, при котором векторы \overrightarrow{AB} , \overrightarrow{BC} и $\overrightarrow{a} = (2,-1,t)$ лежат в одной плоскости.
 - 6.1 A(-1,1,2), B(3,2,1), C(0,1,-1), D(2,1,4);
 - 6.2 A(2,1,-3), B(-1,1,2), C(1,0,-1), D(3,4,-2);
 - 6.3 A(-3,0,2), B(1,1,-2), C(0,-1,3), D(4,-2,5);
 - 6.4 A(0,-1,4), B(-2,1,3), C(1,-3,4), D(-2,1,1);
 - 6.5 A(1,2,-4), B(4,-3,2), C(1,-1,1), D(0,-3,0);

- 6.6 A(0,1,-1), B(-1,1,2), C(3,2,1), D(2,1,4);
- 6.7 A(-1,1,2), B(1,0,-1), C(2,1,-3), D(3,4,-2);
- 6.8 A(4,-2,5), B(-3,0,2), C(1,1,-2), D(0,-1,3);
- 6.9 A(1,-3,4), B(-2,1,1), C(-2,1,3), D(0,-1,4);
- 6.10 A(1,-1,1), B(0,-3,0), C(1,2,-4), D(4,-3,2);
- 6.11 A(2,1,4), B(0,1,-1), C(-1,1,2), D(3,2,1); A(3,4,-2), B(2,1,-3), C(-1,2,1), D(1,0,-1);
- 6.13 A(1,1,-2), B(4,-2,5), C(-3,0,2), D(0,-1,3);
- 6.14 A(-2,1,1), B(1,-3,4), C(0,-1,4), D(-2,1,3);
- 6.15 A(0,-2,1), B(1,2,-4), C(4,-2,3), D(1,-1,1).

2 ПРЯМАЯ НА ПЛОСКОСТИ

2.1 Элементы теории

2.1.1 Простейшие задачи аналитической геометрии на плоскости

1 Нахождение расстояния между двумя точками

Если $A(x_1, y_1)$ и $B(x_2, y_2)$ — произвольные точки плоскости, то расстояние AB между ними вычисляется по формуле

$$AB = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}.$$
 (2.1)

2 Деление отрезка данном отношении

Если M — произвольная точка отрезка $M_1 M_2$, отличная от точки M_2 (рисунок 2.1), то число $\lambda = \frac{M_1 M}{M M_2}$ Рисунок 2.1

называют отношением, в котором точка M делит отрезок M_1M_2 .

Теорема 2.1. Пусть $M_1(x_1,y_1)$ и $M_2(x_2,y_2)$ – отличные друг от друга точки плоскости. Если точка $M(x_0,y_0)$ делит отрезок M_1M_2 в отношении λ , то

$$x_0 = \frac{x_1 + \lambda x_2}{1 + \lambda}, \quad y_0 = \frac{y_1 + \lambda y_2}{1 + \lambda}.$$

Следствие 2.1.1. Пусть $M_1(x_1,y_1)$ и $M_2(x_2,y_2)$ — различные точки плоскости. Если $M(x_0,y_0)$ — середина отрезка M_1M_2 , то

$$x_0 = \frac{x_1 + x_2}{2}, \quad y_0 = \frac{y_1 + y_2}{2}.$$

3 Нахождение площади треугольника по координатам его вершин

Теорема 2.2. Пусть $A(x_1, y_1)$, $B(x_2, y_2)$, $C(x_3, y_3)$ — вершины треугольника ABC (рисунок 2.2). Тогда площадь треугольника ABC вычисляется по формуле

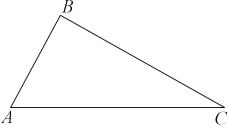


Рисунок 2.2

$$S_{ABC} = \frac{1}{2} |(x_2 - x_1)(y_3 - y_1) - (x_3 - x_1)(y_2 - y_1)|.$$
 (2.2)

2.1.2 Линия на плоскости

Уравнением линии на плоскости называется такое уравнение F(x,y) = 0 с двумя переменными x и y, которому удовлетворяют координаты каждой точки данной линии и только они.

2.1.3 Виды уравнений прямой на плоскости

1 Параметрические уравнения прямой

Если прямая l проходит через точку $M_{_0}(x_{_0},y_{_0})$ и вектор $\vec{a}=(p,m)$ лежит на прямой l (рисунок 2.3), то уравнения

$$\begin{cases} x = x_0 + pt, \\ y = y_0 + mt, t \in \mathbb{R}, \end{cases}$$

называют параметрическими уравнениями прямой l. Точку M_0 называют начальной точкой, переменную t — параметром, вектор \vec{a} — направляющим вектором прямой l.

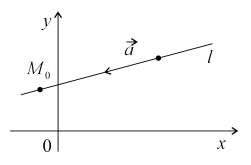


Рисунок 2.3

2 Каноническое уравнение прямой

Если в параметрических уравнениях прямой l исключить параметр t, то получим уравнение

$$\frac{x-x_0}{p} = \frac{y-y_0}{m},$$

которое называют *каноническим уравнением прямой l*. Это уравнение можно записать, зная начальную точку $M_0(x_0,y_0)$ и направляющий вектор $\vec{a}=(p,m)$ прямой l.

