УДК 512.542

ОБОБЩЕННО РАНГОВЫЕ КОМПОЗИЦИОННЫЕ ФОРМАЦИИ КОНЕЧНЫХ ГРУПП

В.И. Мурашко

Гомельский государственный университет им. Ф. Скорины

GENERALIZED RANK COMPOSITION FORMATIONS OF FINITE GROUPS

V.I. Murashka

F. Scorina Gomel State University

В работе предложена конструкция композиционных формаций, включающая в себя в виде частных случаев формации квази- \mathfrak{F} -групп, c-сверхразрешимых групп и ранговые формации. Описана структура групп из введенных формаций. В качестве частных случаев получен ряд результатов различных авторов. Также для предложенных формаций исследован вопрос Л.А. Шеметкова о пересечении \mathfrak{F} -максимальных подгрупп и \mathfrak{F} -гиперцентре.

Ключевые слова: конечная группа, с-сверхразрешимая группа, квазинильпотентная группа, квази- \mathfrak{F} -группа, наслед-ственная локальная формация, композиционная формация, \mathfrak{F} -максимальная подгруппа, \mathfrak{F} -гиперцентр.

In this paper one construction of composition formations was introduced. This construction contains formations of quasi- \mathfrak{F} -groups, c-supersoluble groups and groups defined by ranks of chief factors. The structure of groups from introduced formations was described. As corollaries some results of different authors were obtained. A question of L.A. Shemetkov about the intersection of \mathfrak{F} -maximal subgroups and the \mathfrak{F} -hypercenter was investigated for these formations.

Keywords: finite group, c-supersoluble group, quasinilpotent group, quasi- \mathfrak{F} -group, hereditary local formation, composition formation, \mathfrak{F} -maximal subgroup, \mathfrak{F} -hypercenter.

AMS (2010): 20D25, 20F17, 20F19.

Введение

Рассматриваются только конечные группы. Через G, p и $\mathfrak X$ в данной работе обозначаются группа, простое число и класс групп соответственно.

Одним из важных направлений в современной теории групп является построение классов групп (формаций, классов Фиттинга, классов Шунка и т. д.) и изучение свойств всех групп в данном классе.

Напомним, что формацией называется класс групп \mathfrak{X} , обладающий следующими свойствами: (a) всякий гомоморфный образ \mathfrak{X} -группы является \mathfrak{X} -группой и (b) если G/M и $G/N-\mathfrak{X}$ -группы, то $G/(M\cap N)\in\mathfrak{X}$.

Одним из важнейших видов формаций являются локальные формации. Напомним, что функция вида $f: \mathbb{P} \to \{$ формации $\}$ называется формационной функцией и формация \mathfrak{F} называется локальной [1], если

$$\mathfrak{F} = (G \mid G \mid C_G(\overline{H}) \in f(p)$$
 для любых $p \in \pi(\overline{H})$

и главного фактора \overline{H} группы G) для некоторой формационной функции f. В этом случае f называется локальным экраном формации \mathfrak{F} . По известной теореме Гашюца — Любизедер — Шмида, формация является локальной

тогда и только тогда, когда она непуста и *насы- щена*, т. е. из $G/\Phi(G) \in \mathfrak{F}$ всегда следует, что $G \in \mathfrak{F}$, где $\Phi(G)$ – подгруппа Фраттини группы G. Классы всех единичных \mathfrak{E} , нильпотентных \mathfrak{N} , метанильпотентных \mathfrak{N}^2 , сверхразрешимых \mathfrak{U} и разрешимых \mathfrak{S} групп являются примерами локальных формаций.

Наибольшее применение локальные формации находят в теории разрешимых групп. Отметим еще один интересный вид формаций разрешимых групп. Пусть \overline{N} — главный фактор группы G. Тогда $\overline{N}=\overline{N}_1\times...\times\overline{N}_n$, где \overline{N}_i — изоморфные простые группы. Число $n=r(\overline{N},G)$ называется рангом \overline{N} в G. Ранговой функцией R [1, VII, определение 2.3] называется отображение, ставящее в соответствие каждому простому числу p множество R(p) натуральных чисел. Со всякой ранговой функцией связан класс групп

 $\mathfrak{E}(R) = (G \in \mathfrak{S} \mid \text{для любого } p \in \mathbb{P} \text{ ранг всякого }$ главного p-фактора G лежит в R(p)).

Отметим, что $\mathfrak{E}(R)$ — формация. Хайнекен [2] и Харман [3] описали все ранговые функции R для которых формация $\mathfrak{E}(R)$ локальна. Аналогичные вопросы для формаций неполной характеристики

© Мурашко В.И., 2019

изучались Хуппертом [4], Кохлером [5] и Харманом [3]. Хабрел и Хайнекен [6] описали все ранговые функции R, для которых $\mathfrak{E}(R)$ является формацией Фиттинга.

Функция вида $f: \mathbb{P} \cup \{0\} \to \{\text{формации}\}$ называется композиционным экраном. Напомним [7, с. 4], что формация \mathfrak{F} называется композиционной или Бэр-локальной, если

$$\mathfrak{F} = (G \mid G \mid G \mid G_{\mathfrak{S}} \in f(0))$$
 и $G \mid C_{G}(\overline{H}) \in f(p)$

для любого абелевого главного p-фактора \overline{H} группы G)

для некоторого композиционного экрана f. Формация является композиционной (Бэр-локальной) [1, IV, теорема 4.17] тогда и только тогда, когда она разрешимо насыщена, т. е. из $G/\Phi(G_{\mathfrak{S}}) \in \mathfrak{F}$ всегда следует, что $G \in \mathfrak{F}$, где $G_{\mathfrak{S}}$ – разрешимый радикал группы G.

Заметим, что локальная формация является композиционной. Обратное утверждение неверно. Примером нелокальной композиционной формации служит класс \mathfrak{N}^* всех квазинильпотентных групп, введенный Бендером [8].

