
Journal of Physics: Conference
Series

PAPER • OPEN ACCESS

3D-modeling of Augmented Reality objects using
Shi-Tomasi corner detection algorithms
To cite this article: O M Demidenko et al 2021 J. Phys.: Conf. Ser. 2091 012058

View the article online for updates and enhancements.

You may also like
Solvent Reorganization Energy and
Electronic Coupling for Intramolecular
Electron Transfer in Biphenyl-Acceptor
Anion Radicals
Jing-bo Wang, Jian-yi Ma, Xiang-yuan Li
et al.

-

Transition Dipole, Charge Transfer, and
Electron-hole Coherence in Two-photon
Absorption: Visualizations with Two
Dimensional Site and Three Dimensional
Cube Representations
Yuan-zuo Li, Wen-qin Zhang, Xiao-hong
Zhao et al.

-

Pole-piece position distance identification
of cylindrical lithium-ion battery through x-
ray testing technology
Yapeng Wu, Min Yang, Yishuai Wang et
al.

-

This content was downloaded from IP address 37.17.74.99 on 13/06/2024 at 10:39

https://doi.org/10.1088/1742-6596/2091/1/012058
https://iopscience.iop.org/article/10.1088/1674-0068/21/01/45-54
https://iopscience.iop.org/article/10.1088/1674-0068/21/01/45-54
https://iopscience.iop.org/article/10.1088/1674-0068/21/01/45-54
https://iopscience.iop.org/article/10.1088/1674-0068/21/01/45-54
https://iopscience.iop.org/article/10.1088/1674-0068/22/05/529-534
https://iopscience.iop.org/article/10.1088/1674-0068/22/05/529-534
https://iopscience.iop.org/article/10.1088/1674-0068/22/05/529-534
https://iopscience.iop.org/article/10.1088/1674-0068/22/05/529-534
https://iopscience.iop.org/article/10.1088/1674-0068/22/05/529-534
https://iopscience.iop.org/article/10.1088/1361-6501/abbdf1
https://iopscience.iop.org/article/10.1088/1361-6501/abbdf1
https://iopscience.iop.org/article/10.1088/1361-6501/abbdf1
https://pagead2.googlesyndication.com/pcs/click?xai=AKAOjsut-d2L_O1LwgE6WNoqaO7lXYBxk62bhCamr-eBPL4oaiKOH-wX23mn4aWK5DJijAkuZzcAsQXtEC2P7kwZ8YDXRgHKuZKHDX4wXXM96AHLFaSp8yIb3GLYcaDeyX20thbVbXODEk3Uq_XuRY6lZZeYx9UJ-JQQHwxzDpBwxa7QovYJFmZF1l1NbExCMFdfPwppjLxhmXJhvhoNnCYohqzpmyrbKatWS6YtJd3Y_hJ2LpE4D741Hzy0LcCXIkVkgyd2iT1zTXpUrsAUoFrkNP-vmoNaXaA7JEAopyPNfGaXONH1_xhHSd5AxPtXgBQERnND6dKr6wpir6SzH0zJyOHIRNGPW9P1&sig=Cg0ArKJSzBft7xX75VNt&fbs_aeid=%5Bgw_fbsaeid%5D&adurl=https://iopscience.iop.org/partner/ecs%3Futm_source%3DIOP%26utm_medium%3Ddigital%26utm_campaign%3DIOP_tia%26utm_id%3DIOP%2BTIA

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

ICCT 2021
Journal of Physics: Conference Series 2091 (2021) 012058

IOP Publishing
doi:10.1088/1742-6596/2091/1/012058

1

3D-modeling of Augmented Reality objects using Shi-Tomasi

corner detection algorithms

O M Demidenko, N A Aksionova, A V Varuyeu and A I Kucharav

F. Skorina Gomel State University 104 Sovetskaya street, Gomel 246024, Belarus

Abstract. This article covers development of the Python-based software module for Blender

3D, as well as it covers research of Shi-Tomasi corner detection algorithm using the

developer’s construction documents. The corners detected may be used for further three -

dimensional modelling, replanting not requiring adjustment of the construction documents, or

may be used for retrieval of the accurate data.

