Министерство образования Республики Беларусь

Учреждение образования «Гомельский государственный университет имени Франциска Скорины»

г. ю. тюменков термодинамика

G. YU. TYUMENKOV

THERMODYNAMICS

Рекомендовано Учебно-методическим объединением по естественно-научному образованию в качестве учебно-методического пособия для студентов учреждений высшего образования, обучающихся по специальностям «Прикладная физика», «Физика», «Компьютерная физика»

Гомель ГГУ им. Ф. Скорины 2025 УДК 536(075) ББК 22.317.1я73 Т983

Рецензенты:

доктор физико-математических наук П. А. Хило, кандидат технических наук Н. А. Ахраменко, кандидат филологических наук В. В. Аверьянова

Рекомендовано к изданию научно-методическим советом учреждения образования «Гомельский государственный университет имени Франциска Скорины»

Тюменков, Г. Ю.

Т983 Термодинамика = Thermodynamics : учебно-методическое пособие / Г. Ю. Тюменков ; М-во образования Республики Беларусь, Гомельский гос. ун-т им. Ф. Скорины. — Гомель : ГГУ им. Ф. Скорины, 2025. — 81 с.

ISBN 978-985-32-0094-2

Учебно-методическое пособие направлено на оказание помощи студентам, в том числе и обучающимся на английском языке, в процессе усвоения основ термодинамики, а также при подготовке к текущей, промежуточной и итоговой аттестации.

Адресовано студентам специальностей: 6-05-0533-01 «Физика», 6-05-0533-02 «Прикладная физика», 6-05-0533-04 «Компьютерная физика».

УДК 536(075) ББК 22.317.1я73

ISBN 978-985-32-0094-2

- © Тюменков Г. Ю., 2025
- © Учреждение образования «Гомельский государственный университет имени Франциска Скорины», 2025

ОГЛАВЛЕНИЕ – CONTENTS

Введение – Introduction	4
1. Тестовые задания на русском языке – Test tasks in Russian	8
2. Тестовые задания на английском языке – Test tasks in English.	43
3. Ответы к тестовым заданиям – Answers to the test task	78
Литература — Literature	80
Полезные сайты – Useful sites	81

ВВЕДЕНИЕ – INTRODUCTION

Теория оказывается тем более впечатляющей, чем проще ее предпосылки, чем значительнее разнообразие охватываемых ею явлений и чем шире область ее применимости. Именно поэтому классическая термодинамика произвела на меня очень глубокое впечатление. Это единственная общая физическая теория, и я убежден, что в рамках применимости своих основных положений она никогда не будет опровергнута.

А. Эйнштейн, Принстон, США, 1949

A theory is the more impressive
the greater the simplicity
of its premises, the more different
kinds of things it relates, and the more
extended its area
of applicability. Therefore the deep
impression that classical
thermodynamics made upon me.
It is the only physical theory
of universal content which
I am convinced will never
be overthrown, within the framework
of applicability
of its basic concepts.

A. Einstein, Princeton, USA, 1949

Термодинамика в её классическом варианте — наука о тепловых явлениях. Её фундаментальные понятия — это температура и энтропия. Она исходит из наиболее общих закономерностей тепловых процессов и свойств макроскопических систем. Выводы термодинамики опираются на совокупность опытных фактов. Они не зависят от наших знаний о внутреннем устройстве вещества. Хотя в некоторых частных случаях она косвенно использует, например, информацию о взаимодействии структурных элементов.

Классическая термодинамика состоит из разделов:

- главные законы термодинамики (иногда также называемые началами);
- уравнения состояния и прочие свойства простых термодинамических систем (идеальный газ, реальный газ, диэлектрики и магнетики и т. д.);
- равновесные процессы в простых системах, термодинамические циклы;
 - неравновесные процессы и закон неубывания энтропии;
 - термодинамические фазы и фазовые переходы.

Важным методическим приемом повышения эффективности обучения термодинамике, в том числе, является текущий контроль

знаний. Немаловажное значение при этом имеет самоконтроль, позволяющий учащемуся в течение семестра оценивать уровень своих знаний. Наиболее перспективной формой контроля знаний является тестирование.

К его достоинствам, несомненно, относятся универсальность, объективность и прямая ориентированность на использование современных технических средств, в первую очередь, компьютерных. ПК технологии могут быть с успехом использованы на всех стадиях учебного процесса, так как позволяют достаточно рельефно выделить общую структуру и главные положения излагаемого курса, обобщить и систематизировать материал в рамках предлагаемых разделов либо тем.

Понятно, что компьютерное тестирование не позволяет преподавателю анализировать характер мышления обучаемого, его умение давать полный развернутый ответ, выявляемые в процессе индивидуального опроса. Поэтому правильным является использование тестирования как предварительной либо же дополнительной формы контроля знаний совместно с традиционными формами, такими как коллоквиумы, зачёты и экзамены.