Напомним, что главный фактор \overline{H} группы G называется \mathfrak{X} -центральным в G, если $\overline{H}\rtimes G/C_G(\overline{H})\in\mathfrak{X}$ (см. [9, с. 127–128]), иначе он называется \mathfrak{X} -эксцентральным. Через $Z_{\mathfrak{X}}(G)$ обозначается \mathfrak{X} -гиперцентр группы G — наибольшая нормальная подгруппа группы G такая, что всякий её G-композиционный фактор \mathfrak{X} -централен в G. Если $\mathfrak{X}=\mathfrak{N}$, то $Z_{\mathfrak{N}}(G)=Z_{\infty}(G)$ — гиперцентр группы G. Отметим, что если \mathfrak{F} — композиционная формация, то из [7, 1, теорема 2.6] следует, что

$$\mathfrak{F}=(G\,|\,Z_{\mathfrak{F}}(G)=G).$$

Определение композиционной формации \mathfrak{F} в общем случае дает мало информации о действии \mathfrak{F} -группы G на ее неабелевых главных факторах. Ввиду этого, несколько семейств композиционных формаций были введены с помощью уточнения действия \mathfrak{F} -группы на ее неабелевых главных факторах. Например, в [10], [11] Гуо и Скиба ввели класс \mathfrak{F}^* всех квази- \mathfrak{F} -групп для насыщенной формации \mathfrak{F} :

 $\mathfrak{F}^*=(G\mid$ для любых \mathfrak{F} -эксцентрального главного фактора \overline{H} и $x\in G,$ x индуцирует внутренний автоморфизм на \overline{H}).

Если $\mathfrak{N} \subseteq \mathfrak{F}$ — нормально наследственная насыщенная формация, то \mathfrak{F}^* — нормально наследственная разрешимо насыщенная формация по [10, теорема 2.6].

Еще одним примером нелокальной композиционной формации служит класс всех c-сверхразрешимых групп, введенный Ведерниковым в

[12]. Напомним, что группа называется c-сверх-разрешимой (SC-группой в терминологии Робинсона [13]), если всякий ее главный фактор — простая группа. Согласно [14], группа G называется $\Im c$ -сверхразрешимой, если всякий главный \Im -фактор группы G является простой группой, где \Im — некоторый класс простых групп. В [14] аналогичная идея была применена к некоторым другим классом групп. Произведения групп из получившихся классов изучались в [14], [15]. В работе [16] был введен класс \Im_{ca} всех ca- \Im -групп:

 $\mathfrak{F}_{ca} = (G \mid \text{ абелевые главные факторы } G$ \mathfrak{F} -центральны, а остальные главные факторы — простые группы).

Класс \mathfrak{F}_{ca} изучался в работах [16], [17], где \mathfrak{F} – насыщенная формация, в частности, этот класс – композиционная формация.

Используются стандартные обозначения и терминология из [1], [7]. Напомним, что через $G^{\mathfrak F}$ обозначается $\mathfrak F$ -корадикал группы G для формации $\mathfrak F$; $\pi(G)$ — множество простых делителей |G|; $\pi(\mathfrak X)=\bigcup\limits_{G\in\mathfrak X}\pi(G)$;

$$\mathfrak{N}_{p}\mathfrak{F}=(G\,|\,G\,/\,O_{p}(G)\in\mathfrak{F})$$

является формацией для формации \mathfrak{F} ; $\tilde{\mathbf{F}}(G)$ определяется из $\tilde{\mathbf{F}}(G)/\Phi(G)=Soc(G/\Phi(G))$; $N\wr S_n$ — естественное сплетение группы N с симметрической группой S_n степени n. Через $E\mathfrak{F}$ будем обозначать класс групп, все композиционные факторы которых принадлежат \mathfrak{F} .

1 Конструкция обобщенно ранговых формаций

В данной работе мы обобщаем конструкции квази- \mathfrak{F} -групп, ca- \mathfrak{F} -групп, $\mathfrak{I}c$ -сверхразрешимых групп и классов групп, определяемых ранговыми функциями, в смысле следующего определения.

Определение 1.1. (1) Обобщенная ранговая функция \mathcal{R} — отображение, определенное на прямых произведениях изоморфных простых групп следующим образом:

- (a) $\mathcal R$ ставит в соответствие каждой простой группе S пару $\mathcal R(S)=(A_{\mathcal R}(S),B_{\mathcal R}(S))$ возможно пустых непересекающихся множеств $A_{\mathcal R}(S)$ и $B_{\mathcal R}(S)$ натуральных чисел.
- (*b*) Если N прямое произведение простых изоморфных S групп, то $\mathcal{R}(N) = \mathcal{R}(S)$.
- (2) Пусть \overline{N} главный фактор G. Будем говорить, что обобщенный ранг \overline{N} в G лежит в $\mathcal{R}(\overline{N})$ (кратко $gr(\overline{N},G)\in\mathcal{R}(\overline{N})$), если $r(\overline{N},G)\in A_{\mathcal{R}}(\overline{N})$ или $r(\overline{N},G)\in B_{\mathcal{R}}(\overline{N})$ и, если $x\in G$ фиксирует композиционный фактор $\overline{H}/\overline{K}$ в \overline{N} (т. е.

 $\overline{H}^x = \overline{H}$ и $\overline{K}^x = \overline{K}$), то x индуцирует внутренний автоморфизм на нем.

(3) С каждыми обобщенно ранговой функцией $\mathcal R$ и классом групп $\mathfrak X$ мы связываем класс групп

$$\mathfrak{X}(\mathcal{R}) = (G \mid \overline{H} \notin \mathfrak{X}$$
 и

 $gr(\overline{H},G) \in \mathcal{R}(\overline{H})$ для любого \mathfrak{X} -эксцентрального главного фактора \overline{H} группы G).