1. Introduction

Blender 3D uses “GoodFeaturesToTrack” modelling support module derived from the elaborated
utilities library of BluePrint SDK to facilitate the process of 3D-modelling. The basis of the module
lies in the function of corner detection of developer’s layouts for further modelling of architectural
designs, buildings, houses, apartments, and etc. This process provides for facilitation of development
of a three-dimensional model, ensures introduction of initial adjustments in the further three -
dimensional model not requiring changes in the construction documents themselves. One further
peculiarity of this product is that the final layouts serve as the AR marks, which are used for
implementation of the mobile application for viewing the prepared three-dimensional model.

2. Shi-Tomasi algorithm
This algorithm is used for search for and detection of view angles, which are to be in the grayscale.
View angles are mainly identified as regions with large changes in the gradient intensity in all possible
dimensions and directions. When analyzing a digital image, variation in pixel light intensity (x,y) is
suggested to be measured by shifting the square window with the center in (x,y) by one pixel in each
of eight directions (up, down, rightwards, leftwards and in four diagonal directions). The window size
is often selected equal to 3x3, 5x5 or 9x9 pixels. Thus, for each of the directions (u,v), where

() () () () () () () () 1,1,1,0,1,1,0,1,1,0,1,1,0,1, −−−−−u .

The light intensity variation is calculated as follows:

() () ()()

++−++++=
ba

u byaxIbyauxIyxV
,

2

, ,,, ,

where I(x,y) is the pixel light intensity (x,y) of the original image.
Window W for Image I (usually its size is selected equal to 5x5 pixels, but it may be selected

different depending on the image size) with the center in point (x,y), as well as the shift of the window
by (u,v) (figure 1) are considered below.

ICCT 2021
Journal of Physics: Conference Series 2091 (2021) 012058

IOP Publishing
doi:10.1088/1742-6596/2091/1/012058

2

Figure 1. Example of the viewed window W and its shift (u,v).

Then the weighted total of the squared difference between window W and window W shifted by

(u,v) (i.e. change in the vicinity of point (x,y) after shift by (u,v)) is:

() () () ()() () () ()()
()()

−−++=
Wu Wu

yx yxIuyxIyxwyxIyuxIyxwuE

, ,

22
,,,,,,, ,

where W(x,y) is the weight function (Gaussian function or binary window is usually used).
Function E (u,v) needs to be maximized for corners detection. To determine the derivatives

Taylor’s theorem is applied to the above equation and, by using certain mathematical steps, the bellow
is received:

()

u
MuuE , ,

where M is the autocorrelation matrix:

()
()

=

2

2

,

,
yyx

yxx

Wu III

III
uwM

 ,

where Iх and Iy are the derivatives in the directions.
The corner is characterized with large changes in function E(x,y) with respect to numerous

directions (x,y), which is equivalent high in module proper values of matrix M. The arrangement of
proper values is demonstrated in figure 2.

Figure 2. Changes in the values of function E (x,y) at corner detection.

Since direct calculation of proper values is demanding regarding the resources, the following

response measure is suggested:

()21,min =R .

ICCT 2021
Journal of Physics: Conference Series 2091 (2021) 012058

IOP Publishing
doi:10.1088/1742-6596/2091/1/012058

3

Thus, the values of such proper values determine, if the region is a corner, a border or a plane by
the following criteria:

1. When | R | is small, which occurs, when λ1 and λ2 are small, the region is a plane.
2. When R < 0 at λ1 >> λ2 or vice versa, the region is a border.
3. When R is high at high λ1 and λ2 and λ1~λ2, the region is a corner.
If the value is above the predetermined threshold, then the point is deemed to be a corner and thus

to be a point of interest. Figure 3 demonstrates that only when λ1 and λ2 are above the minimum value
λmin, the point is deemed to be a corner (green region).

Figure 3. Determination of the values at corner detection.

3. Using OpenCV library

In order to make computer vision easier to use, OpenCV library was developed. This library contains
functions that allows to process an image with a set of operations, without need to keep in mind of
how images are stored in memory. Examples of these processes: get gray scale version of the image,
resize an reposition part of images, filter images by colors, detect contours, and many other. Using this
library enables a programmer to build a computer vision algorithm with ease. Because of library itself
is written in C++, it is extremely efficient, but it doesn't require a programmer to use C++ language, as
there are bindings to other languages. Bindings are libraries that delegate function calls from one
programming language to another.

