МАТЕМАТИКА

УДК 512.542

КОНЕЧНЫЕ ГРУППЫ С ЗАДАННЫМИ ЛОКАЛЬНЫМИ СЕКЦИЯМИ

Б. Ху¹, Ц. Хуан¹, А.Н. Скиба²

¹Цзянсунский педагогический университет, Сюйчжоу ²Гомельский государственный университет им. Ф. Скорины

FINITE GROUPS WITH GIVEN LOCAL SECTIONS

B. Hu¹, J. Huang¹, A.N. Skiba²

¹Jiangsu Normal University, Xuzhou ²F. Scorina Gomel State University

Группа называется *примарной*, если она является конечной *p*-группой для некоторого простого числа *p*. Если $\sigma = \{\sigma_i \mid i \in I\}$ – некоторое разбиение множества \mathbb{P} , т. е. $P = \bigcup_{i \in I} \sigma_i$ и $\sigma_i \cap \sigma_j = \emptyset$ для всех $i \neq j$, то мы говорим, что конечная группа *G* является: σ -*примарной*, если она является σ_i -группой для некоторого *i*; σ -нильпотентной, если $G = G_1 \times \cdots \times G_n$ для некоторых σ -примарных групп G_1, \ldots, G_n . Если $N = N_G(A)$ для некоторой примарной неединичной подгруппы *A* из *G*, то мы говорим, что N / A_G – *локальная секция группы G*. В данной работе изучается конечная группа *G* при условии, что все собственные локальные секции из *G* принадлежат насыщенной наследственной формации \mathfrak{F} , также устанавливается нормальная структура *G* в случае, когда все локальные секции из *G* являются σ -нильпотентными.

Ключевые слова: конечная группа, наследственная насыщенная формация, *З*-гиперцентр, локальная секция, *о*-нильпотентная группа.

A group is called *primary* if it is a finite *p*-group for some prime *p*. If $\sigma = \{\sigma_i | i \in I\}$ is some partition of \mathbb{P} , that is, $P = \bigcup_{i \in I} \sigma_i$ and $\sigma_i \cap \sigma_j = \emptyset$ for all $i \neq j$, then we say that a finite group *G* is: σ -*primary* if it is a σ_i -group for some *i*; σ -*nilpotent* if $G = G_1 \times \cdots \times G_n$ for some σ -primary groups G_1, \dots, G_n . If $N = N_G(A)$ for some primary non-identity subgroup *A* of *G*, then we say that N / A_G is a *local section of G*. In this paper, we study a finite group *G* under hypothesis that all proper local sections of *G* belong to a saturated hereditary formation \mathfrak{F} , and we determine the normal structure of *G* in the case when all local sections of *G* are σ -nilpotent.

Keywords: finite group, hereditary saturated formation, \mathfrak{F} -hypercentre, local section, σ -nilpotent group.

Introduction

Throughout this paper, all groups are finite and *G* always denotes a finite group. Moreover, \mathbb{P} is the set of all primes, $p \in \pi \subseteq \mathbb{P}$ and $\pi' = \mathbb{P} \setminus \pi$. If *n* is an integer, the symbol $\pi(n)$ denotes the set of all primes dividing *n*; as usual, $\pi(G) = \pi(|G|)$, the set of all primes dividing the order of *G*. If $K \leq H \leq G$, then H/K is called a *section* of *G*.

A group is called *primary* if it is a *p*-group for some prime *p*. If $\sigma = \{\sigma_i \mid i \in I\}$ is some partition of \mathbb{P} , that is, $P = \bigcup_{i \in I} \sigma_i$ and $\sigma_i \cap \sigma_j = \emptyset$ for all $i \neq j$, then we say, following [1], that a group is: σ -*primary* if it is a σ_i -group for some *i*; σ -*soluble* if every its chief factor is σ -primary. Observe that a group is primary (respectively soluble) if and only if it is σ -primary (respectively σ -soluble) where $\sigma = \{\{2\}, \{3\}, ...\}$.