Текущий контроль знаний осуществляется по мере прохождения разделов курса. Он позволяет студентам объективно оценивать уровень своих знаний. Что, в свою очередь, корректирует направленность самостоятельной работы в рамках изучаемого курса.

Данные методические материалы предназначены для подготовки студентов к компьютерному тестированию по курсу «Термодинамика и статистическая физика» (раздел «Термодинамика») с целью контроля и коррекции знаний.

В тестовых заданиях использованы традиционные термодинамические обозначения и стандартная терминология [1], например, U — внутренняя энергия, S — энтропия, μ — химический потенциал и т. д. Отдельно хотелось бы оговорить следующие два обозначения: c — теплоёмкость термодинамической системы, [c] = Дж/K; C — молярная теплоёмкость [C] = Дж/(K·моль). В каждом пункте возможен только один правильный ответ. Номера ответов идут сверху вниз. Литературные источники, содержащие термодинамику [2–8], также окажутся весьма полезными при её изучении.

Тест также может быть использован для проведения само-контроля знаний по термодинамике.

Thermodynamics in its classical form is the science of thermal phenomena. Its fundamental concepts are temperature and entropy. It is based on the most general laws of thermal processes and the properties of macroscopic systems. The conclusions of thermodynamics are based on a set of experimental facts. They do not depend on our knowledge of the internal structure of matter. Although in some particular cases it indirectly uses, for example, information on the interaction of structural elements.

Classical thermodynamics consists of sections:

- the main laws of thermodynamics (sometimes also called principles);
- equations of state and other properties of simple thermodynamic systems (ideal gas, real gas, dielectrics and magnets, etc.);
 - equilibrium processes in simple systems, thermodynamic cycles;
 - nonequilibrium processes and the law of non-decreasing entropy;
 - thermodynamic phases and phase transitions.

An important methodological technique for increasing the effectiveness of training in thermodynamics, among other things, is current knowledge monitoring. Equally important is self-control, which allows the student to assess the level of his knowledge independently during the semester. The most perspective form of knowledge control is testing.

Undoubtedly, its advantages include universality, objectivity and a direct focus on the use of modern technical means, primarily computer ones. PC technologies can be successfully used at all stages of the educational process, as they allow you to highlight the general structure and main provisions of the course, summarize and systematize the material within the proposed sections or topics.

It is clear that computer testing does not allow the teacher to analyze the nature of the student's thinking, his ability to give a complete detailed answer, which is revealed in the process of an individual survey. Therefore, the most correct is the use of testing as a preliminary or additional form of knowledge control in conjunction with traditional forms – tests and exams. All of the above directly applies to foreign students studying in English.

Current knowledge control is carried out as the sections of the course are completed and allows students to objectively assess their level of knowledge. Which in turn corrects the focus of independent work within the course being studied.

These teaching materials are intended to prepare foreign students for testing in the course "Thermodynamics and statistical physics" (part I – "Thermodynamics") in order to control and correct their knowledge.

The traditional thermodynamic designations and standard terminology [1] are used, for example, U is the internal energy, S is the entropy, μ is the chemical potential, etc. We would like to separately discuss the following two designations: c is the heat capacity of a thermodynamic system, [c] = J/K; C is the molar heat capacity, $[C] = J/(K \cdot mol)$.

Each item has only one correct answer. Answer numbers go from top to bottom. Literary sources containing thermodynamics [2–8] will also be very useful in studying it.

The test can also be used for self-control of knowledge in thermodynamics.

1. ТЕСТОВЫЕ ЗАДАНИЯ НА РУССКОМ ЯЗЫКЕ – TEST TASKS IN RUSSIAN

No	Содержание вопроса	Варианты ответов
1	Дифференциал внутренней энергии газовой системы с перемен-	1) $dU = -TdS - PdV + \mu dN$; 2) $dU = -TdS + PdV + \mu dN$;
1.	ным количеством вещества имеет вид	3) $dU = TdS - PdV + \mu dN$; 4) $dU = TdS - PdV - \mu dN$; 5) $dU = TdS + PdV - \mu dN$.
2.	Обобщённой силой и обобщённой координатой для стержней соответственно являются	1) f и l; 2) (-f) и (-l); 3) f и (-l); 4) l и (-f); 5) (-f) и l.
3.	Термодинамический потенциал Гиббса в СИ имеет размерность	1) кг·м²·с; 2) кг·м/с²; 3) кг·м²/с; 4) кг·м/с; 5) кг·м²/с².
4.	Общее название процессов перехода макросистемы из неравновесного состояния в равновесное — это	 выравнивание; сублимация; релаксация; работа; теплопередача.
5.	Критический объем $V_{\kappa p}=4b$ соответствует уравнению состояния	 Редлиха – Квонга; Ван-дер-Ваальса; Дитеричи-I; Дитеричи-II; Бертло.
6.	КПД тепловой машины η изменяется в пределах	1) $0 < \eta < 10$; 2) $0 < \eta < 1$; 3) $1 < \eta < 2$; 4) $1 < \eta < 10$; 5) $0.5 < \eta < 1.5$.
7.	Первое уравнение Эренфеста следует из равенства фаз.	1) молярных энтропий; 2) молярных объёмов; 3) химических потенциалов; 4) термодинамических потенциалов Гиббса; 5) температур.