Пример 1.1. Многие из отмеченных выше формаций являются частными случаями этой конструкции:

- 1. Пусть $\mathfrak{E} = (1)$. Предположим, что $\mathcal{R}(H) = (\{1\}, \emptyset)$, если H абелева и $\mathcal{R}(H) = (\emptyset, \emptyset)$ в противном случае. Тогда $\mathfrak{E}(\mathcal{R}) = \mathfrak{U}$.
- 2. Если $\mathcal{R}(H) \equiv (\{1\}, \emptyset)$, то $\mathfrak{E}(\mathcal{R})$ класс \mathfrak{U}_{α} всех c-сверхразрешимых групп.
- 3. Пусть \mathfrak{I} класс простых групп. Если $\mathcal{R}(H) = (\{1\},\varnothing)$ для $H \in \mathfrak{I}$ и $\mathcal{R}(H) = (\mathbb{N},\varnothing)$ в противном случае, то $\mathfrak{E}(\mathcal{R})$ класс всех $\mathfrak{I}c$ -сверхразрешимых групп.
- 4. Предположим, что $\mathcal{R}(H) = (A_{\mathcal{R}}(H), \varnothing)$, если H абелева и $\mathcal{R}(H) = (\varnothing, \varnothing)$ в противном случае. Тогда \mathcal{R} ранговая функция.
- 5. Пусть $\mathcal{R}(H) = (\emptyset, \{1\})$, если H абелева и $\mathcal{R}(H) = (\emptyset, \emptyset)$ в противном случае. Тогда $\mathfrak{E}(\mathcal{R}) = \mathfrak{N}$.
 - 6. Если $\mathcal{R}(H) \equiv (\emptyset, \{1\})$, то $\mathfrak{E}(\mathcal{R}) = \mathfrak{N}^*$.
- 7. Предположим, что $\mathcal{R}(H) = (\emptyset, \{l\})$, если H абелева и $\mathcal{R}(H) = (\{l\}, \emptyset)$ в противном случае. Тогда $\mathfrak{E}(\mathcal{R}) = \mathfrak{N}_{ca}$.
- 8. Пусть $\mathfrak{N} \subseteq \mathfrak{F}$ нормально наследственная насыщенная формация. Если $\mathcal{R}(H) \equiv (\emptyset, \{1\})$, то $\mathfrak{F}(\mathcal{R}) = \mathfrak{F}^*$ (см. доказательства следствия 1.1.3).
- 9. Пусть $\mathfrak{F} \subseteq \mathfrak{S}$ нормально наследственная насыщенная формация, $\mathcal{R}(H) = (\emptyset, \emptyset)$ для абелевых $H \notin \mathfrak{F}$ и $\mathcal{R}(H) = (\{1\}, \emptyset)$ для неабелевых H. Тогда $\mathfrak{F}(\mathcal{R}) = \mathfrak{F}_{ca}$.

Напомним, что всякая непустая композиционная формация \mathfrak{F} имеет единственный композиционный экран F такой, что

$$F(p) = \mathfrak{N}_p F(p) \subseteq \mathfrak{F}$$

для всех простых p и $F(0) = \mathfrak{F}$ [7, 1, теорема 1.6]. В этом случае F называется максимальным внутренним композиционным экраном \mathfrak{F} .

Будем называть обобщенную ранговую функцию \mathcal{R} (соответственно, *сильно*) наследственной, если для любой простой группы S выполняется:

(a) из $a\in A_{\mathcal{R}}(S)$ всегда следует, что $b\in A_{\mathcal{R}}(S)$ для любого натурального $b\mid a$ (соответственно, $b\leq a$);

(b) из $a\in B_{\mathcal{R}}(S)$ всегда следует, что $b\in A_{\mathcal{R}}(S)\cup B_{\mathcal{R}}(S)$ (соответственно, $b\in B_{\mathcal{R}}(S)$) для любого натурального $b\mid a$ (соответственно, $b\leq a$).

Теорема 1.1. Пусть $\mathfrak{N} \subseteq \mathfrak{F}$ — композиционная формация с максимальным внутренним композиционным экраном F и \mathcal{R} — обобщенная ранговая функция. Тогда

- (1) $\mathfrak{F}(\mathcal{R})$ композиционная формация с максимальным внутренним композиционным экраном $F_{\mathcal{R}}$ таким, что $F_{\mathcal{R}}(0) = \mathfrak{F}(\mathcal{R})$ и $F_{\mathcal{R}}(p) = F(p)$ для всех $p \in \mathbb{P}$.
- (2) Если \mathfrak{F} нормально наследственна и \mathcal{R} наследственная обобщенная ранговая функция, то $\mathfrak{F}(\mathcal{R})$ также нормально наследственна.

Спедствие 1.1.1 [18, теорема 1]. Класс \mathfrak{U}_c – композиционная формация с максимальным внутренним композиционным экраном h таким, что $h(p) = \mathfrak{N}_p \mathfrak{A}(p-1)$ для любого простого p и $h(0) = \mathfrak{U}_c$.

В работе [19] был введен класс $w\mathfrak{U}$ всех расширенно сверхразрешимых групп. Данный класс является наследственной насыщенной формацией разрешимых групп. Напомним [20], что группа называется расширенно с-сверхразрешимой, если её абелевые факторы $w\mathfrak{U}$ -центральны, а оставшиеся – простые группы.

Спедствие 1.1.2 [20, теорема A]. Класс \mathfrak{U}_{cw} всех расширенно с-сверхразрешимых групп — нормально наследственная композиционная формация с максимальным внутренним композиционным экраном h, таким, что

$$h(p) = \mathfrak{N}_{n}(G \mid G \in w\mathfrak{U} \cap \mathfrak{N}_{n}\mathcal{A}(p-1))$$

для любого простого p u $h(0) = \mathfrak{U}_{cw}$.

Следствие 1.1.3 [10, теорема 2.6]. Для любой насыщенной формации \mathfrak{F} , содержащей все нильпотентные группы, с максимальным внутренним локальным экраном F, формация \mathfrak{F}^* является композиционной с максимальным внутренним композиционным экраном F^* , где $F^*(p) = F(p)$ для любого простого p и $F^*(0) = \mathfrak{F}^*$. Более того, если формация \mathfrak{F} нормально наследственна, то \mathfrak{F}^* также нормально наследствена.

