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Группа называется примарной, если она является конечной p-группой для некоторого простого числа p. Если 

{ }i i I      – некоторое разбиение множества   т. е. ii I
P


   и i j    для всех i j   то мы говорим, что 

конечная группа G является:  -примарной, если она является i -группой для некоторого i;  -нильпотентной, если 

1 nG G G    для некоторых  -примарных групп 1 nG … G    Если ( )GN N A  для некоторой примарной неединич-

ной подгруппы A из G, то мы говорим, что GN A  – локальная секция группы G. В данной работе изучается конечная 

группа G при условии, что все собственные локальные секции из G принадлежат насыщенной наследственной форма-
ции F  также устанавливается нормальная структура G в случае, когда все локальные секции из G являются 

 -нильпотентными.  
 
Ключевые слова: конечная группа, наследственная насыщенная формация, F -гиперцентр, локальная секция,  -ниль-

потентная группа. 
 
A group is called primary if it is a finite p-group for some prime p. If { }i i I      is some partition of   that is, 

ii I
P


   and i j    for all i j   then we say that a finite group G is:  -primary if it is a i -group for some i; 

 -nilpotent if 1 nG G G    for some  -primary groups 1 nG … G    If ( )GN N A  for some primary non-identity subgroup 

A of G, then we say that GN A  is a local section of G. In this paper, we study a finite group G under hypothesis that all proper 

local sections of G belong to a saturated hereditary formation F  and we determine the normal structure of G in the case when 

all local sections of G are  -nilpotent.  
 
Keywords: finite group, hereditary saturated formation, F -hypercentre, local section,  -nilpotent group. 

 
 

Introduction  
Throughout this paper, all groups are finite and 

G  always denotes a finite group. Moreover,   is 
the set of all primes, p    and \    If n 

is an integer, the symbol ( )n  denotes the set of all 

primes dividing n  as usual, ( ) ( )G G       the set 

of all primes dividing the order of G. If K H G   
then H K  is called a section of G   

A group is called primary if it is a p-group for 
some prime p  If { }i i I      is some partition 

of   that is, ii I
P


   and i j     for all 

i j   then we say, following [1], that a group is: 

 -primary if it is a i -group for some i   -so-

luble if every its chief factor is  -primary. Observe 
that a group is primary (respectively soluble) if and 
only if it is  -primary (respectively  -soluble) 
where {{2} {3} }…       

Definition. (i) If A  is a non-identity primary 
subgroup of G  then ( )GN A  is a local subgroup of 

G  and ( ) ( )
GG G G A GN A A N A A    is a local sec-

tion of G  Moreover, if ( )GN A G   then we say 

that ( )G GN A A  is a proper local section of G   
(ii) If A  is a non-identity  -primary subgroup 

of G  then we say that ( )GN A  is a  -local sub-

group of G  and ( )G GN A A  is a  -local section 

(a proper  -local section if ( ) )GN A G  of G   
Example. (i) The group G  is said to be  -nil-

potent or  -decomposable (Shemetkov [2]) if G   

1 nG G    for some  -primary groups 1 nG … G    

It can be proved (see Corollary 1.9 below) that G  is 
 -nilpotent if and only if every  -local subgroup 
of G  is  -nilpotent.  

(ii) In the group Aut( )p pA C C   where 

pC   is an odd prime, each local section is nilpotent. 

This group is not  -nilpotent, where 
{{ } { } }p p      The only non-nilpotent local section 

of (2 3)GL   is (2 3) ( (2 3))GL Z GL      

МАТЕМАТИКА



Б. Ху, Ц. Хуан, А.Н. Скиба 
 

                 Проблемы физики, математики и техники, № 3 (40), 2019 108 

The  -nilpotent groups have been proved to 
be very useful in the formation theory (see, for ex-
ample, the papers [3], [4] and the books [2, Chapter 
IV], [5, Chapter 6]). In the recent years, the  -nil-
potent and  -soluble groups have been found new 
and to some extent unexpected applications in the 
theories of permutable and generalized subnormal 
subgroups (see, in particular, the recent papers [1], 
[6]–[9]).  

In this paper, we study G  under hypothesis 
that all (proper) local sections of G  belong to a he-
reditary local formation F  containing all nilpotent 
groups, and we determine the normal structure of G  
in the case when all local sections of G are 
 -nilpotent.  
 

1 The main results 
Recall the following  
Definition 1.1. The group G is called F -cri-

tical [10, p. 517] provided G does not belong to F  
but every proper subgroup of G belongs to F  A 
Schmidt group is an N -critical group, where N  is 
the class of all nilpotent groups.  

We need also some other concepts of the for-
mation theory.  