No	Содержание вопроса	Варианты ответов
		1) Клапейрона – Клаузиуса;
	Ma dan ayamna yaya ayaya ayaya wanay	2) Менделеева – Клапейрона;
8.	Из равенства химических потен-	3) Ван-дер-Ваальса;
	циалов фаз следует уравнение	4) Бертло;
		5) политропы.
		1) Шарля;
	Если показатель политропы	2) Бернулли;
9.	$\varkappa = 0$, то процесс подчиняется	3) Бойля – Мариотта;
	закону	4) Гей-Люссака;
		5) Пуассона.
		1) вторым уравнением
		Дитеричи;
		2) первым уравнением
	Если в PV -плоскости изотерма	Дитеричи;
10.	не может иметь точку касания	3) уравнением Бертло;
	${\tt c}$ осью ${\it V}$, то мы имеем дело ${\tt c}$	4) уравнением
		Редлиха – Квонга;
		5) уравнением
		Ван-дер-Ваальса.
	Процесс Джоуля – Томсона яв-	1) изотермическим;
		2) изобарным;
11.	ляется	3) изохорным;
		4) изоэнтальпическим;
		5) адиабатическим.
	To the state of th	1) энергии;
1.0	В двухпараметрических уравне-	2) давления;
12.	ниях состояния параметр b имеет	3) объёма;
	размерность	4) энтропии;
		5) температуры.
		1) F = U + TS + PV;
1.2	Свободная энергия газа F опре-	2) F = U - TS + PV;
13.	деляется выражением	$\begin{array}{c} 3) \ F = U + PV; \\ \hline \end{array}$
	1	4) F = U - TS;
		5) F = U + TS.
	Иродория воро Вом чет Воста	1) один экстремум;
1 /	Изотермы газа Ван-дер-Ваальса	<u> </u>
14.	в PV -плоскости при $T < T_{\kappa p}$ имеют	3) точку перегиба;
		4) множество точек перегиба;
		5) разрыв.

No	Содержание вопроса	Варианты ответов
		1) адиабатическими;
	1 * ''	2) политехническими;
15.		3) замкнутыми;
	степеней свободы, называются	4) политропическими;
		5) поливариантными.
		1) функцией состояния;
	Количество теплоты Q в термо-	2) функцией баланса;
16.	динамике является	3) функцией процесса;
	динамике является	4) функционалом меры;
		5) функционалом действия.
		1) фазовый переход I рода;
	Изменение типа кристаллической	2) фазовый переход II рода;
17.	решетки, приводящее к скачку	3) фазовый переход 0 рода;
	теплоемкости, - это	4) нефазовый переход;
		5) безфазовый переход.
		1) $c_l - 2c_f = 0$;
	Аналог формулы Майера для иде-	2) $c_l + c_f = 0$;
18.	альных стержней имеет вид	3) $c_f + 2c_l = 0$;
		$4) c_f - c_l = R;$
		5) $c_f - c_l = 0$.
	Если в уравнении состояния	1) Фаренгейта;
	идеального газа положить	2) Цельсия;
19.	R = 8,31 Дж/(град·моль), то	3) Кельвина;
	шкала температур становится	4) Планка;
	шкалой	5) Больцмана.
		1) третьим началом;
	Принцип Нернста называют	2) вторым началом;
20.	термодинамики.	3) первым началом;
	термодинамики.	4) нулевым началом;
		5) абсолютным началом.
		1) равный 0;
	Второе начало термодинамики	2) равный 1;
21.	запрещает иметь КПД цикла	3) равный 0,5;
	запрещает иметь ктід цикла	4) вообще;
		5) меньше 1.
		1) 1 адиабаты и 2 изотерм;
		2) 2 адиабат и 2 изотерм;
22.	Цикл Карно состоит из	3) 2 адиабат и 1 изотермы;
		4) 2 изохор и 2 изобар;
		5) 1 изотермы и 2 изобар.

No	Содержание вопроса	Варианты ответов
23.	Термодинамический коэффициент вида $\left(\frac{\partial T}{\partial V}\right)_{P}$ для идеального газа равен	1) $\frac{T}{P}$; 2) $\frac{R}{P}$; 3) $\frac{P}{R}$; 4) $\frac{V}{P}$; 5) $\frac{R}{V}$.
24.	Таблица термодинамических ко- эффициентов содержит част- ных производных.	1) 19; 2) 13; 3) 8; 4) 10; 5) 12.
25.	Физическое равноправие <i>PV</i> - и <i>TS</i> -плоскостей достигается условием	1) $\frac{\partial(PV)}{\partial(TS)} = 0;$ 2) $\frac{\partial(PV)}{\partial(TS)} = 1;$ 3) $\frac{\partial(PV)}{\partial(TS)} = 2;$ 4) $\frac{\partial(PV)}{\partial(TS)} \neq 1;$ 5) $\frac{\partial(PV)}{\partial(TS)} \neq 0.$
26.	Полным является дифференциал	 работы <i>A</i>; теплоты <i>Q</i>; теплоёмкости <i>c_P</i>; энтропии <i>S</i>; теплоёмкости <i>c_V</i>.
27.	Молярный термодинамический потенциал Гиббса — это потенциал.	 химический; адиабатический; изотермический; изобарный; изохорный.