Definition. (i) If A is a non-identity primary subgroup of G, then $N_G(A)$ is a *local subgroup* of

G and $N_G(A) / A_G = N_{G/A_G}(A / A_G)$ is a local section of *G*. Moreover, if $N_G(A) \neq G$, then we say that $N_G(A) / A_G$ is a proper local section of *G*.

(ii) If A is a non-identity σ -primary subgroup of G, then we say that $N_G(A)$ is a σ -local subgroup of G and $N_G(A)/A_G$ is a σ -local section (a proper σ -local section if $N_G(A) \neq G$) of G.

Example. (i) The group G is said to be σ -nilpotent or σ -decomposable (Shemetkov [2]) if $G = G_1 \times \cdots \times G_n$ for some σ -primary groups G_1, \dots, G_n . It can be proved (see Corollary 1.9 below) that G is σ -nilpotent if and only if every σ -local subgroup of G is σ -nilpotent.

(ii) In the group $A = C_p \rtimes \operatorname{Aut}(C_p)$, where $|C_p|$ is an odd prime, each local section is nilpotent. This group is not σ -nilpotent, where $\sigma = \{\{p\}, \{p\}'\}$. The only non-nilpotent local section of GL(2,3) is GL(2,3)/Z(GL(2,3)). The σ -nilpotent groups have been proved to be very useful in the formation theory (see, for example, the papers [3], [4] and the books [2, Chapter IV], [5, Chapter 6]). In the recent years, the σ -nilpotent and σ -soluble groups have been found new and to some extent unexpected applications in the theories of permutable and generalized subnormal subgroups (see, in particular, the recent papers [1], [6]–[9]).

In this paper, we study G under hypothesis that all (proper) local sections of G belong to a hereditary local formation \mathfrak{F} containing all nilpotent groups, and we determine the normal structure of Gin the case when all local sections of G are σ -nilpotent.

1 The main results

Recall the following

Definition 1.1. The group G is called \mathfrak{F} -critical [10, p. 517] provided G does not belong to \mathfrak{F} but every proper subgroup of G belongs to \mathfrak{F} . A Schmidt group is an \mathfrak{N} -critical group, where \mathfrak{N} is the class of all nilpotent groups.

We need also some other concepts of the formation theory.

Let \mathfrak{F} be a class of groups containing all identity groups. Then $G^{\mathfrak{F}}$ denotes the \mathfrak{F} -residual of G, that is, the intersection of all normal subgroups Nof G with $G/N \in \mathfrak{F}$. The class \mathfrak{F} is said to be: hereditary if $H \in \mathfrak{F}$ whenever $H \leq G \in \mathfrak{F}$; saturated if $G \in \mathfrak{F}$ whenever $G^{\mathfrak{F}} \leq \Phi(G)$; a formation if every homomorphic image of $G/G^{\mathfrak{F}}$ belongs to \mathfrak{F} for any group G.

Note that if \mathfrak{F} is a saturated formation, then $G \in \mathfrak{F}$ if and only if every chief factor H/K of G is \mathfrak{F} -central in G [11, Theorem 17.14], that is, $(H/K) \rtimes (G/C_G(H/K)) \in \mathfrak{F}$. Moreover, every group G has the largest normal subgroup $Z_{\mathfrak{F}}(G)$, the \mathfrak{F} -hypercentre of G, with the property that every chief factor of G below $Z_{\mathfrak{F}}(G)$ is \mathfrak{F} -central in G. In the case when $\mathfrak{F} = \mathfrak{N}_{\sigma}$ is the class of all σ -nilpotent groups, we write $Z_{\sigma}(G)$ instead of $Z_{\mathfrak{N}}(G)$.

Our basis result is the following

Theorem 1.2 (See Theorem A in [12]). Suppose that $G \notin \mathfrak{F}$, where \mathfrak{F} is a hereditary saturated formation containing all nilpotent groups.