3 Уравнение прямой по двум точкам

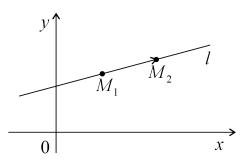


Рисунок 2.4

Если прямая l проходит через точки $M_1(x_1,y_1)$ и $M_2(x_2,y_2)$ (рисунок 2.4), то, рассматривая M_1 как начальную точку, вектор $\overline{M_1M_2}=(x_2-x_1,y_2-y_1)$ как направляющий вектор прямой l, и подставляя их координаты в каноническое уравнение, получим уравнение

$$\frac{x - x_1}{x_2 - x_1} = \frac{y - y_1}{y_2 - y_1},$$

которое называют *уравнением прямой по двум точкам*. Его рассматривают как равенство

$$A = \begin{bmatrix} A & B \\ 0 & x \end{bmatrix}$$

Рисунок 2.5

$$(x_2-x_1)(y-y_1)=(y_2-y_1)(x-x_1).$$

4 Уравнение прямой в отрезках на осях

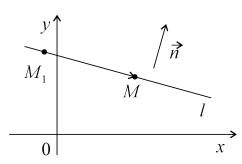


Рисунок 2.6

Если прямая l пересекает ось Ox в точке A(a,0), а ось Oy в точке B(0,b), где $a \neq 0$ и $b \neq 0$ (рисунок 2.5), то уравнение прямой l имеет вид

$$\frac{x}{a} + \frac{y}{b} = 1$$
,

его называют уравнением прямой в отрезках на осях.

5 Уравнение прямой по точке и нормальному вектору

Если прямая l проходит через точку $M_0(x_0,y_0)$ и вектор $\vec{n}=(A,B)$ перпендикулярен прямой l, то вектор \vec{n} перпендикулярен вектору $\overrightarrow{MM_0}=(x-x_0,y-y_0)$, где M(x,y) — произвольная точка прямой l (рисунок 2.6). Тогда скалярное произведение $\vec{n}\cdot \overrightarrow{MM_0}=0$, откуда получаем уравнение

$$A(x - x_0) + B(y - y_0) = 0,$$

которое называют уравнением прямой по точке и нормальному вектору. Вектор \vec{n} называют нормальным вектором прямой l.

Если прямая l перпендикулярна оси Ox и проходит через точку $M_0(x_0,y_0)$, то нормальным вектором прямой l можно взять вектор $\vec{i}=(1,0)$ (рисунок 2.7). Уравнение прямой l в этом случае имеет вид $x-x_0=0$ или $x=x_0$.

Если прямая l перпендикулярна оси Oy и проходит через точку $M_0(x_0,y_0)$, то нормальным вектором прямой l можно взять вектор $\vec{j}=(0,1)$ (рисунок 2.8). В этом случае уравнение прямой l имеет вид $y-y_0=0$ или $y=y_0$.



6 Общее уравнение прямой

Если в уравнении прямой по точке $M_0(x_0,y_0)$ и нормальному вектору $\vec{n}=(A,B)$ раскрыть скобки и обозначить через C число $-Ax_0-By_0$, то получим уравнение

Рисунок 2.8

$$Ax + By + C = 0,$$

которое называют общим уравнением прямой.

Алгебраическим уравнением первой степени относительно переменных x и y называется уравнение вида Ax + By + C = 0, где коэффициенты A и B одновременно не равны нулю.

Важным является следующее утверждение

Теорема 2.3. Любая прямая на плоскости определяется алгебраическим уравнением первой степени относительно переменных

x и y. Верно и обратное: любое уравнение первой степени относительно переменных x и y является уравнением некоторой прямой на плоскости.

7 Уравнение прямой с угловым коэффициентом

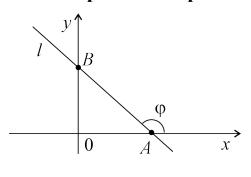


Рисунок 2.9

Пусть l — прямая и A — точка пересечения прямой lc осью (рисунок 2.9). Наименьший угол, который надо повернуть ось Ox вокруг точки A против часовой стрелки до её совпадения с прямой l, называется углом наклона прямой l. На рисунке 2.9 он обозначен через Очевидно, φ. ЧТО $0 \le \varphi < 180^{\circ}$.

Если прямая l не перпендикулярна оси Ox, то существует $tg\phi$, который обозначают через k и называют угловым коэффициен-том прямой l.

Если B(0,b) — точка пересечения прямой l с осью Oy, то уравнение прямой l можно записать в виде y = kx + b. Это уравнение называют уравнением прямой с угловым коэффициентом.

8 Уравнение прямой по точке и угловому коэффициенту

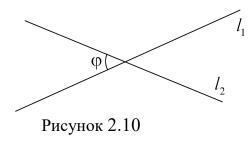
Если прямая l проходит через точку $M_0(x_0, y_0)$ и имеет угловой коэффициент k, то уравнение прямой l записывают в виде

$$y - y_0 = k(x - x_0)$$

и называют это уравнение уравнением прямой по точке и угловому коэффициенту.

