УДК 547.313.3/14:542.943.:541.127

ХИМИЯ

Академик АН АзербССР М. А. ДАЛИН, Б. Р. СЕРЕБРЯКОВ, А. Г. КОНОВАЛЬЧУКОВ, Г. А. РЕЙТМАН, Т. Б. ДАДАШЕВ, В. К. ЦЫСКОВСКИЙ

КИНЕТИКА ЭПОКСИДИРОВАНИЯ ПРОПИЛЕНА ГИДРОПЕРЕКИСЬЮ ЭТИЛБЕНЗОЛА

Одним из наиболее перспективных способов промышленного производства окисей олефинов является реакция эпоксидирования олефинов гидроперекисями углеводородов с одновременным «раскислением» последних в соответствующие спирты

$$\begin{array}{l} R_{2}C \\ R_{3} \end{array} \hspace{-0.5cm} - \hspace{-0.5cm} \hspace{-0.5cm}$$

Реакция между олефинами и гидроперекисями с целью получения эпоксидных соединений служила объектом многочисленных безуспешных исследований, до тех пор пока не были описаны (1-5) эффективные катализаторы (ноны металлов IV—VI групп периодической системы), в присутствии которых в определенных условиях она протекает с почти количественным выходом. Недавно появились сообщения (6-8) о строительстве и пуске промышленных установок по производству окиси пропилена на основе реакции между пропиленом и гидроперекисями трет.-бутила или этилбензола.

В последнее время опубликованы работы (*, 10) по изучению кинетики и механизма реакции эпоксидирования олефинов гидроперекисями. Авторами (*) исследована кинетика эпоксидирования циклогексена гидроперекисью трет.-бутила в присутствии ванадиевого катализатора, а авторы (10) распространили механизм (*) на случай взаимодействия пропилена с гидроперекисью этилбензола в присутствии резината молибдена. В (*, 10) реакция изучалась при температуре менее 70°; авторы обеих работ приходит к выводу, что кинетика ее напоминает кинетику ферментативного катализа и протекает по схеме конкурентного ингибирования, причем избирательность образования эпоксида весьма близка к 100%.

Однако при технической реализации реакция осуществляется при температурах выше 70° (100—125°), когда достигаются приемлемые скорости ее протекания. С повышением температуры селективность превращения гидроперекиси в эпоксид существенно снижается; образуется ряд побочных продуктов, основными из которых являются кетон и карбинол, обнаруживаемый в некотором избытке по отношению к получающейся окиси пропилена. Ингибирования процесса карбинолом при температуре выше 90° вообще не наблюдается. Отметим, что это соответствует утверждению авторов (10) об ослаблении эффекта ингибирования с повышением температуры.

Целью настоящей работы явилось изучение закономерностей реакции взаимодействия пропилена с гидроперекисью этилбензола при повышенных температурах, предпринятое для выяснения некоторых вопросов ее механизма в этих условиях и получения кинетических уравнений, необходимых для последующей оптимизации процесса.

Опыты по изучению реакции эпоксидирования пропилена гидроперекисью этилбензола проводили в статической системе на укруппенной лабораторной установке (объем реактора 2,7 л) в присутствии молибденсодержащего катализатора. Анализ продуктов реакции выполняли химическими и хроматографическими методами.

На основании анализа полученных экспериментальных данных нами

постулирован приведенный ниже постадийный механизм реакции:

$$R_{2}^{R_{1}} = 00H + K \underset{k_{-1}}{\overset{k_{1}}{\rightleftharpoons}} \left[R_{2}^{R_{1}} = 00H \cdot K \right],$$
 (I)

$$\begin{bmatrix} R_{1}^{R_{1}} - OOH \cdot K \end{bmatrix} + C_{3}H_{6} \xrightarrow{k_{3}} CH_{2} - CH - CH_{3} + \begin{bmatrix} R_{2}C - OH \cdot K \\ R_{3} \end{bmatrix}, \quad (II)$$

$$\begin{bmatrix} R_{1} \\ R_{2}C - OH \cdot K \end{bmatrix} + R_{1}C - OOH \xrightarrow{k_{3}} R_{2}C - OH + \begin{bmatrix} R_{1} \\ R_{2}C - OOH \cdot K \end{bmatrix}, \quad (III)$$

$$\begin{bmatrix} R_{1} \\ R_{2}C - OOH \cdot K \\ R_{3} \end{bmatrix} + \begin{bmatrix} R_{1} \\ R_{2}C - OOH \xrightarrow{k_{4}} 2R_{2}C = O + 2R_{3}OH + K, \\ R_{3} \end{bmatrix}$$
(IV)

$$\begin{bmatrix} R_1 \\ R_2C - OOH \cdot K \end{bmatrix} + R_2C - OOH \xrightarrow{k_3} \begin{bmatrix} R_1 \\ R_2C - OH \cdot K \end{bmatrix} + R_2COH + O_2.$$
 (V)