(i) If the \mathfrak{F} -residual of every \mathfrak{F} -critical section of G is σ -soluble and all proper σ -local sections of G belong to \mathfrak{F} , then $G^{\mathfrak{F}}$ is σ -nilpotent.

(ii) If the \mathfrak{F} -residual of every \mathfrak{F} -critical section of G is soluble and all proper local sections of G belong to \mathfrak{F} , then $F(G) = G^{\mathfrak{F}}Z_{\mathfrak{F}}(G)$ and every minimal normal subgroup of G is abelian.

Let ϕ be some linear ordering on \mathbb{P} . The record $p\phi q$ means that p precedes q in ϕ and $p \neq q$. Recall that a group G of order $p_1^{\alpha_1} p_2^{\alpha_2} \dots p_n^{\alpha_n}$ is called ϕ -*dispersed* (Baer [13]) whenever $p_1\phi p_2\phi\dots\phi p_n$ and for every *i* there is a normal subgroup of G of order $p_1^{\alpha_1} p_2^{\alpha_2} \dots p_i^{\alpha_i}$.

It is well-known that if \mathfrak{F} is either the class of all nilpotent groups \mathfrak{N} , or the class of all supersoluble groups \mathfrak{U} , or the class of all ϕ -dispersed groups, then \mathfrak{F} is a hereditary saturated formation [10, p. 358–359] and every \mathfrak{F} -critical group G is soluble [2, Chapter V] with nilpotent $G^{\mathfrak{F}}$ [10, Chapter VII, Theorem 6.18].

Hence we get from Theorem 1.2 the following results.

Corollary 1.3. Suppose that G is not supersoluble. If all proper local sections of G are supersoluble, then:

(i) $G / O_p(G)$ is p-nilpotent for all primes p with (p-1, |G|) = 1.

(ii) $F(G) = G^{\mathfrak{U}}Z_{\mathfrak{U}}(G)$.

Corollary 1.4 (Fedri, Tiberio [14]). If all proper local subgroups of G are supersoluble, then:

(i) $G / O_p(G)$ is p-nilpotent, where p is the smallest prime dividing |G|.

(ii) G/F(G) is supersoluble.

Corollary 1.5 (Beidleman [15]). If all proper local subgroups of G are ϕ -dispersed, then G / F(G) is ϕ -dispersed.

The class \mathfrak{N}_{σ} of all σ -nilpotent groups is a hereditary saturated formation [1]. Moreover, $A^{\mathfrak{N}_{\sigma}}$ is nilpotent for every \mathfrak{N}_{σ} -critical group A (see Lemma 3.1 in [12]), so we get from Theorem 1.2 the following

Corollary 1.6 (Zhang Chi, Skiba [16]). If all proper σ -local subgroups of G are σ -nilpotent, then G/F(G) is σ -nilpotent.

Note that if $G^{\tilde{s}}$ is soluble, then $A^{\tilde{s}}$ is evidently soluble for every section A = H/K of *G*. Hence we get from Theorem 1.2 also the following

Corollary 1.7 (Gorbachev [17]). Suppose that $G^{\mathfrak{F}}$ is soluble, where \mathfrak{F} is a hereditary saturated formation containing all nilpotent groups. If $G \notin \mathfrak{F}$ but every proper local subgroup of G belongs to \mathfrak{F} , then $F(G) = G^{\mathfrak{F}}Z_{\mathfrak{F}}(G)$.

Examples shows that a group in which all local sections are σ -nilpotent can be non-nilpotent. Nevertheless, our next result shows that such groups have a structure close to the structure of σ -nilpotent groups.

Theorem 1.8 (See Theorem B in [12]). If each local section of G is σ -nilpotent, then G is either of the following two types:

(a) G is σ -nilpotent.

(b) $G = R \rtimes M$, where

(i) $R = C_G(R) = G^{\mathfrak{N}_{\sigma}}$ is the Sylow p-subgroup of G for some $p \in \sigma_i$ and M is a σ -nilpotent maximal subgroup of G.