При доказательстве теоремы 1.1 нам понадобятся следующие леммы:

Лемма 1.1. Пусть H/K и M/N — G-изо-морфные главные факторы группы G.

(a) Тогда они имеют одинаковый обобщенный главный ранг.

$$H/K \rtimes G/C_G(H/K) \simeq M/N \rtimes G/C_G(M/N)$$
.

Доказательство. Пусть $\alpha: H/K \to M/N - G$ -изоморфизм. Так как H/K и M/N - G

изоморфные группы, то они имеют одинаковый ранг. Предположим, что $x \in G$ фиксирует композиционный фактор A/B группы H/K и индуцирует внутренний автоморфизм aB на нем. Заметим, что $\alpha(A/B)$ – композиционный фактор M/N. Из $\alpha(A/B)^x = \alpha(A/B^x) = \alpha(A/B)$ следует, что x фиксирует $\alpha(A/B)$ и достаточно легко проверить, что x индуцирует внутренний автоморфизм $\alpha(aB)$ на нем. Так как α^{-1} также является G-изоморфизмом, можно сделать вывод, что H/K и M/N имеют одинаковые обобщенные ранги.

Лемма 1.2 [7, 1, предложение 1.15]. Пусть \bar{H} – главный фактор группы G.

- (1) Если \mathfrak{F} композиционная формация и F её максимальный внутренний композиционный экран, то \overline{H} \mathfrak{F} -централен тогда и только тогда, когда $G/C_G(\overline{H}) \in F(p)$ для всех $p \in \pi(\overline{H})$, в случае абелевого \overline{H} , и $G/C_G(\overline{H}) \in \mathfrak{F}$, когда \overline{H} неабелевый.
- (2) Если \mathfrak{F} локальная формация и F её максимальный внутренний локальный экран, то \overline{H} \mathfrak{F} -централен тогда и только тогда, когда $G/C_G(\overline{H}) \in F(p)$ для всех $p \in \pi(\overline{H})$.

Следующая лемма следует из [7, 1, теорема 2.6].

Лемма 1.3. Пусть \mathfrak{F} – композиционная формация. Тогда $\mathfrak{F} = (G \mid G = Z_z(G))$.

Напомним, что через $C^p(G)$ обозначается пересечение всех централизаторов абелевых главных p-факторов G ($C^p(G) = G$ когда G не имеет таких факторов). Пусть f – композиционный экран композиционной формации \mathfrak{F} . Известно, что $\mathfrak{F} = (G \mid G / G_{\mathfrak{S}} \in f(0))$ и $G / C^p(G) \in f(p)$ для всех $p \in \pi(G)$ таких, что G имеет абелевый главный p-фактор).

Лемма 1.4 [21, X, 13.16 (a)]. Предположим, что $G = G_1 \times ... \times G_n$, где всякая G_i – простая неабелевая подгруппа группы G и $G_i \neq G_j$ для $i \neq j$. Тогда всякая субнормальная подгруппа H группы G – прямое произведение некоторых G_i .

Следующая лемма напрямую вытекает из предыдущей.

Лемма 1.5. Пусть нормальная подгруппа N группы G является прямым произведением изоморфных простых неабелевых групп. Тогда N – прямое произведение минимальных нормальных подгрупп группы G.

Доказательство теоремы 1.1. (1) Из (b) и (c) теорем об изоморфизмах [1] и леммы 1.1 следует, что $\mathfrak{X}(\mathcal{R})$ — формация для любого класса групп \mathfrak{X} . Тогда $\mathfrak{F}(\mathcal{R})$ — формация. Пусть

 $\mathfrak{H} = CLF(F_{\mathcal{R}}).$

Предположим, что $\mathfrak{H} \setminus \mathfrak{F}(\mathcal{R}) \neq \emptyset$. Выберем группу G минимального порядка из $\mathfrak{H} \setminus \mathfrak{F}(\mathcal{R})$. Так как $\mathfrak{F}(\mathcal{R})$ — формация, G имеет единственную минимальную нормальную подгруппу N и $G/N \in \mathfrak{F}(\mathcal{R})$.

Предположим, что N абелева. Тогда она является p-группой. Так как N \mathfrak{H} -центральна в G по лемме 1.3, $G/C_G(N) \in F_{\mathcal{R}}(p)$ по лемме 1.2. Из $F_{\mathcal{R}}(p) = F(p)$ и леммы 1.2 следует, что $N-\mathfrak{F}$ -центральный главный фактор G. Тогда $G \in \mathfrak{F}(\mathcal{R})$, противоречие.

Значит, N неабелева. Заметим, что $G_{\mathfrak{S}} \leq C_G(N)$ по [7, 1, предложение 1.5]. Тогда

$$G \simeq G / C_G(N) \in F_{\mathcal{R}}(0) = \mathfrak{F}(\mathcal{R}),$$

противоречие. Значит, $\mathfrak{H} \subseteq \mathfrak{F}(\mathcal{R})$.

Предположим, что $\mathfrak{F}(\mathcal{R}) \setminus \mathfrak{H} \neq \emptyset$. Выберем группу G минимального порядка из $\mathfrak{F}(\mathcal{R}) \setminus \mathfrak{H}$. Так как \mathfrak{H} — формация, G имеет единственную минимальную нормальную подгруппу N и $G/N \in \mathfrak{H}$.

Если N абелева, то $G/C_G(N) \in F(p)$ для некоторого p по леммам 1.2 и 1.3. Из $F_{\mathcal{R}}(p) = F(p)$ и леммы 1.2 следует, что N \mathfrak{H} -центральна в G. Итак, $G \in \mathfrak{H}$, противоречие.