No	Содержание вопроса	Варианты ответов
		1) І-е уравнение Дитеричи;
	D'T'	2) уравнение Бертло;
28.		3) уравнение Клапейрона;
	$V-b = \frac{5}{V^3}$	4) уравнение Клаузиуса;
	v	5) II-е уравнение Дитеричи.
	Helichen and Second of the same	1) $P \leq 8,485 P_{\kappa p}$;
	Нефизическая область эффекта	2) $P > 8,485P_{\kappa p}$;
29.	Джоуля – Томсона для газа Берт-	3) $\lambda > 0$;
	ло удовлетворяет условию	4) λ < 0;
		5) $P < 0$.
		$1)\left(\frac{X}{X_{\kappa p}}\right)^2;$
30.	Приведённая форма некоторой	$\frac{X_{\kappa p}}{X};$
50.	переменной X определяется отношением	3) $X_{\kappa p} \cdot X$;
	ношением	4) $\frac{X}{X_{\kappa p}}$;
		$5) X \cdot (X_{\kappa p})^{\frac{1}{2}}.$
	По отношению к количеству	1) экстенсивными;
	вещества системы N температу-	2) аддитивными;
31.	ра T и давление P являются па-	3) интенсивными;
	раметрами	4) безразличными;
		5) поливариантными.
32.		$1) \left(\frac{\partial P}{\partial V} \right)_T > 0;$
	На изотермах газа Ван-дер- Ваальса в <i>PV</i> -плоскости нефи- зическая область там, где	$2) \left(\frac{\partial P}{\partial V}\right)_T < 0;$
		$3) \left(\frac{\partial S}{\partial V} \right)_T > 0;$
		$4) \left(\frac{\partial P}{\partial S}\right)_T > 0;$
		$5) \left(\frac{\partial P}{\partial V} \right)_{V} > 0.$

No	Содержание вопроса	Варианты ответов
		1) R;
33.	Адиабатическая теплоемкость	2) ∞;
	термодинамической системы c_S	3) 0;
	равна	4) 1;
		5) c _T .
		1) $P < 0, V > 0, T > 0$;
	Метастабильное состояние рас-	2) $P > 0$, $V > 0$, $T > 0$;
34.	тянутой жидкости возникает	3) $P < 0, V < 0, T > 0$;
	при условии	4) $P < 0, V > 0, T < 0;$
		5) $P < 0, V < 0, T < 0.$
		1) модуль Юнга;
	В упориании состояния инаси	2) площадь сечения;
35.	В уравнении состояния идеаль-	3) температура;
	ного стержня отсутствует	4) объём;
		5) длина.
		1) $V_1(T, S) = V_1(T, S);$
	Условие фазового равновесия –	2) $P_1(T, S) = P_1(T, S);$
36.	это	3) $S_1(P, V) = S_2(P, V);$
	910	4) $W_1(T, V) = W_2(T, V);$
		5) $\mu_1(P, T) = \mu_2(P, T)$.
		1) разравнивания;
	В теплоизолированных системах	2) выравнивания;
37.	энтропия возрастает в процес-	3) выпрямления;
	cax	4) искривления;
		5) равновесных.
	Физическая и химическая неод-	1) виды и отряды;
	нородность системы соответ-	2) компоненты и фазы;
38.	ственно характеризуется нали-	3) фазы и компоненты;
	чием разных	4) отряды и виды;
	man pasibiliti	5) хаосы и фракталы.
		1) бинарна;
•	О температуре можно сказать,	2) аддитивна;
39.	что она	3) интенсивна;
		4) экстенсивна;
		5) поливариантна.
	п 11	1) $dU = -TdS - fdl$;
40.	Дифференциал внутренней энер- гии в теории стержней имеет вид	2) $dU = TdS - fdl$;
		-
		4) dU = TdS + fdl;
		5) dU = TdS - PdV.