One of possibilities that this library provides is corner detection. It is introduced as two functions:
“Harris corner detention” and “Shi-Tomasi feature tracker”. By the simplest possible definition, a
corner is a point in space (two-dimensional in our case), where two edges are joined.

Harris corner detection algorithm is implemented as mathematical functions, that can be explained
on high level. First, algorithm calculates a function which is able to determine in which direction the
uniqueness of the window changes the most. After that, algorithm finds direction in which it s hould
move the window to maximize uniqueness difference. It also find direction in which uniqueness
changes the least. Having that, algorithm calculates, how much uniqueness change in both of these two
directions.

At last, algorithm has to determine how different these values are, and how big they are, at the
same time. When both values are small, this means that image almost doesn't change in any direction,
which indicates a flat region. When one of values is much greater than the other, it means that by
moving window in one direction changes uniqueness a lot, while moving in second direction doesn’t
change uniqueness of the window at all, which, in turn, indicates an edge: moving along the edge
doesn’t change uniqueness, moving across the edge changes uniqueness a lot. When both values are
big, it indicates that moving in both of these directions effectively changes uniqueness of the image,
which indicates a corner.

In order to calculate difference between these two values while also considering their size ,
algorithm must provide a scoring function, which returns a number denoting how much a certain part
of an image looks like a corner. This is where Harris and Shi-Tomasi algorithms differ.

ICCT 2021
Journal of Physics: Conference Series 2091 (2021) 012058

IOP Publishing
doi:10.1088/1742-6596/2091/1/012058

4

Shi-Tomasi algorithm suggests a different scoring function that is not that precise, but is a good
approximation and is calculated much faster on computer processors. Speed is important because this
function needs to be calculated for each pixel on the image. Function itself is pretty simple: it just
takes the lowest of two values (figure 4):

Figure 4. Plot for Shi-Tomasi algorithm corner scoring function.

Obviously, some information is lost due to such approximation. For example, values that
correspond to flat regions are not that well defined now, and mixed along with values that correspond
to edge regions. But because this algorithm is aimed on corner detection, such inaccuracy can be
omitted.

In OpenCV library, Shi-Tomasi corner detection algorithm is implemented and wrapped into
“GoodFeaturesToTrack” function. First function parameter is an object of a gray scale image. This
function adds some logic to the algorithm. First of all, it picks N best corners detected on the image.
Amount of desired corners to be detected is supplied as a second function parameter. Another words, it
converts image matrix to a list of coordinates. Second, it applies score threshold value to remove worst
corners from the list. Threshold value is supplied as a third function parameter. Third, this function is
capable of removing corners that are too close to each other, and this value is supplied as a f ourth
function parameter.

Before image is processed by corner detection algorithm, it must be converted to gray scale color
space. This is also done by one of the OpenCV function, which is capable of converting images
between color spaces, considering gamma conversion and color intensities.

4. “GoodFeaturesToTrack” module operation

Modelling assistance is implemented in form of addon for Blender 3D. Belnder 3D provides a python
library “Blender Python” (“bpy” for short). This library is imported into python code and enables a
developer to interact with all Blender functions programmatically.

In order to create an addon, developer must implement a specific addon interface that is provied by
bpy. This implementation should provide Blender with information about addon’s name, description,
type, author, and a functions to execute. In return, blender provides us a context object as a function
parameter, which represesnts current state of everything in this Blender session. If these requirements
are not satisfied, Blender refuses to import a script as an addon. After creating 3D corner points, the
program tries where the walls of the building are.

class ImportImageWithCorners(bpy.types.Operator):
 """Script to track corners on a reference image""" # Tooltip
 bl_idname = "object.track_image_corners"
 bl_label = "Track corners"
 bl_options = {'REGISTER', 'UNDO'}
First step is to check if scene is set up properly for this addon to be used. Addon assumes that scene

has an imported reference image, and this image is selected. Addon executes a couple of checks:

ICCT 2021
Journal of Physics: Conference Series 2091 (2021) 012058

IOP Publishing
doi:10.1088/1742-6596/2091/1/012058

5

whether there’s a selected object, whether this object is a reference object or not, does this object has
a reference to image, and whether this image is imported correctly. Reference objects in Blender 3D
are implemented as extended “Empty” objects. Empty object in blender is something that takes place
in 3D space, but doesn’t represent a 3D model. Image reference is one of possible types of empty
objects. Even though that selected object might me an image, it might not have an actual image
attached to it, so this must also be checked.

def execute(self, context):
 empty = context.active_object
 if not empty:
 self.report({"WARNING"}, "Nothing is selected!")
 return {"CANCELLED"}
 if empty.type != 'EMPTY':
 self.report({"WARNING"}, "This object is not an empty!")
 return {"CANCELLED"}
 if empty.empty_display_type != 'IMAGE':
 self.report({"WARNING"}, "This empty object is not an image!")
 return {"CANCELLED"}
 try:
 filepath = empty.data.filepath
 dimensions = empty.data.size
 except AttributeError:
 self.report({"WARNING"}, "Object has no img ref!")
 return {"CANCELLED"}
Second step, addon gets filepath to the image and loads it into the OpenCV library. It converts this

image to greyscale, and executes corner detection function. This function recieves three parameters:
number of corners, quality of corners and minimal distance between corners.

img = cv2.imread(filepath)
gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
corners = cv2.goodFeaturesToTrack(gray,
self.corners, self.quality, self.distance)
if corners is None or not np.size(corners): return {'FINISHED'}
These parameters are also declared as addon’s properties, so when a user executes the fu nction,

he’s able to alter these parameters by entering values into the appeared dialog. Each value has either
decimal or floating point type, maximum, minimum and step values:

corners: bpy.props.IntProperty(
 name="Number of corners",
 min=1, default=25
)
 quality: bpy.props.FloatProperty(
 name="Quality of corners",
 min=0.00001, max=1, default=0.04
)
 distance: bpy.props.IntProperty(
 name="Distance between corners (px)",
 min=1, default=10
)
When this addon is used, the following dialog appears to enable user to adjust values used f or

corner detection (figure 5):

ICCT 2021
Journal of Physics: Conference Series 2091 (2021) 012058

IOP Publishing
doi:10.1088/1742-6596/2091/1/012058

6

Figure 5. User interface for corner detection.

Corner detection function returns an array of coordinates, that represent corners in space of image’s
pixel coordinates, having point of origin at the top right corner. In Blender 3D space, f or X and Y
coordinates, in metric, and point of origin is historically at the bottom right corner. This means that
corner coordinates must be mapped into the Blender space.

In order to do that, size of the reference image must be known. However, Blender 3D API only
provides one dimensional size of the reference image. Through means of documentation and
experiments, image was discovered to have its longest dimension align with the size of the dimension
image. For example, when a square image is loaded, it’s size is set to 5 by default, meaning at the
image will be 5 units long and 5 units high, regardless of its resolution. If the image’s width is two
times larger than it’s height, then in 3D space image will be 5 units wide and 2.5 units high. This
means we will have to determine the bigger dimension of the image.

It should be also kept in mind that by default, image has offset to its origin point, 50% by height
and 50% by width, making image’s point of origin in it’s center. This offset can also be read f rom
Blender API.

The formula has the following form:

𝒇(𝒙) =
(𝒙 𝒅𝑿⁄ +𝑶𝑿) ⋅ 𝑺 ⋅ 𝒅𝑿

𝒎𝒂𝒙(𝒅𝑿,𝒅𝒀)

𝒇(𝒚) =
(𝒚 𝒅𝒀⁄ +𝑶𝒀) ⋅ 𝑺 ⋅ 𝒅𝒀

𝒎𝒂𝒙(𝒅𝑿,𝒅𝒀)

In this formula, x and y are input coordinates, dX and dY are image dimensions in pixels, OX and
OY is image offset in percent, S is size of the reference image. This formula maps into the f ollowing
code, considering that additional dimensions provided by corner detection function should be stripped,
and than each point should also have a zeroed Z coordinates as we map points from 2D space to 3D
space:

e_size = empty.empty_display_size
offset = empty.empty_image_offset
dim = dimensions
f = lambda x: (x / dim + offset) * e_size * dim / np.max(dim)
corners = np.apply_along_axis(, 1, corners)
corners = np.append(corners * [1,-1], np.zeros((len(corners), 1)), axis=1)
Corners are now mapped into 3D space. However, these coordinates are local, meaning that

transformations like moving, rotating or scaling, are not applied yet. However, this can be achieved by
assigning a parent object to the created object. Blender 3D will automatically apply all transformations
of the parent image to the created object.