Значит, N неабелева. Следовательно, $G_{\mathfrak{S}}=1$. Тогда $G/G_{\mathfrak{S}}\simeq G\in \mathfrak{F}(\mathcal{R})=F_{\mathcal{R}}(0)$. Заметим, что $N\leq C^p(G)$ для всех простых p. Поэтому $C^p(G)/N=C^p(G/N)$. Из $G/N\in \mathfrak{H}$ следует, что $G/C^p(G)\simeq (G/N)/C^p(G/N)\in F_{\mathcal{R}}(p)$ для любого p такого, что G имеет абелевый главный p-фактор. Следовательно, $G\in \mathfrak{H}$, противоречие. Значит, $\mathfrak{F}(\mathcal{R})\subseteq \mathfrak{H}$. Итак, $\mathfrak{F}(\mathcal{R})=\mathfrak{H}$.

(2) Пусть F — максимальный композиционный экран формации \mathfrak{F} , G — \mathfrak{F} -группа, $1=N_0 \trianglelefteq N_1 \trianglelefteq ... \trianglelefteq N_n=N \trianglelefteq G$ — часть главного ряда группы G, находящаяся ниже N и H/K — главный фактор N такой, что $N_{i-1} \leq K \leq H \leq N_i$ для некоторого i.

Если $N_i / N_{i-1} \notin \mathfrak{F}$, то эта секция неабелева. Согласно лемме 1.5, N_i / N_{i-1} — прямое произведение минимальных нормальных подгрупп N / N_{i-1} . Пусть группа L / N_{i-1} — одна из них и L_1 / N_{i-1} — её простой прямой множитель. Заметим, что $r(N_i / N_{i-1}, G) = |G:N_G(L_1 / N_{i-1})|$,

 $N_G(L_1 / N_{i-1}) \cap N = N_N(L_1 / N_{i-1})$ и $|G:N_N(L_1 / N_{i-1})|$ — делитель $|G:N_G(L_1 / N_{i-1})|$ по [22, §1, лемма 1]. Значит, $r(L/N_{i-1},N)$ делит $r(N_i / N_{i-1},G)$ и любой композиционный фактор

группы L/N_{i-1} является и композиционным фактором N_i/N_{i-1} . Так как \mathcal{R} — наследственная обобщенная ранговая функция,

$$gr(L/N_{i-1},N) \in \mathcal{R}(L/N_{i-1})$$

для любого главного фактора $L \, / \, N_{i-1}$ группы N между N_{i-1} и $N_i.$

Если фактор $N_i \, / \, N_{i-1} \in \mathfrak{F}, \,$ то он $\, \mathfrak{F}$ -централен в $\, G. \,$ Заметим, что $\, H \, / \, K \in \mathfrak{F}. \,$

Предположим, что N_i/N_{i-1} абелев. Тогда $G/C_G(N_i/N_{i-1})\in F(p)$ для некоторого p по лемме 1.2. Заметим, что F(p) — нормально наследственная формация по [1, IV, предложение 3.16]. Так как

 $NC_G(N_i / N_{i-1}) / C_G(N_i / N_{i-1}) \le G / C_G(N_i / N_{i-1}),$ понятно, что

$$NC_G(N_i / N_{i-1}) / C_G(N_i / N_{i-1}) \simeq$$

 $\simeq N / C_N(N_i / N_{i-1}) \in F(p).$

Из $C_N(N_i/N_{i-1}) \leq C_N(H/K)$ следует, что $N/C_N(H/K)$ — фактор группа группы $N/C_N(N_i/N_{i-1})$. Значит, $N/C_N(H/K) \in F(p)$. Следовательно, H/K — \mathfrak{F} -центральный главный фактор N по лемме 1.2.

Предположим, что N_i/N_{i-1} неабелева. Тогда $G/C_G(N_i/N_{i-1})\in \mathfrak{F}$ по лемме 1.2. Значит, $NC_G(N_i/N_{i-1})/C_G(N_i/N_{i-1})\in \mathfrak{F}$. Аналогично предыдущему абзацу, $N/C_N(H/K)\in \mathfrak{F}$. Тогда $H/K-\mathfrak{F}$ -центральный главный фактор N по лемме 1.2.

Таким образом, всякий главный \mathfrak{F} -фактор группы N \mathfrak{F} -централен и $gr(\bar{H},N)\in\mathcal{R}(\bar{H})$ для любого другого главного фактора \bar{H} группы N по теореме Жордана — Гёльдера. Итак, $N\in\mathfrak{F}(\mathcal{R})$. \square

Доказательства следствий 1.1.1, 1.1.2 и 1.1.3. Напомним, что всякая локальная формация является композиционной. Известно, что если F — максимальный внутренний локальный экран локальной формации \mathfrak{F} , то D — максимальный внутренний композиционный экран \mathfrak{F} , где $D(0) = \mathfrak{F}$ и F(p) = D(p) для всех простых p.

Пусть $\mathcal{R}(H) \equiv (\{1\}, \emptyset)$. Тогда \mathcal{R} наследствена H. Напомним, что классы всех сверхразрешимых и расширенно сверхразрешимых групп являются наследственными локальными формациями с максимальными внутренними локальными экранами $F(p) = \mathfrak{N}_p \mathfrak{A}(p-1)$ и

$$D(p) = \mathfrak{N}_{n}(G \mid G \in w\mathfrak{U} \cap \mathfrak{N}_{n}\mathcal{A}(p-1))$$

[20, лемма 3.2] для любого простого p соответственно. Заметим, что $\mathfrak{U}_c=\mathfrak{U}(\mathcal{R})$ and $\mathfrak{U}_{cw}=w\mathfrak{U}(\mathcal{R})$. Ввиду этого, следствия 1.1.1 и 1.1.2 напрямую вытекают из теоремы 1.1.