No	Содержание вопроса	Варианты ответов
		1) P и (-V);
	Обобщённой силой и обобщён-	2) V и P;
41.	ной координатой в теории газов	3) Р и V;
	соответственно являются	4) V и (– <i>P</i>);
		5) (- <i>P</i>) и <i>V</i> .
		1) кг·м²/с²;
	Duman was W. p. ouemans C. C. unsa	2) кг·м²/c;
42.	Энтальпия W в системе СИ име-	3) кг·м/с ² ;
	ет размерность	4) $\mathrm{K}\Gamma \cdot \mathrm{c}^2/\mathrm{M}^2$;
		5) кг·м/с.
		1) сублимацией;
	Прямой фазовый переход из га-	2) десублимацией;
43.	зообразного состояния в твёр-	3) диффузией;
	дое состояние называется	4) кристаллизацией;
		5) антивозгонкой.
		1) Дитеричи-І;
	Критический объём газа Ван-	2) Дитеричи-II;
44.	дер-Ваальса совпадает с крити-	3) идеального;
	ческим объемом газа	4) Клаузиуса;
		5) Бертло.
		T_1
		1) $1 + \frac{T_1}{T_2}$;
		T
		2) $1 - \frac{T_1}{T_1}$;
	КПД цикла Карно η_c определя-	T_2
4.5	ется температурой нагревателя	3) $\frac{T_1}{T_2} - 1$;
45.	T_1 и температурой холодильни-	$\frac{3}{T_2}$ $\frac{1}{T_2}$
	ка T_2 как	
		4) $1 + \frac{T_2}{T_1}$;
		T_1
		T_2
		5) $1 - \frac{T_2}{T_1}$.
		1) внутренних энергий;
	Второе уравнение Эренфеста для	
46.	фазовых переходов второго рода	
40.	следует из равенства фаз.	4) молярных объёмов;
	следует из равенетва фаз.	5) молярных объемов,
		э) молирных энтропии.

No	Содержание вопроса	Варианты ответов
	При фазорых переуолах перрого	1) молярных объёмов;
	При фазовых переходах первого рода наличие теплообмена с	2) молярных энтропий;
47.	внешними системами обуслов-	3) молярных энтальпий;
	лено изменением фаз.	4) теплоемкостей;
	лено изменением фаз.	5) сжимаемостей.
	Если уравнение политропы при-	1) 0;
	водит к закону Бойля – Мариотта,	2) ∞;
48.	то показатель политропы и ра-	3) 1;
	Вен	4) π;
	Bell	5) −∞.
		$1) \varkappa = \frac{c - c_V}{c - c_P};$
		$2) \varkappa = \frac{c - c_T}{c - c_S};$
49.	49. Показатель политропы определяется соотношением	$3) \varkappa = \frac{c - c_P}{c - c_V};$
		$4) \varkappa = \frac{c - c_S}{c - c_T};$
		$5) \varkappa = \frac{c - c_P}{c - c_T}.$
	В процессе Джоуля – Томсона	1) $P_1 < P_2$;
	давления начального P_1 и ко-	2) $P_1 > P_2$;
50.	нечного P_2 состояний соотно-	3) $P_1 = P_2$;
	сятся как	4) $P_1 \neq P_2$;
	CATCA RGR	5) $P_1 \approx P_2$.
	<u>_</u>	1) 1910 году;
	Иоханнес Дидерик ван-дер-	
51.	Ваальс получил Нобелевскую	
	премию по физике в	4) 1940 году;
		5) 1900 году.
	T	1) $\Phi = F - U + PV$;
	Термодинамический потенциал	2) $\Phi = U + PV + TS$;
52.	Гиббса Φ определяется выражением	
		$4) \Phi = F + PV;$
		$5) \Phi = F - U.$

No	Содержание вопроса	Варианты ответов
	Carayampa yaamany yaaayyaa	1) параболы;
	стержня в $\mathfrak{f}\iota$ -плоскости пред-	2) гиперболы;
53.		3) экспоненты;
	ставляет собой, исходящие из	4) прямые;
	точки $f = -\sigma E \dots$	5) синусоиды.
	Подировноминая опотомо опито	1) 0;
	Поливариантная система считается бинарной, если число её	2) 1;
54.		3) 2;
	нетепловых степеней свободы	4) 3;
	равно	5) 4.
		1) изотермическому;
	Panting HVIIIA PAGOTA COOTRATCTRY	2) изохорному;
55.	Равная нулю работа соответству-	3) изобарному;
	ет процессу.	4) адиабатическому;
		5) круговому.
		1) объёма и температуры;
	Орнания кристанизации проис	2) объёма и давления;
56.	Явление кристаллизации происходит при постоянстве	3) давления и температуры;
		4) энтропии и объёма;
		5) энтропии и давления.
		$1) C_V - C_P = R;$
		$2) C_V + C_P = R;$
57.	Формула Майера – это	3) $C_V - C_P = 0$;
		$4) C_P + C_V = 2R;$
		$5) C_P - C_V = R.$
		1) 6,67 M^2 кг/(c^2 К·моль);
	Универсальная газовая постоян-	2) 8,31 м ² кг/(с ² К·моль);
58.	ная R равна	3) 9,8 м ² кг/(с ² К·моль);
	ная К равна	4) 5,67 м ² кг/(с ² К·моль);
		$5) 2,9 \text{ м}^2$ кг/(c^2K ·моль).
		1) давления;
	Принцип Нернста регламентиру-	2) энтропии;
59.	ет поведение при $T \rightarrow 0$.	3) потенциала Гиббса;
	ст поведение при 1 7 о.	4) объёма;
		5) свободной энергии.
		1) первого рода;
	Второе начало термодинамики	2) второго рода;
60.	говорит о невозможности созда-	3) третьего рода;
	ния вечного двигателя	4) внутреннего сгорания;
		5) на быстрых нейтронах.