During object creation, a couple of utility operations must be executed: mesh should be created and
assigned to the new object, the new object mast be put into the main and default collection of objects,
object must be selected by plugin convention:

mesh = bpy.data.meshes.new(mesh_name)
obj = bpy.data.objects.new(mesh.name, mesh)
col = empty.users_collection[0]
col.objects.link(obj)
obj.select_set(True)
bpy.context.view_layer.objects.active = obj

ICCT 2021
Journal of Physics: Conference Series 2091 (2021) 012058

IOP Publishing
doi:10.1088/1742-6596/2091/1/012058

7

mesh.from_pydata(corners, [], [])
obj.parent = empty
return {'FINISHED'}
When object is created, parent object is assigned, and corners are imported into the mesh. Because

we do not create edges or faces based on the vertices, empty arrays are supplied as arguments. At last,
addon must return an exit code indicating that addon execution has gone successfully.

Due to current addon implementation, each time user changes one of the parameters, addon’s main
function is executed. It means that while user changes the slide input, this function is executed
continually which can cause performance issues as the addon uses some performance heavy operations
like reading file from disk into video memory. In order to improve addon performance, image should
only be read once by introducing lazy static space for storing reference to this image, but this lies ot of
scope of this project.

First, the user specifies the number of corners to be detected. Then the user specifies the quality
level from 0 to 1, which means the minimum quality of the corner, all the corners bellow which are
rejected. The minimum distance between the corners is ensured by Euclidean space. Upon
specification of such information, the function detects corners on the image. All corners below the
quality level are rejected, the function then sorts the remaining corners by quality f rom highest to
lowest.

The function then takes the first strongest corner, discards all the corners in the vicinity within the
range of the minimal distance and returns N strongest corners. Thereafter, the software places for each
detected corner a primitive point, the vertex, in the three-dimensional space, which is within the
specified building layout, and visually straightens with the layout corners. The user shall use it as a
basement for grounding the individual building model.

Once three-dimensional corner points are created, the software tries to determine, where the
building walls are. If the space on the line between two points is of dark color, the space is deemed to
have the wall. The software creates borders between the points, where necessary (figure 6). Now, the
user may interact with the created model: specify the thickness of all or of certain walls using
modifiers, squeeze the building in vertical direction to reach the required height, place windows and
door frames using logical operators or repeat processes for each building level. Thus, the exact model
of any complex building may be created in less than a day, if the user has access to the layout diagram.

Figure 6. Results of operation of “GoodFeaturesToTrack” module in Blender 3D.

ICCT 2021
Journal of Physics: Conference Series 2091 (2021) 012058

IOP Publishing
doi:10.1088/1742-6596/2091/1/012058

8

5. Conclusions

The conducted research allowed for design and development of the software module for performance
of three-dimensional modelling in Blender 3D based on Shi-Tomasi corner detection algorithm.
“GoodFeaturesToTrack” module is included in the developed BluePrint SDK and is one of the main
modules of the mobile application of augmented reality.

Acknowledgments

The reported study was funded by State Research Programs Belarus, project number 20212185.

References

[1] Stefan Leutenegger, Margarita Chli and Roland Siegwart 2011 BRISK: Binary Robust Invariant
Scalable Keypoints ICCV pp 2548-55

[2] Harris C and Stephens M A combined corner and edge detector 1988 In Fourth Alvey Vision
Conference, Manchester, UK pp 147-151

[3] Aksionova N A and Kucharav A I 2021 Development of SDK for a mobile application using
augmented reality technology Bulletin of F. Skorina Gomel State University 3(126) pp 81-
4.

[4] Varuyeu A V 2021 Information capacity of objects in conjunction with augmented reality
Bulletin of F. Skorina Gomel State University 3(126) pp 92-95

[5] Aksionova N A and Kucharav A I 2021 Presentation and implementation of educational
material using augmented reality technology Electronic collection of materials of the
International scientific conference «Trends and prospects for the development of science and
education in the context of globalization» 71 pp 235-39