(ii) $G = H_1 \rtimes H$, where H_1 is a normal Hall σ_i -subgroup of G, $H \leq M$ and either $R = H_1$ or H_1 is a Frobenius group with the kernel R and the complement $M \cap H_1$.

(iii) Every non-identity element of H acts irreducibly on R.

Conversely, if G is a group of type (a) or (b), then every σ -local section of G is σ -nilpotent.

Corollary 1.9. G is σ -nilpotent if and only if all σ -local subgroups of G are σ -nilpotent.

Corollary 1.10. All local sections of G are nilpotent if and only if G is either of the following two types:

(i) G is nilpotent.

(ii) $G = R \rtimes M$, where $R = C_G(R) = G^{\mathfrak{N}}$ is the Sylow p-subgroup of G, $p \in \pi(G)$, and M is a nilpotent maximal subgroup of G such that every non-identity element of M acts irreducibly on R.

A set \mathcal{H} of subgroups of *G* is a *complete Hall* σ -*set* of *G* [9] if every member $\neq 1$ of \mathcal{H} is a Hall σ_i -subgroup of *G* for some *i* and \mathcal{H} contains exactly one Hall σ_i -subgroup of *G* for every $\sigma_i \in \sigma(G)$. If AB = BA for all $A, B \in \mathcal{H}$, then \mathcal{H} is said to be a σ -*basis* [9] of *G*.

We say that G is *special* if either G is nilpotent or G is non-nilpotent and for every Schmidt subgroup A of G we have $\Phi(A) = \Phi(F(A))$. Note that the group A in Example, where p = 13, is not special but all its subgroups of odd order are special.

Being based on Theorem 1.2, one can prove also the following

Theorem 1.11 (See Theorem C in [12]). Suppose that G is not σ -nilpotent but every proper local section of G is σ -nilpotent. Then the following statements hold:

(a) $F(G) = G^{\mathfrak{N}_{\sigma}}Z_{\sigma}(G)$ and $F_{\sigma}(G)$ is a maximal σ -nilpotent subgroup of G. Hence every minimal normal subgroup of G is abelian and G possesses a σ -basis $\mathcal{H} = \{H_0, H_1, ..., H_t\}$, where $H_i \leq G$ for all $i \leq r$ and H_i is not normal in G for all i > r.

(b) If H_i is special for all i > r, then $G / F_{\sigma}(G)$ is abelian. Moreover, if in addition, for each such an index *i* the subgroup $N_G(H_i)$ is σ -nilpotent, then $H_{r+1} \cdots H_t$ is σ -nilpotent and

$$F_{\sigma}(G) = (H_1 \times \cdots \times H_r) Z_{\sigma}(G).$$

In this theorem $F_{\sigma}(G)$ denotes the σ -*Fitting* subgroup of G [1], that is, the product of all normal σ -nilpotent subgroups of G.

Note that if all non-normal Sylow subgroups of any Schmidt subgroup of G have prime order, then G is special by Lemma 2.7 in [12]. Hence we get from Theorem 1.11 the following

Corollary 1.12 (Zhang Chi, Skiba [16]). Suppose that G is not σ -nilpotent but every proper local subgroup of G is σ -nilpotent. If non-normal Sylow subgroups of any Schmidt subgroup A contained in a non-normal Hall σ_i -subgroup of G, i = i(A), have prime order, then $G/F_{\sigma}(G)$ is abelian.

The group G is called *semi-nilpotent* [18] if all proper local subgroups of G are nilpotent.

Note that in the case, when $\sigma = \{\{2\}, \{3\}, ...\}, F_{\sigma}(G) = F(G)$ is the Fitting subgroup and $Z_{\sigma}(G) = Z_{\infty}(G)$ is the hypercentre of *G*. Therefore we get in this case from Theorem 1.11 the following known result.

Corollary 1.13 (See [18] or Theorem 7.6 in [19, Chapter 4]). If G is semi-nilpotent and $F_0(G)$ denotes the product of its normal Sylow subgroups, then $G/F_0(G)$ is nilpotent and G/F(G) is abelian.