№	Содержание вопроса	Варианты ответов
	Утверждение, что существует	1) принцип однозначности;
	не единственная однозначная	2) принцип энтропии;
61.	функция состояния, остающаяся	3) принцип Нернста;
	постоянной при любом процес-	4) принцип энергии;
	се в термостате – это	5) принцип температуры.
	D D. 17	1) молярной энтальпии W ;
	Выражение $\Delta = \frac{R}{\gamma - 1} \cdot \ln \frac{PV^{\gamma}}{P_0 V_0^{\gamma}}$	(2) внутренней энергии U ;
62.	$\gamma - 1$ $P_0 V_0^{\gamma}$	3) молярной энтропии S ;
	задаёт изменение	4) свободной энергии F ;
	00A001 1101120111	5) температуры <i>T</i>.
		1) $dF = -SdT - PdV$;
	Полный дифференциал свобод-	2) dF = SdT - PdV;
63.	ной энергии F газа имеет вид	3) dF = -SdT + PdV;
	пои эпергии г таза имеет вид	4) dF = SdT + PdV;
		5) dF = -TdS - PdV.
		1) $\alpha_P = V^{-1} \left(\frac{\partial V}{\partial T} \right)_P$;
	Адиабатический коэффициент объемного расширения – это	2) $\alpha_S = V^{-1} \left(\frac{\partial V}{\partial T} \right)_S$;
64.		3) $\alpha_W = V^{-1} \left(\frac{\partial V}{\partial T} \right)_W;$
		4) $\alpha_S = V \left(\frac{\partial V}{\partial T} \right)_S$;
		5) $\alpha_T = V^{-1} \left(\frac{\partial V}{\partial P} \right)_T$.
		$1) \left(\frac{\partial P}{\partial T}\right)_{S};$
	Элемент таблицы термодинамических коэффициентов полагается независимым.	$2) \left(\frac{\partial P}{\partial S}\right)_{V};$
65.		$3) \left(\frac{\partial S}{\partial T} \right)_{P};$
		$4) \left(\frac{\partial P}{\partial T}\right)_{V};$
		$5) \left(\frac{\partial P}{\partial S}\right)_T.$

No	Содержание вопроса	Варианты ответов
	Верхняя температура инверсии	1) углекислому газу;
	знака эффекта Джоуля – Томсо-	2) кислороду;
66.		3) водороду;
	на при нормальном давлении равная 723 К соответствует	4) аргону;
	равная 723 К соответствует	5) гелию.
		1) озон;
	Ochobnek kombonent beshine	2) молекулярный кислород;
67.	Основной компонент воздуха –	3) углекислый газ;
	ЭТО	4) молекулярный водород;
		5) молекулярный азот.
		$1)\left(\frac{\partial T}{\partial S}\right)_{V} = \frac{T}{c_{V}} < 0;$
		$2) \left(\frac{\partial T}{\partial S} \right)_{V} = \frac{P}{c_{V}} > 0;$
68.	Правильным термодинамическим неравенством является	$3) \left(\frac{\partial T}{\partial S}\right)_{V} = \frac{R}{c_{V}} > 0;$
		$4) \left(\frac{\partial T}{\partial S}\right)_{V} = \frac{T}{c_{V}} > 0;$
		$5) \left(\frac{\partial T}{\partial S} \right)_{V} = \frac{R}{c_{V}} < 0.$
	Пороход мотоннор в ороруно	1) фазовый переход І рода;
	Переход металлов в сверхпро-	2) фазовый переход II рода;
69.	водящее состояние при наличии внешнего магнитного поля—	3) фазовый переход 0 рода;
	ЭТО	4) нефазовый переход;
	310	5) тунельный переход.
		1) r > n;
	Согласно правилу фаз Гиббса,	
70.	число фаз r и число компонентов n связаны неравенством	3) $r \le n + 1$;
		$4) r \leq n+2;$
		$5) r \le n + 3.$
	На кривой равновесия жидкой	1) 0;
71.	и газообразной фаз число сте-	2) 1;
	пеней свободы Γ , не приводя-	3) 2;
	щих к нарушению равновесия,	4) 3;
	равно	5) 4.