В зависимости от данных задачи уравнение прямой можно записать в том или ином виде. Путём несложных преобразований от одного вида можно перейти к другому виду, если в этом есть необходимость.

2.1.4 Угол между прямыми на плоскости



Углом между пересекающимися прямыми l_1 и l_2 (рисунок 2.10) будем называть меньший из углов, образованных при их пересечении. На рисунок 2.10 он обозначен ϕ . Если прямые l_1 и l_2 параллельны или совпадают, то угол между ними считают

равным нулю. Таким образом, угол между прямыми $0 \le \phi \le 90^\circ$.

Если прямые на плоскости l_1 и l_2 заданы уравнениями с угловым коэффициентом $y=k_1x+b_1$ и $y=k_2x+b_2$ соответственно, то угол ϕ между этими прямыми можно определить из равенства

$$tg\varphi = \left| \frac{k_2 - k_1}{1 + k_1 k_2} \right|.$$

Если $k_1=k_2$, то $\mathrm{tg}\phi=0$ и $\phi=0$, то есть прямые l_1 и l_2 совпадают или параллельны. Таким образом, $k_1=k_2$ — условие параллельности или совпадения прямых l_1 и l_2 .

Если $1+k_1k_2=0$, то tg ϕ не существует и $\phi=90^\circ$. Значит равенство $1+k_1k_2=0$ — условие перпендикулярности прямых l_1 и l_2 .

В случае, когда l_1 не имеет углового коэффициента, а l_2 имеет угловой коэффициент $k_2=\operatorname{tg}\phi_2$ угол ϕ между прямыми l_1 и l_2 равен либо $\phi=90^\circ-\phi_2$, если $\phi_2<90^\circ$, либо $\phi=\phi_2-90^\circ$, если $\phi_2>90^\circ$ (рисунки 2.11, 2.12).

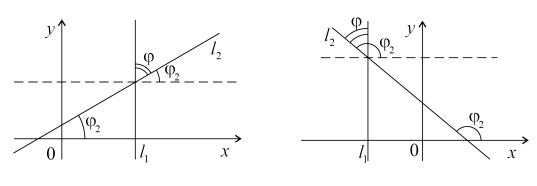


Рисунок 2.11

Рисунок 2.12

Если же прямые l_1 и l_2 не имеют угловых коэффициентов, то они перпендикулярны оси Ox, а значит либо параллельны, либо совпадают и угол между ними по определению равен нулю.

2.1.5 Расстояние от точки до прямой на плоскости

Расстояние от точки $M_0(x_0,y_0)$ до прямой l, заданной общим уравнением Ax+By+C=0 (рисунок 2.13), можно вычислить по формуле

$$M_0K = \frac{|Ax_0 + By_0 + C|}{\sqrt{A^2 + B^2}}.$$

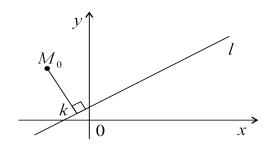


Рисунок 2.13

2.2 Примеры решения задач

Пример 1. В параллелограмме *ABCD* известны вершины A(-3,4), B(2,-6) и точка пересечения диагоналей M(1,5). Найдите:

- 1) координаты вершин C и D;
- 2) периметр параллелограмма АВСD;
- 3) координаты точки N, которая делит отрезок BA в отношении $\frac{3}{2}$.

Сделайте чертёж в декартовой системе координат.

A D C

Рисунок 2.14

M — середина отрезка AC. Тогда

$$x_M = \frac{x_A + x_C}{2}, \quad y_M = \frac{y_A + y_C}{2},$$

откуда
$$1 = \frac{-3 + x_C}{2}$$
, $5 = \frac{4 + y_C}{2}$ и $x_C = 5$,

 $y_C = 6$, т. е. C(5,6). Аналогично,

$$x_M = \frac{x_B + x_D}{2}, \quad y_M = \frac{y_B + y_D}{2}.$$

Тогда
$$1 = \frac{2 + x_0}{2}$$
, $5 = \frac{-6 + y_D}{2}$, откуда $x_D = 0$, $y_D = 16$, т. е. $D(0,16)$;

2) чтобы найти периметр параллелограмма ABCD, надо знать длины его сторон.

$$AB = \sqrt{(x_B - x_A)^2 + (y_B - y_A)^2} = \sqrt{(2 - (-3))^2 + (-6 - 4)^2} = \sqrt{5^2 + (-10)^2} = \sqrt{125} = 5\sqrt{5},$$

$$BC = \sqrt{(x_C - x_B)^2 + (y_C - y_B)^2} = \sqrt{(5 - 2)^2 + (6 - (-6))^2} = \sqrt{3^2 + 12^2} = \sqrt{153} = 3\sqrt{17}.$$

Так как
$$CD=AB$$
 и $AD=BC$, то периметр $ABCD$
$$P_{ABCD}=2AB+2BC=10\sqrt{5}+6\sqrt{17};$$

3) по формулам деления отрезка в данном отношении $\lambda = \frac{3}{2},$ получим

$$x_N = \frac{x_B + \lambda x_A}{1 + \lambda} = \frac{2 + \frac{3}{2} \cdot (-3)}{1 + \frac{3}{2}} = \frac{\left(-\frac{5}{2}\right)}{\left(\frac{5}{2}\right)} = -1,$$

$$y_N = \frac{y_B + \lambda y_A}{1 + \lambda} = \frac{-6 + \frac{3}{2} \cdot 4}{1 + \frac{3}{2}} = \frac{0}{\left(\frac{5}{2}\right)} = 0.$$

Таким образом, точка N(-1,0).