2 Final remarks

1. If $A \leq G$, then A / A_G is called the *cofactor* of A in G. In this paper, in fact, we follow the general idea of studying groups with restrictions on the cofactors of their subgroups (see, for example, the recent papers [20], [21]).

2. Theorem 1.11 allows to prove the following fact which covers one of the main results in [18], [16].

Theorem 2.1 (See Theorem 5.1 in [12]). Suppose that G is not σ -nilpotent but every proper σ -local subgroup of G is σ -nilpotent. Then G has σ -basis $\{H_1, ..., H_i\}$ such that for some $1 \le r \le t$ the subgroups $H_1, ..., H_r$ are normal in G and H_i is not normal in G for all i > r. Moreover, if H_i is special for all i > r, then $G/F_{\sigma}(G)$ is cyclic.

3. Theorems 1.2, 1.8 and 1.11 remain to be new for each specific partition σ of \mathbb{P} .

4. In the mathematical practice we often deal with the following three classical partitions of \mathbb{P} : $\sigma^1 = \{\{2\}, \{3\}, ...\}, \sigma^{\pi} = \{\pi, \pi'\}$ and

$$\sigma^{1\pi} = \{\{p_1\}, \dots, \{p_n\}, \pi'\},\$$

where $\pi = \{p_1, ..., p_n\}$ (we use here the notations in [7]).

Note that G is: σ^{π} -soluble if and only if G is π -separable, that is, every chief factor of G is either a π -group or a π' -group; σ^{π} -nilpotent if and only

Problems of Physics, Mathematics and Technics, № 3 (40), 2019

if G is π -decomposable, that is, $G = O_{\pi}(G) \times O_{\pi'}(G)$.

Therefore in the case when $\sigma = \sigma^{\pi}$ we get from Theorem 1.11 the following result.

Corollary 2.2. Suppose that G is not π -decomposable but every proper local section of G is π -decomposable. Then the following statements hold:

(i) G/V is π -decomposable, where $V = O_{\pi}(G) \times O_{\pi'}(G)$

is a maximal π -decomposable subgroup of G. Hence G is π -separable, so G has a Hall π -subgroup H_1 and a Hall π' -subgroup H_2 .

(ii) F(G) = DZ, where D is the π -decomposable residual of G and Z is a normal subgroup of G such that $(H/K) \rtimes (G/C_G(H/K))$ is either a π -group or a π' -group for every chief factor H/K of G below Z.

(iii) At least one of the normalizers $N_G(H_1)$ or $N_G(H_2)$, $N_G(H_1)$ say, is not π -decomposable. Moreover, if $N_G(H_i)$ is π -decomposable for any i such that $N_G(H_i) \neq G$, then H_1 is normal in G and $N_G(H_2)$ is π -decomposable. In this case every element of G induces a π' -automorphism on every chief factor of G below $O_{\pi'}(G)$.

A special case of Corollary 2.2 was obtained in the paper [22].

5. In the case when $\sigma = \sigma^{1\pi}$, Theorem 1.11 covers the main result in [23].

REFERENCES

1. Skiba, A.N. On σ -subnormal and σ -permutable subgroups of finite groups / A.N. Skiba // J. Algebra. – 2015. – Vol. 436. – P. 1–16.

2. *Shemetkov*, *L.A.* Formations of finite groups / L.A. Shemetkov. – Moscow: Nauka, 1978. – 272 p.

3. *Ballester-Bolinches*, *A*. On the lattice of \mathfrak{F} -subnormal subgroups / A. Ballester-Bolinches, K. Doerk, M.D. Pèrez-Ramos // J. Algebra. – 1992. – Vol. 148. – P. 42–52.

4. Vasil'ev, A.F. On lattices of subgroups of finite groups / A.F. Vasil'ev, A.F. Kamornikov, V.N. Semenchuk // Infinite groups and related algebraic structures. – Kiev: Institut Matematiki AN Ukrainy, 1993. – P. 27–54.