В приведенном механизме, аналогично (*), предполагается, что окись пропилена образуется через промежуточный комплекс катализатор — гидроперекись, стадия (I), взаимодействующий с олефином, стадия (II). Полученный в результате промежуточный комплекс катализатор — карбинол реагирует с молекулой гидроперекиси, стадия (III), благодаря чему восстанавливается комплекс катализатор — гидроперекись и освобождается карбинол. Мы полагаем, что при повышенной температуре эта стадия необратима.

Побочные продукты образуются в результате атаки промежуточного комплекса катализатор — гидроперекись свободной гидроперекисью, которая идет в двух направлениях: с образованием двух молекул соответствующего кетона и воды или низкомолекулярного спирта (при взаимодействии пропилена и гидроперекиси кумола в продуктах реакции фиксировался метанол) и регенерацией катализатора, стадия (IV), или с образованием карбинола и выделением молекулярного кислорода, стадия (V).

Использование метода стационарных состояний применительно к этой схеме приводит к следующим уравнениям, описывающим скорости общего распада гидроперекиси (г), образования окиси пропилена (оп), ацетофено-

на (ацф) и метилфенилкарбинола (мфк):

$$w_r = k_1 C_r C_r [1 - (k_{-1} - (2k_5 + k_4)C_r - k_2 C_a) / (k_{-1} + k_4 C_r)], \quad (1)$$

$$w_{\text{on}} = k_1 k_2 C_r C_R C_R / (k_{-1} + k_4 C_r),$$
 (2)

$$w_{M\Phi R} = k_1 C_r C_R (k_2 C_R + 2k_5 C_r) / (k_{-1} + k_4 C_r),$$
 (3)

$$w_{an\phi} = 2k_1k_4C_r^2C_R/(k_{-1} + k_4C_r),$$
 (4)

где C_r — концентрация гидроперекиси этилбензола (мол/л), C_π — концентрация пропилена (мол/л), C_κ — концентрация катализатора (мол/л).

Эти уравнения преобразуются к следующему виду:

$$w_r = K_1 C_r (2k_{11}C_r + k_2 C_{\pi}) / (1 + K_{111}C_r),$$
 (5)

$$w_{\text{on}} = K_{\text{I}}k_{\text{2}}C_{\text{r}}C_{\text{n}}/(1 + K_{\text{III}}C_{\text{r}}), \tag{6}$$

$$w_{\pi o \delta} = 2K_{\rm I}K_{\rm II} C_{\rm r}^2 C_{\rm r}/(1 + K_{\rm III}C_{\rm r}),$$
 (7)

где $K_1=k_1\,/\,k_{-1}$ — константа диссоциации комплекса «катализатор — гидроперекись», $K_{\rm II}=k_4+k_5$ — константа скорости образования побочных продуктов, $K_{\rm III}=k_4\,/\,k_{-1}$ — константа, выражающая соотношение направлений разложения комплекса катализатор — гидроперекись, $w_{\pi o b}$ — суммарная скорость образования побочных продуктов.

Здесь важно отметить, что скорость превращения гидроперекиси не обращается в нуль при $C_{\pi} = 0$, а порядок реакций образования побочных

по гидроперекиси на единицу выше, чем реакции эпоксидирования.

кон-Для подбора стант, входящих в уравнения (5) — (7), были использованы экспериментальные данные по кинетике распада гидроперекиси этилбензола (ГПЭБ) и накопления окиси пропилена при снятии изотерм реакции при 76; 92; 110 и 120°, при постоянных концентрации катализатора и

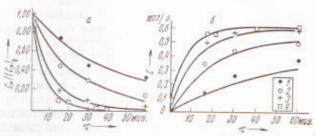


Рис. 1. Кинетика распада гидроперекиси этилбензола (a) и накопления окиси пропилена (б) при эпоксидировании пропилена. $C_{\text{C,He}}:C_{\text{r}^0}=10:1$ (мол.), $C_{\text{R}}:C_{\text{r}^0}=0,00077$ (мол. Мо на 1 моль). $I-76^\circ$, $2-92^\circ$, $3-110^\circ$, $4-120^\circ$. Кривые рассчитаны: a- по уравнению (5), 6- по уравнению (6)