Пусть $\mathcal{R}(H) \equiv (\varnothing,\{1\})$ и \mathfrak{F} — наследственная локальная формация. Отметим, что \mathcal{R} наследствена H. Пусть $\overline{H} \in \mathfrak{F} - \mathfrak{F}$ -эксцентральный главный фактор \mathfrak{F}^* -группы G. Заметим, что $r(\overline{H},G)=1$ и $\overline{H} \rtimes G/C_G(\overline{H})$ — фактор-группа группы $\overline{H} \rtimes \overline{H} \in \mathfrak{F}$. Итак, \overline{H} \mathfrak{F} -централен в G, противоречие. Значит, $\mathfrak{F}^* = \mathfrak{F}(\mathcal{R})$. Ввиду вышеизложенного, следствие 1.1.3 напрямую вытекает из теоремы 1.1.

2 Структура $\mathfrak{F}(\mathcal{R})$ -группы

Целью этого раздела является получение характеризаций $\mathfrak{F}(\mathcal{R})$ -групп.

Определение 2.1. Пусть $Z(G,\mathcal{R},\mathfrak{F},n)$ — наибольшая нормальная подгруппа группы G такая, что $\overline{H} \notin \mathfrak{F}, \ r(\overline{H},G) > n$ и $gr(\overline{H},G) \in \mathcal{R}(\overline{H})$ для любого её G-композиционного \mathfrak{F} -эксцентрального в G фактора \overline{H} .

Пусть C — множество и \mathcal{R} — обобщенная ранговая функция. Будем говорить, что $\mathcal{R}(\bar{H})\subseteq C$, если $A_{\mathcal{R}}(\bar{H})\cup B_{\mathcal{R}}(\bar{H})\subseteq C$. Под $\mathcal{R}(\bar{H})\cap C$ будем подразумевать

$$(A_{\scriptscriptstyle \mathcal{R}}(\bar{H}) \cap C, B_{\scriptscriptstyle \mathcal{R}}(\bar{H}) \cap C).$$

Замечание 2.1. (1) Пусть N и M — нормальные подгруппы группы G. Согласно п. (b) теорем об изоморфизмах [1] всякий G-композиционный фактор NM G-изоморфен некоторому G-композиционному фактору группы N или группы M. Следовательно, $Z(G,\mathcal{R},\mathfrak{F},n)$ существует в любой группе по лемме 1.1.

- (2) Очевидно, что $G \in \mathfrak{F}(\mathcal{R})$ тогда и только тогда, когда $G = Z(G, \mathcal{R}, \mathfrak{F}, 0)$.
- (3) Если $\mathcal{R}(S)\subseteq [0,1]$ для любой простой группы S, то $Z(G,\mathcal{R},\mathfrak{F},n)=Z_{\mathfrak{F}}(G)$ для n>1.

Теорема 2.1. Пусть \mathfrak{F} — композиционная формация, содержащая все нильпотентные группы, которая наряду со всякой своей группой содержит и все ее композиционные факторы. Если \mathcal{R} — обобщенная ранговая функция, то следующие утверждения эквивалентны:

(1)
$$G - \mathfrak{F}(\mathcal{R})$$
 -epynna.

(2) Если
$$Z = Z(G, \mathcal{R}, \mathfrak{F}, 4)$$
, то
$$gr(N/Z, G) \in \mathcal{R}(N/Z) \cap [1, 4]$$

для любой минимальной нормальной подгруппы N/Z группы G/Z и (G/Z)/Soc(G/Z) — разрешимая \mathfrak{F} -группа.

- (3) Верны следующие утверждения:
- (a) $G^{\mathfrak{F}} = G^{E\mathfrak{F}}$.
- (b) Если $N \leq G$ и $N \leq G^{\mathfrak{F}}$, то $(G^{\mathfrak{F}} / N)_{E\mathfrak{F}} = Z(G^{\mathfrak{F}} / N).$

(c) Пусть n — наименьшее число, такое, что найдётся простая не- \mathfrak{F} -секция в S_{n+1} и $T = G^{\mathfrak{F}} \cap Z(G, \mathcal{R}, \mathfrak{F}, n)$. Тогда $G^{\mathfrak{F}} / T \leq Soc(G/T)$ и $N/T \notin \mathfrak{F}, \ r(N/T, G) \leq n$ и

$$gr(N/T,G) \in \mathcal{R}(N/T)$$

для любой минимальной нормальной подгруппы N/T группы G/T из $G^{\mathfrak{F}}/T$.

Напомним [7, с. 13], что группа называется *полупростой*, если она или единична, или является прямым произведением простых неабелевых групп.

Следствие 2.1.1 [21, X, теорема 13.6]. Группа G квазинильпотентна тогда и только тогда, когда $G/Z_{\infty}(G)$ полупроста.

Спедствие 2.1.2 [10, теорема 2.8]. Пусть \mathfrak{F} — нормально наследственная локальная формация, содержащая все нильпотентные группы. Группа G является квази- \mathfrak{F} -группой тогда и только тогда, когда $G/Z_{\mathfrak{F}}(G)$ полупроста.

Следствие 2.1.3 [17, теорема А]. Пусть \mathfrak{F} — локальная формация разрешимых групп, содержащая все нильпотентные группы. Тогда и только тогда $G \in \mathfrak{F}_{ca}$, когда $G^{\mathfrak{F}} = G^{\mathfrak{S}}$, $Z(G^{\mathfrak{F}}) \leq Z_{\mathfrak{F}}(G)$ и $G^{\mathfrak{F}}/Z(G^{\mathfrak{F}})$ — прямое произведение G-допустимых простых неабелевых групп.

Спедствие 2.1.4 [13, предложение 2.4]. Группа G является c-сверхразрешимой тогда u только тогда, когда найдётся совершенная нормальная подгруппа D такая, что G/D сверхразрешима, D/Z(D) — прямое произведение G-допустимых простых неабелевых групп u Z(D) сверхразрешимо вложена u

Следствие 2.1.5 [20, теорема В]. Группа G является расширенно с-сверхразрешимой тогда и только тогда, когда

$$G^{\text{wu}} = G^{\mathfrak{S}}, \ Z(G^{\text{wu}}) \leq Z_{\text{wu}}(G)$$

 $u\ G^{\text{wsl}}\ /\ Z(G^{\text{wsl}})\ -$ прямое произведение G-допустимых простых неабелевых групп.