Let F  be a class of groups containing all iden-

tity groups. Then GF  denotes the F -residual of G  
that is, the intersection of all normal subgroups N  
of G with G N  F  The class F  is said to be:  
hereditary if H F  whenever H G  F  satu-

rated if GF  whenever ( )G G  F  a formation 

if every homomorphic image of G G F  belongs to 
F  for any group G   

Note that if F  is a saturated formation, then 
GF  if and only if every chief factor H K  of G 
is  F -central in G [11, Theorem 17.14], that is, 

( ) ( ( ))GH K G C H K     F  Moreover, every 

group G has the largest normal subgroup ( )Z G F  the 

F -hypercentre of G  with the property that every 

chief factor of G below ( )Z GF  is F -central in G  

In the case when F N  is the class of all  -nilpo-

tent groups, we write ( )Z G  instead of ( )Z G


N   

Our basis result is the following  
Theorem 1.2 (See Theorem A in [12]). Sup-

pose that G F  where F  is a hereditary saturated 
formation containing all nilpotent groups.  

(i) If the F -residual of every F -critical sec-
tion of G is  -soluble and all proper  -local sec-

tions of G belong to F  then GF  is  -nilpotent.   
(ii) If the F -residual of every F -critical sec-

tion of G  is soluble and all proper local sections of 

G belong to F  then ( ) ( )F G G Z G F

F  and every 

minimal normal subgroup of G is abelian.  

Let   be some linear ordering on   The re-

cord p q  means that p precedes q in   and p q   

Recall that a group G of order 1 2
1 2

n
np p …p   is called  

 -dispersed (Baer [13]) whenever 1 2 np p … p    and 

for every i  there is a normal subgroup of G  of or-

der 1 2
1 2

i
ip p …p     

It is well-known that if F  is either the class of 
all nilpotent groups N  or the class of all supersolu-
ble groups U  or the class of all  -dispersed 

groups, then F  is a hereditary saturated formation 
[10, p. 358–359] and every F -critical group G is 

soluble [2, Chapter V] with nilpotent GF  [10, Chap-
ter VII, Theorem 6.18].  

Hence we get from Theorem 1.2 the following 
results.  

Corollary 1.3. Suppose that G  is not super-
soluble. If all proper local sections of G  are super-
soluble, then:  

(i) ( )pG O G  is p-nilpotent for all primes p 

with ( 1 ) 1p G       

(ii) ( ) ( )F G G Z G U

U    

Corollary 1.4 (Fedri, Tiberio [14]). If all 
proper local subgroups of G  are supersoluble, then:  

(i) ( )pG O G  is p-nilpotent, where p is the 

smallest prime dividing G     
(ii) ( )G F G  is supersoluble.  

Corollary 1.5 (Beidleman [15]). If all proper lo-
cal subgroups of G are  -dispersed, then ( )G F G  

is  -dispersed.   

The class N  of all  -nilpotent groups is a 

hereditary saturated formation [1]. Moreover, A N  
is nilpotent for every N -critical group A  (see 

Lemma 3.1 in [12]), so we get from Theorem 1.2 the 
following  

Corollary 1.6 (Zhang Chi, Skiba [16]). If all 
proper  -local subgroups of G are  -nilpotent, 
then ( )G F G  is  -nilpotent.  

Note that if GF  is soluble, then AF  is evi-
dently soluble for every section A H K   of G. 
Hence we get from Theorem 1.2 also the following  

Corollary 1.7 (Gorbachev [17]). Suppose that 
GF  is soluble, where F  is a hereditary saturated 
formation containing all nilpotent groups. If G F  
but every proper local subgroup of G belongs to F  

then ( ) ( )F G G Z G F

F  

Examples shows that a group in which all local 
sections are  -nilpotent can be non-nilpotent. Nev-
ertheless, our next result shows that such groups 
have a structure close to the structure of  -nilpotent 
groups.  
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Theorem 1.8 (See Theorem B in [12]). If each 
local section of G is  -nilpotent, then G is either of 
the following two types:  

(a) G is  -nilpotent.  
(b) G R M   where  

(i) ( )GR C R G   N  is the Sylow p-subgroup 

of G for some ip  and M is a  -nilpotent maxi-

mal subgroup of G.  
(ii) 1G H H   where 1H  is a normal Hall 

i -subgroup of G, H M  and either 1R H  or 

1H  is a Frobenius group with the kernel R  and the 

complement 1M H    
(iii) Every non-identity element of H acts irre-

ducibly on R.  
Conversely, if G is a group of type (a) or (b), 

then every  -local section of G is  -nilpotent.  
Corollary 1.9. G is  -nilpotent if and only if 

all  -local subgroups of G are  -nilpotent.  
Corollary 1.10. All local sections of G are nil-

potent if and only if G is either of the following two 
types:  

(i) G is nilpotent.  
(ii) G R M   where ( )GR C R G  N  is the 

Sylow p-subgroup of G  ( )p G   and M  is a 

nilpotent maximal subgroup of G such that every 
non-identity element of M acts irreducibly on R.  