No	Содержание вопроса	Варианты ответов
	Уравнение состояния вида	1) диэлектрики;
		2) ферромагнетики;
72.	$f = E\sigma \left\{ \frac{l[1 - \alpha(T - T_0)]}{l_0} - 1 \right\}$	3) магнетики;
		4) неидеальные стержни;
	описывает	5) идеальные стержни.
		1) равно 0;
	Изменение любой функции со-	2) равно π;
73.	стояния в результате кругового	3) равно 1;
	процесса	4) равно ∞;
		5) отрицательно.
		1) убывает;
	При изобарном процессе в тер-	2) возрастает;
74.	мостате термодинамический по-	3) остаётся неизменным;
	тенциал Гиббса Φ	4) равен 0;
		5) равен ∞.
	Коэффициенты v_i , указываю-	1) стехиометрическими;
	щие, сколько молекул i -го ве-	2) стереометрическими;
75.	щества возникает или исчезает	3) количественными;
	в результате одного акта реак-	4) качественными;
	ции, называются	5) стахостическими.
		1) Утрехтском университете;
	Дж. Гиббс внёс значитель-	2) Боннском университете;
76.	ный вклад в термодинамику, работая в	3) Римском университете;
		4) Венском университете;
		5) Йельском университете.
		1) 0;
	Приведенная энтропия имеет	2) 1;
77.	размерность	3) Дж/К;
	pasmephocibiii	4) BT·c/K;
		5) BT/K.
	В дифференциале энтропии	1) жёсткость k ;
78.	идеального стержня $dS = \frac{c_l dT}{T} + \frac{\alpha \dots \sigma l dl}{l_0}$ отсутствует	2) объём <i>V</i> ;
		3) энтальпия <i>W</i> ;
		4) теплоёмкость c_f ;
		5) модуль Юнга Е.
		/ / / W

No	Содержание вопроса	Варианты ответов
		1) химический потенциал;
		2) физический потенциал;
79.	Молярный термодинамический потенциал Гиббса — это	3) теплоёмкость;
	Потенциал гиооса — это	4) теплопроводность;
		5) теплосодержание.
		1) Бойля;
	В ТЅ-плоскости цикл выгля-	2) Шарля;
80.	дит как прямоугольник.	3) Карно;
	An kak npamoyronbink.	4) Эренфеста;
		5) Джоуля.
	В определении изохорного тер-	 давление <i>P</i>;
	мического коэффициента дав-	2) энтропия <i>S</i> ;
81.	ления $\beta_V = P^{-1} \left(\frac{\partial \dots}{\partial T} \right)_U$ отсут-	3) объём <i>V</i> ;
	$\left(\frac{\partial T}{\partial T} \right)_{V} = \left(\frac{\partial T}{\partial T} \right)_{V}$	4) работа A;
	ствует	5) теплота Q .
	Давление газа P определяется через свободную энергию F как	1) $P = \left(\frac{\partial F}{\partial T}\right)_V$;
		2) $P = -\left(\frac{\partial F}{\partial T}\right)_V$;
82.		\ /1
		4) $P = -\left(\frac{\partial F}{\partial V}\right)_T$;
		5) $P = \left(\frac{\partial F}{\partial S}\right)_T$.
	Если постоянная реакции	1) нейтральной;
	удовлетворяет условию	2) задерживающейся;
83.	$\frac{\partial [lnK(P,T)]}{\partial T}$ < 0, то реакция	3) опережающей;
	$\frac{\partial T}{\partial T} < 0$, то реакция	4) экзотермической;
	является	5) эндотермической.
		1) Боннский университет;
84.		2) Трирский университет;
	Людвиг Больцман окончил	3) Венский университет;
		4) Университет Граца;
		5) Университет Рима.

N₂	Содержание вопроса	Варианты ответов
	В данном физически коррект-	1) энтропия <i>S</i> ;
	ном определении химического	2) внутренняя энергия U ;
85.	потенциала $\mu = \left(\frac{\partial \Phi}{\partial \dots}\right)_{p, T}$ от-	3) свободная энергия F ;
	$(\partial)_{P,T}$	4) объём <i>V</i> ;
	сутствует	5) количество вещества <i>N</i> .
		1) $T = \left(\frac{\partial W}{\partial S}\right)_P$;
		$2) T = \left(\frac{\partial S}{\partial W}\right)_{P};$
86.	Энтропия S , энтальпия W , температура T и давление P связаны между собой формулой	$3) P = \left(\frac{\partial W}{\partial S}\right)_T;$
		$4) P = \left(\frac{\partial W}{\partial T}\right)_{S};$
		$5) T = \left(\frac{\partial P}{\partial S}\right)_{W}.$
	Для одного моля идеального газа верно соотношение	1) $C_V = \frac{\gamma R}{\gamma - 1}$;
		1) $C_V = \frac{\gamma R}{\gamma - 1}$; 2) $C_V = \frac{R}{\gamma - 1}$;
87.		$3) C_V = \frac{\Lambda}{1 - \gamma};$
		$4) C_V = \frac{2\pi R}{\gamma - 1};$
		5) $C_V = \gamma R$.
		1) 1822 году;
88.	Роберт Майер обосновал первое	2) 1842 году; 3) 1862 году;
00.	начало термодинамики в	4) 1882 году;
		5) 1902 году.
		1) 0;
	В тройной точке число степеней	·
89.	свободы Γ , не приводящих к	3) 2;
	нарушению равновесия, равно	4) 3;
		5) ∞.