Сделаем чертёж.

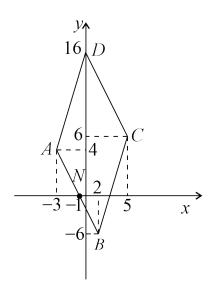
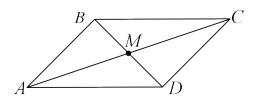


Рисунок 2.15

Otbet: 1) C(5,6), D(0,16). 2) $P_{ABCD} = 10\sqrt{5} + 6\sqrt{17}$. 3) N(-1,0).

Пример 2. В ромбе ABCD со стороной длины 5 известны две противолежащие вершины A(-3,-1) и C(1,7). Найдите:

- 1) координаты вершин B и D;
- 2) площадь ромба АВСО;
- 3) координаты точки N, одинаково удалённой от осей координат и от точки пересечения диагоналей ромба.



Решение. 1) так как стороны ромба равны, то точки B и D одинаково удалены от точек A и C. Пусть (x,y) – координаты точек, удалён-ных на расстоянии 5 от точек A и C. Тогда

Рисунок 2.16

$$\begin{cases} \sqrt{(x-(-3))^2 + (y-(-1))^2} &= 5, \\ \sqrt{(x-1)^2 + (y-7)^2} &= 5. \end{cases}$$

Возведём обе части каждого уравнения в квадрат

$$\begin{cases} (x+3))^2 + (y+1)^2 &= 25, \\ (x-1)^2 + (y-7)^2 &= 25. \end{cases}$$

Имеем

$$\begin{cases} x^2 + 6x + 9 + y^2 + 2y + 1 &= 25, \\ x^2 - 2x + 1 + y^2 - 14y + 49 &= 25 \end{cases}$$

или

$$\begin{cases} x^2 + y^2 + 6x + 2y &= 15, \\ x^2 + y^2 - 2x - 14y &= -25. \end{cases}$$

Вычитая из первого уравнения второе, получим

$$8x + 16y = 40$$
 или $x + 2y = 5$.

Подставляя x = 5 - 2y в первое уравнение последней системы, имеем

$$(5-2y)^{2} + y^{2} + 6(5-2y) + 2y = 15,$$

$$5y^{2} - 30y + 40 = 0,$$

$$y^{2} - 6y + 8 = 0.$$

Находим $y_1 = 2$, $x_1 = 5 - 2y_1 = 1$ и $y_2 = 4$, $x_2 = -3$. Таким образом, получили две точки B(1,2) и D(-3,4), удалённые на расстояние 5 от точек A и C;

2) площадь ромба $S_{ABCD} = 2S_{ABC}$. Площадь треугольника ABC найдём по формуле из теоремы 2.2

$$S_{ABC} = \frac{1}{2} |(x_B - x_A)(y_C - y_A) - (x_C - x_A)(y_B - y_A)| =$$

$$= \frac{1}{2} |(1 - (-3))(7 - (-1)) - (1 - (-3))(2 - (-1))| =$$

$$= \frac{1}{2} |4 \cdot 8 - 4 \cdot 3| = \frac{1}{2} \cdot 20 = 10.$$

Теперь $S_{ABCD} = 2 \cdot 10 = 20;$

3) так как диагонали ромба точки пересечения делятся пополам, то M — середина диагонали AC (рисунок 2.16). Тогда

$$x_M = \frac{x_A + x_C}{2} = \frac{-3+1}{2} = -1,$$

$$y_M = \frac{y_A + y_C}{2} = \frac{-1+7}{2} = 3.$$

Итак, точка M(-1,3).

Пусть N(x, y) – точка плоскости, одинаково удалённая от осей координат и от точки M (рисунок 2.17). Пусть N_1 и N_2 проекции точки N на оси Ox и Oy, соответственно. Тогда $N_1(x,0)$ и $N_2(0,y)$. По условию $MN = NN_1 = NN_2$. Находим $MN = \sqrt{(x+1)^2 + (y-3)^2}$, $NN = \sqrt{(x-x)^2 + (0-y)^2} = |y|$ проекции точки N на оси Ox и Oy, $NN_1 = \sqrt{(x-x)^2 + (0-v)^2} = |v|$ $NN_2 = \sqrt{(0-x)^2 + (y-y)^2} = |x|$. Из равенства $NN_1 = NN_2$ имеем равенство |y| = |x|. Тогда, $y^2 = x^2$, $y^2 - x^2 = 0$, (y - x)(y + x) = 0получаем y = x или y = -x.