3 О пересечении $\mathfrak{F}(\mathcal{R})$ -максимальных подгрупп

Напомним [1, с. 288], что подгруппа U группы G называется \mathfrak{X} -максимальной в G, если (a) $U \in \mathfrak{X}$, и (b) из $U \leq V \leq G$ и $V \in \mathfrak{X}$ следует, что U = V. Пересечение всех \mathfrak{X} -максимальных подгрупп группы G обозначается через $\mathrm{Int}_{\mathfrak{X}}(G)$.

Заметим, что пересечение максимальных абелевых подгрупп группы G совпадает с центром G. Согласно Бэру [22], пересечение максимальных нильпотентных подгрупп G совпадает с гиперцентром G. В [23, пример 5.17] показано, что пересечение максимальных сверхразрешимых подгрупп может не совпадать со

сверхразрешимым гиперцентром. В 1995 году на Гомельском алгебраическом семинаре Л.А. Шеметков задал вопрос: «Для каких нормально наследственных разрешимо насыщенных формаций $\mathfrak F$ равенство $\mathrm{Int}_{\mathfrak F}(G)=Z_{\mathfrak F}(G)$ верно для любой группы G»?

Отвечая на вопрос Л.А. Шеметкова А.Н. Скиба [23] (в разрешимом случае Дж. Бейдлеман и Г. Хайнекен [24]) описал все наследственные насыщенные формации \mathfrak{F} , для которых равенство $\mathrm{Int}_{\mathfrak{F}}(G)=Z_{\mathfrak{F}}(G)$ верно для любой группы G. Автор исследовал этот вопрос для формаций квази- \mathfrak{F} -групп [25]. В этом разделе этот вопрос будет исследован для $\mathfrak{F}(\mathcal{R})$ -групп.

Теорема 3.1. Пусть \mathfrak{F} — наследственная насыщенная формация, содержащая все нильпотентные группы, m — натуральное число, такое, что $\mathfrak{G}_{\{q\in\mathbb{P}|q\leq m\}}\subseteq\mathfrak{F}$, \mathcal{R} — сильно наследственная обобщенная ранговая функция, такая,
что $\mathcal{R}(N)\subseteq[0,m]$ для любой простой группы N.
Следующие условия эквивалентны:

$$(1)\ Z_{\mathfrak{F}}(G)=\operatorname{Int}_{\mathfrak{F}}(G)$$
 верно для любой группы G и $\bigcup_{n=1}^{m}\ (\operatorname{Out}(G)\wr S_{n}\mid G\notin\mathfrak{F}-$ простая группа и $n\in A_{\mathfrak{F}}(G))\subseteq\mathfrak{F}.$

(2) $Z_{\mathfrak{F}(\mathcal{R})}(G)=\mathrm{Int}_{\mathfrak{F}(\mathcal{R})}(G)$ верно для любой группы G.

Следствие 3.1.1 [25, теорема 1]. Пусть \mathfrak{F} — наследственная насыщенная формация, содержащая все нильпотентные группы. Тогда и только тогда $\operatorname{Int}_{\mathfrak{F}}(G) = Z_{\mathfrak{F}}(G)$ верно для любой группы G, когда $\operatorname{Int}_{\mathfrak{F}}(G) = Z_{\mathfrak{F}}(G)$ верно для любой группы G.

Спедствие 3.1.2. Пусть \mathcal{R} — сильно наследственная обобщенная ранговая функция. Тогда и только тогда $Z_{\mathfrak{N}(R)}(G) = \operatorname{Int}_{\mathfrak{N}(\mathcal{R})}(G)$ верно для любой группы G, когда для любой простой неабелевой группы N выполняется:

- (1) $\mathcal{R}(N) \subseteq [0,2]$;
- (2) если $1 \in A_{\mathbb{R}}(N)$, то Out(N) нильпотентна;
- (3) если $2 \in A_{\mathcal{R}}(N)$, то $\mathrm{Out}(N)$ является 2-группой.

Пример 3.1. Пусть \mathfrak{F}_1 и \mathfrak{F}_2 – классы групп, абелевые главные факторы которых центральны, а неабелевые – произвольны и прямые произведения не более 2 знакопеременных групп соответственно. Тогда равенства $Z_{\mathfrak{N}^*}(G)=\mathrm{Int}_{\mathfrak{N}^*}(G)$ и $Z_{\mathfrak{F}_2}(G)=\mathrm{Int}_{\mathfrak{F}_2}(G)$ верны для любой группы G и найдутся группы G_1 и G_2 такие, что

$$Z_{\mathfrak{N}_{-}}(G_1) \neq \text{Int}_{\mathfrak{N}_{-}}(G_1)$$
 и $Z_{\mathfrak{F}_{-}}(G_2) \neq \text{Int}_{\mathfrak{F}_{-}}(G_2)$.

Важно отметить, что если

$$Z_{\mathfrak{F}(\mathcal{R})}(G) = \operatorname{Int}_{\mathfrak{F}(\mathcal{R})}(G)$$

верно для любой группы G, то \mathcal{R} ограничена:

Теорема 3.2. Пусть \mathfrak{F} — наследственная насыщенная формация, содержащая все нильпотентные группы, и \mathcal{R} — сильно наследственная обобщенная ранговая функция.

(1) Предположим, что

$$Z_{\mathfrak{F}(\mathcal{R})}(G) = \operatorname{Int}_{\mathfrak{F}(\mathcal{R})}(G)$$

верно для любой группы G. Пусть

$$C_1 = \min_{G \in \mathcal{M}(\mathfrak{F}) \text{ is } F(G) = \tilde{F}(G)} \max \left\{ \mid M \mid -1 \mid M - 1 \mid M -$$

максимальная подгруппа G $\}$.

Тогда $\mathcal{R}(S) \subseteq [0,C_1]$ для любой простой группы $S \notin \mathfrak{F}$.