5. *Ballester-Bolinches*, *A*. Classes of Finite Groups / A. Ballester-Bolinches, L.M. Ezquerro. – Dordrecht: Springer-Verlag, 2006. – 385 p.

6. Kovaleva, V.A. A criterion for a finite group to be σ -soluble / V.A. Kovaleva // Commun. Algebra. – 2019. – Vol. 46. – P. 5410–5415.

7. Skiba, A.N. Some characterizations of finite σ -soluble $P\sigma T$ -groups / A.N. Skiba // J. Algebra. – 2018. – Vol. 495. – P. 114–129.

8. Beidleman, J.C. On τ_{σ} -quasinormal subgroups of finite groups / J.C. Beidleman, A.N. Skiba // J. Group Theory. – 2017. – Vol. 20, $N_{\rm D}$ 5. – P. 955– 964.

9. Skiba, A.N. A generalization of a Hall theorem / A.N. Skiba // J. Algebra Appl. – 2015. – Vol. 15, N 4. – P. 21–36.

10. Doerk, K. Finite Soluble Groups / K. Doerk, T. Hawkes. – Berlin – New York: Walter de Gruyter, 1992. – 891 p.

11. *Shemetkov*, *L.A.* Formations of Algebraic Systems / L.A. Shemetkov, A.N. Skiba. – Moscow: Nauka, 1989. – 254 p.

12. *Skiba*, *A.N.* On generalized local subgroups of finite groups / A.N. Skiba, B. Hu, J. Huang // Preprint. – 2019. – 18 p.

13. *Baer*, *R*. The influence on a finite groups of certain types of its proper subgroups / R. Baer // Illinois J. Math. -1957. - Vol. 1. - P. 115-187.

14. Fedri, V. Sui gruppi finiti i sui sottogruppi locali propri sono superssolubili / V. Fedri, U. Tiberio // Boll. Unione Mat. Ital. – 1980. – Vol. 17, N 1. – P. 73–78.

15. Beidleman, J.C. The influence ons a finite groups of certain types of its proper subgroups / J.C. Beidleman // Riv. Mat. Univ. Parma. -1968. - Vol. 9, No 2. - P. 247–260.

16. *Chi*, *Z*. On semi- σ -nilpotent finite groups / Z. Chi, A.N. Skiba // Journal of Algebra and Its Applications – 2019. – DOI: 10.1142/S021949881950 2001.

17. Gorbachev, V.I. Local F -subgroups of finite groups / V.I. Gorbachev // Problems in Algebra. $-1986. - N_{\odot} 2. - P. 62-72.$

18. Sah, Chih-Han. On a generalization of finite nilpotent groups / Chih-Han Sah // Math. Z. – 1957. – Vol. 68, \mathbb{N} 1. – P. 189–204.

19. Weinstein, M. Between Nilpotent and Solvable / M. Weinstein. – Passaic: Polygonal Publishing House, 1982. – 232 p.

20. Monakhov, V.S. On cofactors of subnormal subgroups / V.S. Monakhov, I.L. Sokhor // Journal of Algebra and Its Applications. -2016. - Vol. 15, N_{P} 9. - DOI: 10.1142/S0219498816501693.

21. Monakhov, V.S. On Groups with Formational Subnormal Sylow Subgroups / V.S. Monakhov, I.L. Sokhor // J. Group Theory. -2018. - Vol. 21, Notor 2. - P. 273-287.

22. Adarchenko, N.M. On finite semi-pdecomposable groups / N.M. Adarchenko, I.G. Blistets, V.N. Rizhik // Problems of Physics, Mathematics and Technics. – 2018. – Vol. 34, $N \ge 1. - P.$ 41– 44.

23. On finite semi- π -special groups / N.S. Kosenok, V.M. Selkin, V.N. Rizhik, V.N. Mitsik // Problems of Physics, Mathematics and Technics. – 2019. – Vol. 39, No 2. – P. 88–91.

Поступила в редакцию 11.04.19.