При y = x из равенства $MN = NN_2$ имеем

$$\sqrt{(x+1)^2 + (x-3)^2} = |x|,$$

$$x^{2} + 2x + 1 + x^{2} - 6x + 9 = x^{2}$$

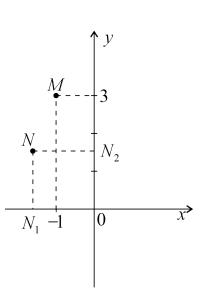


Рисунок 2.17

$$x^2 - 4x + 10 = 0$$
, $D = 16 - 40 < 0$

и решений нет.

Если y = -x, то из равенства $MN = NN_2$, получим $\sqrt{(x+1)^2 + (-x-3)^2} = |x|$,

$$x^{2} + 2x + 1 + x^{2} + 6x + 9 = x^{2},$$

$$x^{2} + 8x + 10 = 0, \quad D = 64 - 40 = 24 > 0,$$

$$x_{1} = \frac{-8 - \sqrt{24}}{2} = -4 - \sqrt{6}, \quad x_{2} = \frac{-8 + \sqrt{24}}{2} = -4 + \sqrt{6}.$$

Таким образом, мы нашли две точки, одинаково удалённые от осей координат и от точки пересечения диагоналей ромба: $K_1(-4-\sqrt{6},4+\sqrt{6})$ и $K_2(-4+\sqrt{6},4-\sqrt{6})$.

Ответ: 1) B(1,2), D(-3,4). 2) $S_{ABCD}=20$. 3) $K_1(-4-\sqrt{6},4+\sqrt{6})$ и $K_2(-4+\sqrt{6},4-\sqrt{6})$.

Пример 3. Вершинами треугольника ABC являются точки A(3,-1), B(6,3), C(-5,5). Найдите:

- 1) длину медианы BM;
- 2) точку пересечения медиан;
- 3) точку F на оси Ox такую, чтобы площадь треугольника ABF равнялась 8.

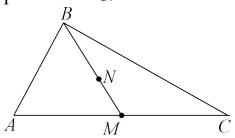


Рисунок 2.18

Решение. 1) пусть M — середина отрезка AC (рисунок 2.18). Тогда

$$x_M = \frac{x_A + x_C}{2} = \frac{3 - 5}{2} = -1,$$

$$y_M = \frac{y_A + y_C}{2} = \frac{-1+5}{2} = 2.$$

Таким образом, M(-1,2). Находим длину медианы BM как расстояние между точками B и M:

$$BM = \sqrt{(-1-6)^2 + (2-3)^2} = \sqrt{49+1} = \sqrt{50} = 5\sqrt{2};$$

2) так как медианы треугольника пересекаются в одной точке и этой точкой делятся в отношении 2:1, считая от вершины треугольника, то точка N пересечения медиан (рисунок 2.18) делит отрезок BM в отношении $\lambda = 2$. Тогда

$$x_N = \frac{x_B + \lambda x_M}{1 + \lambda} = \frac{6 + 2 \cdot (-1)}{1 + 2} = \frac{6 - 2}{3} = \frac{4}{3},$$
$$y_N = \frac{y_B + \lambda y_M}{1 + \lambda} = \frac{3 + 2 \cdot 2}{1 + 2} = \frac{3 + 4}{3} = \frac{7}{3}.$$

Таким образом, точка пересечения медиан треугольника ABC есть точка $N\left(\frac{4}{3},\frac{7}{3}\right)$;

3) так как точка F принадлежат оси Ox, то F(x,0). По условию площадь треугольника ABF равна 8, откуда имеем

$$\frac{1}{2} |(x_F - x_A)(y_B - y_A) - (x_B - x_A)(y_F - y_A)| = 8,$$

$$|(x - 3)(3 + 1) - (6 - 3)(0 + 1)| = 16,$$

$$|4x - 12 - 3| = 16, \quad |4x - 15| = 16,$$

откуда 4x-15=16 или 4x-15=-16. Тогда $x=\frac{31}{4}$ или $x=-\frac{1}{4}$. Таким образом, существует две точки, удовлетворяющие условию задачи $F_1\left(\frac{31}{4},0\right)$ и $F_2=\left(-\frac{1}{4},0\right)$.

Otbet: 1)
$$BM = 5\sqrt{2}$$
. 2) $N\left(\frac{4}{3}, \frac{7}{3}\right)$. 3) $F_1\left(\frac{31}{4}, 0\right)$, $F_2 = \left(-\frac{1}{4}, 0\right)$.

Пример 4. Даны вершины треугольника ABC: A(-2,4), B(3,1), C(10,7). Найдите:

- 1) уравнение медианы AM;
- 2) уравнение высоты CH;
- 3) длину высоты CH;
- 4) уравнение прямой, проходящей через точку C и параллельной AB;
 - 5) величину угла между прямыми AB и AC.