A set   of subgroups of G is a complete Hall 
 -set of G [9] if every member 1  of   is a Hall 

i -subgroup of G for some i and   contains ex-

actly one Hall i -subgroup of G for every 

( )i G    If AB BA  for all A B    then   is 

said to be a  -basis [9] of G   
We say that G is special if either G is nilpotent 

or G is non-nilpotent and for every Schmidt sub-
group A  of G we have ( ) ( ( ))A F A     Note that 

the group A  in Example, where 13p    is not spe-

cial but all its subgroups of odd order are special.  
Being based on Theorem 1.2, one can prove 

also the following  
Theorem 1.11 (See Theorem C in [12]). Sup-

pose that G is not  -nilpotent but every proper lo-
cal section of G is  -nilpotent. Then the following 
statements hold: 

(a) ( ) ( )F G G Z G
 N  and ( )F G  is a maxi-

mal  -nilpotent subgroup of G  Hence every mini-
mal normal subgroup of G is abelian and G pos-
sesses a  -basis 0 1{ }tH H … H      where 

iH G  for all i r  and iH  is not normal in G for 

all i r    
(b) If iH  is special for all i r   then ( )G F G  

is abelian. Moreover, if in addition, for each such an 
index i the subgroup ( )G iN H  is  -nilpotent, then 

1r tH H   is  -nilpotent and 

1( ) ( ) ( )rF G H H Z G      

In this theorem ( )F G  denotes the  -Fitting 

subgroup of G [1], that is, the product of all normal 
 -nilpotent subgroups of G   

Note that if all non-normal Sylow subgroups of 
any Schmidt subgroup of G have prime order, then 
G is special by Lemma 2.7 in [12]. Hence we get 
from Theorem 1.11 the following  

Corollary 1.12 (Zhang Chi, Skiba [16]). Sup-
pose that G is not  -nilpotent but every proper lo-
cal subgroup of G is  -nilpotent. If non-normal 
Sylow subgroups of any Schmidt subgroup A  con-
tained in a non-normal Hall i -subgroup of G, 

( )i i A   have prime order, then ( )G F G  is abe-

lian. 
The group G is called semi-nilpotent [18] if all 

proper local subgroups of G are nilpotent.  
Note that in the case, when {{2},{3},...},    

( ) ( )F G F G   is the Fitting subgroup and 

( ) ( )Z G Z G   is the hypercentre of G  Therefore 

we get in this case from Theorem 1.11 the following 
known result.  

Corollary 1.13 (See [18] or Theorem 7.6 in 
[19, Chapter 4]). If G is semi-nilpotent and 0 ( )F G  

denotes the product of its normal Sylow subgroups, 
then 0 ( )G F G  is nilpotent and ( )G F G  is abe-

lian.  
 
2 Final remarks  
1. If A G   then GA A  is called the cofactor 

of A in G. In this paper, in fact, we follow the gen-
eral idea of studying groups with restrictions on the 
cofactors of their subgroups (see, for example, the 
recent papers [20], [21]).  

2. Theorem 1.11 allows to prove the following 
fact which covers one of the main results in [18], [16]. 

Theorem 2.1 (See Theorem 5.1 in [12]). Sup-
pose that G is not  -nilpotent but every proper 
 -local subgroup of G is  -nilpotent. Then G has 
 -basis 1{ }tH … H   such that for some 1 r t   

the subgroups 1 rH … H   are normal in G and iH  is 

not normal in G for all i r   Moreover, if iH  is 

special for all i r   then ( )G F G  is cyclic.   

3. Theorems 1.2, 1.8 and 1.11 remain to be new 
for each specific partition   of    

4. In the mathematical practice we often deal 
with the following three classical partitions of   

1 {{2} {3} }…      { }     and 
1

1{{ } { } }np … p       
where 1{ }np … p     (we use here the notations in [7]). 

Note that G is:  -soluble if and only if G is 
 -separable, that is, every chief factor of G is either 

a  -group or a  -group;  -nilpotent if and only 
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if G is  -decomposable, that is, ( ) ( )G O G O G     

Therefore in the case when     we get from 
Theorem 1.11 the following result.  

Corollary 2.2. Suppose that G is not  -de-
composable but every proper local section of G is 
 -decomposable. Then the following statements 
hold:  

(i) G V  is  -decomposable, where 
( ) ( )V O G O G    

is a maximal  -decomposable subgroup of G  
Hence G is  -separable, so G has a Hall  -sub-
group 1H  and a Hall  -subgroup 2H    

(ii) ( )F G DZ   where D is the  -decompo-

sable residual of G and Z is a normal subgroup of G 
such that ( ) ( ( ))GH K G C H K    is either a 

 -group or a  -group for every chief factor 
H K  of G below Z     

(iii) At least one of the normalizers 1( )GN H  or 

2( )GN H   1( )GN H  say, is not  -decomposable. 

Moreover, if ( )G iN H  is  -decomposable for any i 

such that ( )G iN H G   then 1H  is normal in G and 

2( )GN H  is  -decomposable. In this case every 

element of G induces a  -automorphism on every 
chief factor of G below ( )O G    

A special case of Corollary 2.2 was obtained in 
the paper [22].  

5. In the case when 1     Theorem 1.11 
covers the main result in [23].  
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