начальном отношении С₃Н₆: ГПЭБ, Подбор констант проводился на ЭЦВМ «Наири» по следующей схеме: дифференциальные уравнения, описывающие распад гидроперекиси и образование окиси пропилена, решались мето-

дом Рунге — Кутта, величина $\sum_{0}^{n} \frac{|C_{\text{расч}} - C_{\text{эксп}}|}{c_{\text{эксп}}} = f\left(k_{i}\right)$ минимизировалась методом градиента с адаптацией шага. Найденные значения констант

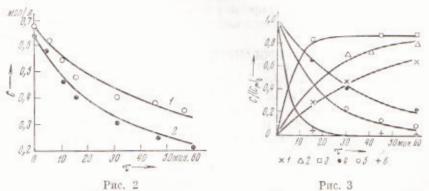


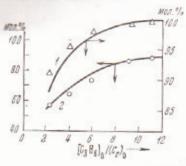
Рис. 2. Кинетика распада гидроперекиси этилбензола в отсутствие пропилена. $C_{\rm H}$: $C_{\rm F}{}^0$ = 0,00075 моль Мо на 1 моль, I — 104°, 2 — 118°. Кривые рассчитаны по уравнению (5) при $C_{\rm H}$ = 0

Рис. 3. Влияние концентрации катализатора на кинетику распада гидроперекиси этилбензола и накопления окиси пропилена. $T=410^\circ$:

$C_{\rm K}$, моль Мо на 1 л	C_{OII}	C_{Γ}
0,00013	1	4
0,00026	2	5
0,00083	3	6
Кривые — расчетные		

при различных температурах аппроксимировались уравнением Арренцуса, козффициенты которого отыскивались по методу наименьших квадратов. Определенные таким образом выражения для констант имеют вид:

 $K_1 = 49,6 \exp(-3480 / RT) \pi \cdot \text{моль}^{-1}, \quad K_{11} = 2,19 \cdot 10^5 \exp(-5960 / RT) \pi \cdot \text{моль}^{-1} \cdot \text{мин}^{-1}, \quad k_2 = 5,7 \cdot 10^7 \exp(-10500 / RT) \pi \cdot \text{моль}^{-1} \cdot \text{мин}^{-1}, \quad K_{111} = 113 \exp(-15880 / RT) \pi \cdot \text{моль}^{-1}.$


На рис. 1 экспериментальные данные по кинетике раснада гидроперекиси и накопления окиси процилена сопоставлены с расчетными, полученными при интегрировании уравнений, описывающих процесс в реакторе-

идеального вытеснения, с учетом найденных значений констант.

Оцепка адекватности кинетической модели была осуществлена путем сравнения расчетных данных с экспериментальными, полученными в сериях опытов, результаты которых не учитывались при подборе констант, а именно: с данными по кинетикекаталитического распада гидроперекиси в отсутствие пропилена; по кинетике распада гидроперекиси и накопления окиси пропилена при варьировании концентрации катализатора; по изменению показателей процесса в зависимости от начального мольного отношения пропилен: гидроперекись.

О результатах такого сравнения можносудить по рис. 2—4. Как видно, наблюдается хорошая сходимость результатов эксперимента с данными, получаемыми при расчетах, что свидетельствует о достоверности постулированного механизма. Предлагаемая модель может быть использована для

моделирования и оптимизации процесса эпоксидирования в реакторах различного типа.

Поступило 14 I 1971

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ Бельг. пат. № 641452, 1964. ² М. Indictor, W. F. Brill, J. Org. Chem., 30, 2074 (1965). ³ Франц. пат. № 1459797, № 1460520, 1965. ⁴ Пат. США, № 3351635, 1966. ⁵ Chem. Eng. News, 18, 31 (1967). ⁶ W. P. Sherwood, Erdol u. Kohle, 21, № 12, 793 (1968). ⁷ Inform. Chim., 59, 41, 45 (1968). ⁸ Chem. Week, October 19, 1968, p. 94. ⁶ T. S. Could, R. R. Hiatt, K. C. Irwin, J. Am. Chem. Soc., 90, № 7, 4573 (1968). ¹⁰ М. И. Фарберов, Г. А. Стожкован др., Нефтехимия, 10, № 2, 218 (1970).