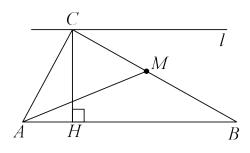


Рисунок 2.19

Решение. 1) так как M есть середина отрезка BC (рисунок 2.19), то

$$x_M = \frac{x_B + x_C}{2} = \frac{3+10}{2} = \frac{13}{2},$$

$$y_M = \frac{y_B + y_C}{2} = \frac{1+7}{2} = 4.$$

Таким образом, точка $M\left(\frac{13}{2},4\right)$. Уравнение медианы AM запишем с

помощью уравнения прямой по двум точкам A(-2,4) и $M\left(\frac{13}{2},4\right)$:

$$\frac{x-x_A}{x_M-x_A} = \frac{y-y_A}{y_M-y_A},$$

$$\frac{x - (-2)}{\frac{13}{2} - (-2)} = \frac{y - 4}{4 - 4},$$

$$\frac{x+2}{\left(\frac{17}{2}\right)} = \frac{y-4}{0},$$

$$0 \cdot (x+2) = \frac{17}{2}(y-4),$$

откуда

$$y - 4 = 0$$
.

Таким образом, уравнением медианы AM является уравнение y = 4;

2) так как высота CH перпендикулярна стороне AB треугольника ABC, то воспользуемся условием перпендикулярности прямых CH и AB: $1+k_{AB}\cdot k_{CH}=0$. Найдём угловой коэффициент прямой AB, для чего запишем уравнение прямой AB по двум точкам A(-2,4) и B(3,1) и преобразуем его в уравнение с угловым коэффициентом

$$\frac{x - x_A}{x_B - x_A} = \frac{y - y_A}{y_B - y_A}, \quad \frac{x - (-2)}{3 - (-2)} = \frac{y - 4}{1 - 4},$$
$$\frac{x + 2}{5} = \frac{y - 4}{-3}, \quad y - 4 = -\frac{3}{5}(x + 2),$$

откуда $y = -\frac{3}{5}x + \frac{14}{5}$ и $k_{AB} = -\frac{3}{5}$. Тогда

$$1 + \left(-\frac{3}{5}\right) k_{CH} = 0$$
 и $k_{CH} = \frac{3}{5}$.

По точке C(10,7), принадлежащей высоте CH, и угловому коэффициенту $k_{CH}=\frac{5}{3}$ запишем уравнение высоты CH:

$$y - y_C = k_{CH}(x - x_C), \quad y - 7 = \frac{5}{3}(x - 10),$$

 $3y - 21 = 5x - 50$ и $5x - 3y - 29 = 0$

есть общее уравнение высоты CH;

3) длина высоты CH есть расстояние от точки C(10,7) до прямой AB. Из 2) уравнение прямой AB имеет вид $y = -\frac{3}{5}x + \frac{14}{5}$. Запишем его в виде общего уравнения прямой:

$$3x + 5y - 14 = 0$$
.

Используя формулы расстояния от точки до прямой, имеем

$$CH = \frac{|3 \cdot x_C + 5 \cdot y_C - 14|}{\sqrt{3^2 + 5^2}} = \frac{|3 \cdot 10 + 5 \cdot 7 - 14|}{\sqrt{9 + 25}} = \frac{51}{\sqrt{34}};$$

4) пусть прямая l проходит через точку C и параллельна прямой AB (рисунок 2.19). Из условия параллельности прямых l и AB имеем $k_l = k_{AB} = -\frac{3}{5}$. Запишем уравнение прямой l по точке C(10,7) и угловому коэффициенту $k_l = -\frac{3}{5}$:

$$y - y_C = k_l(x - x_C), \quad y - 7 = -\frac{3}{5}(x - 10),$$

 $5y - 35 = -3x + 30$ и $3x + 5y - 75 = 0$

есть общее уравнение прямой l;

5) пусть ϕ — угол между прямыми AB и AC. Тогда

$$tg\phi = \left| \frac{k_{AB} - k_{AC}}{1 + k_{AB} \cdot k_{AC}} \right|.$$

Из пункта 2) $k_{AB} = -\frac{3}{5}$. Найдём угловой коэффициент k_{AC} . Для этого составим уравнение прямой AC по двум точкам A(-2,4), C(10,7) и преобразуем его к уравнению с угловым коэффициентом:

$$\frac{x - x_A}{x_C - x_A} = \frac{y - y_A}{y_C - y_A}, \quad \frac{x - (-2)}{10 - (-2)} = \frac{y - 4}{7 - 4},$$

$$\frac{x + 2}{12} = \frac{y - 4}{3}, \quad y - 4 = \frac{3}{12}(x + 2),$$

$$y = \frac{1}{4}(x + 2) + 4, \quad y = \frac{1}{4}x + \frac{9}{2},$$

откуда угловой коэффициент $k_{AC} = \frac{1}{4}$. Теперь

$$tg\phi = \left| \frac{-\frac{3}{5} - \frac{1}{4}}{1 + \left(-\frac{3}{5}\right) \cdot \frac{1}{4}} \right| = \left| \frac{\left(-\frac{17}{20}\right)}{\left(\frac{17}{20}\right)} \right| = 1.$$

Тогда $\varphi = arctg1 = 45^{\circ}$.

Other: 1)
$$AM: y = 4$$
. 2) $CH: 5x - 3y - 29 = 0$. 3) $CH = \frac{51}{\sqrt{34}}$.
4) $3x + 5y - 75 = 0$. 5) 45° .