(2) Пусть

$$C_2 = \max\{m \in \mathbb{N} \mid \mathfrak{G}_{\{q \in \mathbb{P} \mid q \le m\}} \subseteq \mathfrak{F}\}.$$

Если $\mathcal{R}(S) \subseteq [0,C_2]$ для любой простой группы $S \notin \mathfrak{F}$, то $gr(\overline{H},G) \in \mathcal{R}(\overline{H})$ для любого G-ком-позиционного фактора $\overline{H} \notin \mathfrak{F}$ ниже $\operatorname{Int}_{\mathfrak{F}(\mathcal{R})}(G)$.

Автор выражает признательность доктору физико-математических наук А.Ф. Васильеву за полезные консультации.

ЛИТЕРАТУРА

- 1. *Doerk*, *K*. Finite soluble groups / K. Doerk, T. Hawkes. Berlin New York: Walter de Gruyter, 1992. 891 p.
- 2. *Heineken*, *H*. Group classes defined by chief factor ranks / H. Heineken // Boll. Un. Mat. Ital. B. 1979. Vol. 16. P. 754–764.
- 3. *Harman*, *D*. Characterizations of some classes of finite soluble groups. Ph. D. thesis, University of Warwick, 1981.
- 4. *Huppert*, *B*. Zur Gaschiitzschen Theorie der Formationen / B. Huppert // Math. Ann. 1966. Vol. 164. P. 133–141.
- 5. *Kohler*, *J.* Finite groups with all maximal subgroups of prime or prime square index / J. Kohler // Canad. J. Math. 1964. Vol. 16. P. 435–442.
- 6. *Haberl, K.L.* Fitting classes defined by chief factor ranks / K.L. Haberl, H. Heineken // J. London Math. Soc. 1984. Vol. 29. P. 34–40.
- 7. *Guo*, *W*. Structure theory for canonical classes of finite groups / W. Guo. Heidelberg New-York Dordrecht London: Springer, 2015. 359 p.
- 8. *Bender*, *H*. On groups with abelian Sylow 2-subgroups / H. Bender // Math. Z. 1970. Bd. 117. P. 164–176.
- 9. Шеметков, Л.А. Формации алгебраических систем / Л.А. Шеметков, А.Н. Скиба. М.: Наука, 1989. 256 с.
- 10. *Guo*, *W*. On finite quasi- \$\footnote{\pi}\$ -groups / W. Guo, A.N. Skiba // Comm. Algebra. 2009. Vol. 37. P. 470–481.
- 11. Guo, W. On some classes of finite quasi- \mathfrak{F} -groups / W. Guo, A.N. Skiba // J. Group Theory. 2009. Vol. 12. P. 407–417.

- 12. *Ведерников*, *В.А.* О некоторых классах конечных групп / В.А. Ведерников // ДАН БССР. 1988. Т. 32, № 10. С. 872–875.
- 13. *Robinson*, *D.J.S.* The structure of finite groups in whitch permutability is a transitive relation / D.J.S. Robinson // J. Austral. Math. Soc. 2001. Vol. 70. P. 143–159.
- 14. Васильев, $A.\Phi$. О конечных группах с заданным нормальным строением / $A.\Phi$. Васильев, Т.И. Васильева, Е.Н. Мысловец // Сиб. электрон. матем. изв. -2016.-T.13.-C.897-910.
- 15. *Мысловец, Е.Н.* Ј-конструкции композиционных формаций и произведения конечных групп / Е.Н. Мысловец // Проблемы физики, математики и техники. $2016. N ext{0}$ 4 (29). С. 68–73.
- 16. *Мысловец*, *Е.Н.* О конечных са-F-группах / Е.Н. Мысловец // Проблемы физики, математики и техники. -2014. -№ 2 (19). C. 64–68.
- 17. *Мысловец*, *Е.Н*. Конечные обобщенно *с*-сверхразрешимые группы и их взаимно перестановочные произведения / Е.Н. Мысловец, А.Ф. Васильев // Проблемы физики, математики и техники. 2016. № 2 (27). C. 45–53.
- 18. Васильев, А.Ф. О конечных группах, у которых главные факторы являются простыми группами / А.Ф. Васильеа, Т.И. Васильева // Изв. вузов. Матем. -1997. -№ 11. C. 10–14.
- 19. *Васильев*, $A.\Phi$. О конечных группах сверхразрешимого типа / $A.\Phi$. Васильев, Т.И. Васильева, В.Н. Тютянов // Сиб. мат. журн. 2010. Т. 51, № 6. С. 1270–1281.
- 20. Васильев, А.Ф. Конечные расширенно c-сверхразрешимые группы и их взаимно перестановочные произведения / А.Ф. Васильев, Т.И. Васильева, Е.Н. Мысловец // Сиб. матем. журн. -2016. Т. 57, № 3. С. 603-616.
- 21. *Huppert*, *B*. Finite groups III / B. Huppert, N. Blacburn. Berlin Heidelberg New York: Springer, 1982. 454 p.
- 22. *Baer*, *R*. Group elements of prime power index / R. Baer // Trans. Amer. Math. Soc. 1953. Vol. 75. P. 20–47.
- 23. *Skiba*, *A.N.* On the \mathfrak{F} -hypercentre and the intersection of all \mathfrak{F} -maximal subgroups of a finite group / A.N. Skiba // J. Pure Appl. Algebra. 2012. Vol. 216. P. 789–799.
- 24. *Beidleman*, *J.C.* A note on intersections of maximal \mathfrak{F} -subgroups / J.C. Beidleman, H. Heineken // J. Algebra. 2011. Vol. 333. P. 120–127.
- 25. *Murashka*, *V.I.* On the \mathfrak{F} -hypercenter and the intersection of \mathfrak{F} -maximal subgroups of a finite group / V.I. Murashka // J. Group. Theory. 2018. Vol. 21, $\mathfrak{N}\mathfrak{D}$ 3. P. 463–473.

Поступила в редакцию 30.04.19.