Пример 5. Найдите точку, симметричную точке N(4,5) относительно прямой l, заданной уравнением 8x + 6y - 37 = 0.

Решение. Очевидно, что точка N(4,5) не принадлежит прямой l.

Пусть точка M(x,y) — точка, симметричная точке N относительно заданной прямой l. Тогда точка M лежит на прямой l_1 , которая проходит через точку N и перпендикулярна прямой l (рисунок 2.20). При этом точка A пересечения прямых l и l_1 является серединой отрезка MN.

Так как прямые l и $l_{\rm l}$ перпендикулярны, то $1+k_{l}\cdot k_{l_{\rm l}}=0$. Найдём угловой коэффициент k_{l} .

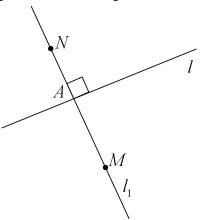


Рисунок 2.20

$$8x + 6y - 37 = 0$$
,

$$y = -\frac{4}{3} + \frac{37}{6}$$

откуда $k_l = -\frac{4}{3}$. Тогда из равенства

$$1 + \left(-\frac{4}{3}\right)k_{l_1} = 0$$

получим $k_{l_1}=\frac{3}{4}$. Составим уравнение прямой l по точке N(4,5) и угловому коэффициенту $k_{l_1}=\frac{3}{4}$:

$$y - y_N = k_{l_1}(x - x_N),$$

$$y-5=\frac{3}{4}(x-4)$$
, $y=\frac{3}{4}x+2$.

Находим координаты точки A как решение системы уравнений прямых l и l_1

$$\begin{cases} y = -\frac{4}{3}x + \frac{37}{6}, \\ y = \frac{3}{4}x + 2. \end{cases}$$

Приравнивая правые части уравнения системы, получим

$$-\frac{4}{3}x + \frac{37}{6} = \frac{3}{4}x + 2,$$
$$-16x + 74 = 9x + 24,$$
$$-25x = -50, \quad x = 2.$$

Подставляя x = 2 во второе уравнение системы, найдём

$$y = \frac{3}{4} \cdot 2 + 2 = \frac{3}{2} + 2 = \frac{7}{2}$$
.

Итак, точка $A\left(2,\frac{7}{2}\right)$.

Поскольку точка A является серединой отрезка MN, то

$$x_A = \frac{x_M + x_N}{2}, \quad y_A = \frac{y_M + y_N}{2},$$
 $2 = \frac{x_M + 4}{2}, \quad \frac{7}{2} = \frac{y_M + 5}{2},$
 $x_M = 0, \quad y_M = 2.$

Таким образом, искомая точка M(0,2).

Ответ: M(0,2).

2.3 Индивидуальные задания

- 1 В параллелограмме ABCD известны вершины A, B и точка пересечения диагоналей M. Найдите:
 - 1) координаты вершин C и D;
 - 2) периметр треугольника АВД;
- 3) координаты точки N, которая делит отрезок AD в отношении λ .

Сделайте чертёж в декартовой системе координат.

1.1
$$A(-3,-2)$$
, $B(1,4)$, $M(2,-1)$, $\lambda = \frac{1}{2}$;

1.2
$$A(-3,-1)$$
, $B(-2,7)$, $M(2,1)$, $\lambda = 2$;

1.3
$$A(2,-5)$$
, $B(-1,4)$, $M(4,1)$, $\lambda = \frac{1}{3}$;

1.4
$$A(3,-2)$$
, $B(-1,5)$, $M(-3,-1)$, $\lambda = 3$;

1.5
$$A(-1,4)$$
, $B(8,3)$, $M(1,-1)$, $\lambda = \frac{1}{2}$;

1.6
$$A(1,-3)$$
, $B(4,5)$, $M(0,2)$, $\lambda = \frac{3}{2}$;

1.7
$$A(4,-1)$$
, $B(-2,6)$, $M(-3,1)$, $\lambda = 2$;

1.8
$$A(-5,2)$$
, $B(0,-4)$, $M(2,1)$, $\lambda = \frac{3}{2}$;

1.9
$$A(0,-3)$$
, $B(2,6)$, $M(-2,2)$, $\lambda = \frac{1}{3}$;

1.10
$$A(-4,2)$$
, $B(1,-3)$, $M(2,1)$, $\lambda = 3$;

1.11
$$A(-1,3)$$
, $B(4,2)$, $M(0,-2)$, $\lambda = \frac{1}{2}$;

1.12
$$A(2,-3)$$
, $B(7,1)$, $M(1,2)$, $\lambda = \frac{3}{2}$;

1.13
$$A(-3,0)$$
, $B(1,4)$, $M(3,-1)$, $\lambda = 2$;

1.14
$$A(2,-6)$$
, $B(-4,3)$, $M(4,0)$, $\lambda = \frac{1}{3}$;

1.15
$$A(-1,7)$$
, $B(4,-1)$, $M(-2,1)$, $\lambda = 3$.

- 2. В ромбе ABCD со стороной длины a известны две противолежащие вершины B и D. Найдите:
 - 1) координаты вершин A и C;
 - 2) площадь треугольника ABC;
- 3) координаты точки N, одинаково удалённой от осей координат и от точки B.

2.1
$$a = 5$$
, $B(2,-3)$, $D(1,4)$;

2.2
$$a = 7$$
, $B(3,-2)$, $D(-4,5)$;

2.3
$$a = 13$$
, $B(-1,4)$, $D(16,-13)$;

2.4
$$a = 13$$
, $B(-4,5)$, $D(13,-12)$;

2.5
$$a = 5$$
, $B(5,1)$, $D(-2,0)$;

2.6
$$a = 7$$
, $B(3,5)$, $D(-4,-2)$;

- 2.7 a = 13, B(4,-8), D(11,-1);
- 2.8 a = 13, B(1,-7), D(8,0);
- 2.9 a = 5, B(-1,1), D(0,2);
- 2.10 a = 7, B(-2,-4), D(5,3);
- 2.11 a = 13, B(-12,13), D(5,-4);
- 2.12 a = 13, B(-13,16), D(4,-1);
- 2.13 a = 5, B(-4,5), D(3,-2);
- 2.14 a = 7, B(5,-4), D(-2,3);
- 2.15 a = 13, B(-1,11), D(-8,4).
- 3. Вершинами треугольника являются точки А, В, С. Найдите:
- 1) длину медианы AM;
- 2) точку пересечения медиан треугольника ABC;
- 3) точку N, на оси Oy такую, чтобы площадь треугольника BCN была равна 5.
 - 3.1 A(2,5), B(-3,1), C(7,-3);
 - 3.2 A(-5,1), B(-2,8), C(6,-2);
 - 3.3 A(-1,-4), B(4,-3), C(2,-5);
 - 3.4 A(1,-3), B(-1,7), C(3,-3);
 - $3.5 \ A(3,6), \ B(5,-4), \ C(-3,8);$
 - 3.6 A(0,-4), B(-4,6), C(-2,-4);
 - 3.7 A(3,0), B(-1,1), C(5,-1);
 - 3.8 A(-2,1), B(7,-3), C(-3,5);
 - 3.9 A(-3,8), B(2,-3), C(4,-1);
 - 3.10 A(4,2), B(-5,2), C(1,-6);
 - 3.11 A(0,-3), B(1,-3), C(4,7);
 - 3.12 A(1,1), B(-3,3), C(1,-5);
 - 3.13 A(6,-1), B(2,-4), C(-4,2);
 - 3.14 A(-4,3), B(2,0), C(0,-4);
 - 3.15 A(2,-1), B(4,-5), C(-2,-3).
- 4. Дан треугольник ABC с вершинами A, B, C из задания 3. Найдите:
 - 1) уравнение медианы CK;
 - 2) уравнение высоты BH;
 - 3) длину высоты BH;
 - 4) уравнение прямой, проходящий через точку A и параллельной BC;
 - 5) величину угла между прямыми СА и СВ.

- 5. Найдите точку, симметричную точке A относительно прямой l, заданной общим уравнением.
 - 5.1 A(18,10), l:7x+6y-16=0;
 - 5.2 A(0,14), l: x+4y-5=0;
 - 5.3 A(5,0), l:3x-2y+11=0;
 - 5.4 A(2,-3), l: y+2x-6=0;
 - 5.5 A(2,3), l: x-y+3=0;
 - 5.6 A(5,-1), l:4y+3x+14=0;
 - 5.7 A(-11,-1), l:8x+7y-18=0;
 - 5.8 A(-10,-14), l:-12y-14x+32=0;
 - 5.9 A(-6,-10), l:-8y-2x+10=0;
 - 5.10 A(-7,8), l:4y-6x-22=0;
 - 5.11 A(6,-1), l:-6x-3y+18=0;
 - 5.12 A(0,5), l:2y-2x-6=0;
 - 5.13 A(-1,-9), l:6x+8y+28=0;
 - 5.14 A(5,13), l:-14x-16y+36=0;
 - 5.15 A(-9,6), l:7x+2y-2=0.

Производственно-практическое издание

Бузланов Александр Васильевич, **Близнец** Игорь Васильевич, **Бородич** Руслан Викторович, **Бородич** Елена Николаевна

АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ: ВЕКТОРЫ, ПРЯМАЯ НА ПЛОСКОСТИ

Практическое пособие

Редактор Е. С. Балашова Корректор В. В. Калугина

Подписано в печать 10.05.2024. Формат 60х84 1/16. Бумага офсетная. Ризография. Усл. печ. л. 2,56. Уч.-изд. л. 2,80. Тираж 10 экз. Заказ 283.

Издатель и полиграфическое исполнение: учреждение образования «Гомельский государственный университет имени Франциска Скорины». Специальное разрешение (лицензия) № 02330 / 450 от 18.12.2013 г. Свидетельство о государственной регистрации издателя, изготовителя, распространителя печатных изданий в качестве: издателя печатных изданий № 1/87 от 18.11.2013 г.; распространителя печатных изданий № 3/1452 от 17.04.2017 г. Ул. Советская, 104, 246028, Гомель.