No	Содержание вопроса	Варианты ответов
		1) фазовый переход 0 рода;
	Переход гелия в сверхтекучее состояние – это	2) фазовый переход II рода;
90.		3) фазовый переход І рода;
	Состояние — 910	4) тунельный переход;
		5) нефазовый переход.
		1) больше;
	Всегда КПД цикла, вписанного	2) равен;
91.	в цикл Карно,КПД цикла	3) меньше;
	Карно.	4) в 2 раза больше;
		5) в 2 раза меньше.
		1) B_{T^*M}/c^2 ;
	Размерность изохорной тепло-	2) Bt·m/c;
92.	ёмкости термодинамической сис-	3) B _T ·c/K;
	темы <i>cv</i> в СИ	4) Дж·м/с;
		5) Вт·с/моль.
		1) трансформации;
	Закон действующих масс опре-	2) распада;
93.	деляет величину $K(P, T)$, назы-	3) индукции;
	ваемую постоянной	4) редукции;
		5) реакции.
	В 1913 году Нобелевскую	1) жидкого азота;
	премию по физике получил	2) жидкого водорода;
94.	Х. Камерлинг-Оннес за исследование низких температур	3) жидкого неона;
		4) жидкого гелия;
	и получение	5) жидкого воздуха.
		1) низкое;
	Если давление безразмерное, то	2) высокое;
95.	оно	3) проверенное;
	OHO	4) разведенное;
		5) приведенное.
	Число степеней свободы Γ , не	1) $\Gamma = 2 + n - r$;
	приводящих к нарушению рав-	2) $\Gamma = n - r$;
96.	новесия, связано с числом фаз r и числом компонентов n как	3) $\Gamma = 2 + r - n$;
		4) $\Gamma = 1 + n - r$;
	II MOJOW ROWNIOHOHOD WAR	5) $\Gamma = n - r - 2$.
	Дифференциал энтропии вида $dS = \frac{c_l dT}{T} + \frac{\alpha E \sigma l dl}{l_0}$ имеет	1) идеальный газ;
97.		2) неидеальный газ;
		3) идеальный стержень;
		4) неидеальный стержень;
		5) идеальная мембрана.

Nº	Содержание вопроса	Варианты ответов
	В выполнять над посторыные кой	1) давление <i>P</i> ;
	В выражении для изотермической сжимаемости $K_T = -\dots^{-1} \left(\frac{\partial V}{\partial P} \right)_T$	2) количество вещества N ;
98.		3) объём <i>V</i> ;
		4) температура <i>T</i> ;
	отсутствует	5) энтропия <i>S</i> .
		1) $\beta_V = P^{-1} \left(\frac{\partial P}{\partial T} \right)_V$;
		2) $\beta_T = P^{-1} \left(\frac{\partial P}{\partial V} \right)_T$;
99.	Изохорный термический коэффициент давления – это	3) $\beta_V = T^{-1} \left(\frac{\partial P}{\partial T} \right)_V$;
		4) $\beta_S = P^{-1} \left(\frac{\partial P}{\partial V} \right)_S$;
		$5) \beta_W = T^{-1} \left(\frac{\partial P}{\partial V} \right)_W.$
	Утверждение, что существует	1) температуры;
	не единственная однозначная	2) энтропии;
100.	функция состояния, остающаяся	3) энергии;
	постоянной при любом процессе в адиабате – это принцип	4) однозначности;
		5) Нернста.
	Эндотермическая реакция требует, чтобы постоянная реакции $K(P, T)$ удовлетворяла условию	1) $\frac{\partial [lnK(P,T)]}{\partial T} < 0;$
101.		$2) \frac{\partial [lnK(P,T)]}{\partial T} > 0;$
		3) $\frac{\partial [lnK(P,T)]}{\partial P}$ < 0;
		4) $\frac{\partial [lnK(P,T)]}{\partial P} > 0;$
		$5) \frac{\partial [lnK(P,T)]}{\partial T} = 0.$

No	Содержание вопроса	Варианты ответов
	В характеризующей процесс	1) температура <i>T</i> ;
	Гей-Пюссака произволной	2) давление <i>P</i> ;
102.	$\left(\frac{\partial \dots}{\partial V}\right)_U$ отсутствует	3) энтропия <i>S</i> ;
	$\left(\frac{\partial V}{\partial V}\right)$ отсутствует	4) энтальпия W ;
		5) свободная энергия F .
		1) $S = \left(\frac{\partial \Phi}{\partial T}\right)_P;$
	Энтропия <i>S</i> , термодинамиче-	2) $S = -\left(\frac{\partial \Phi}{\partial T}\right)_{P};$
103.	ский потенциал Гиббса Φ , температура T и давление P связа-	3) $P = \left(\frac{\partial \Phi}{\partial T}\right)_{S};$
	ны между собой формулой	$4) P = \left(\frac{\partial \Phi}{\partial S}\right)_T;$
		$5) T = \left(\frac{\partial \Phi}{\partial S}\right)_{P}.$
		1) плазмы;
	Коэффициент линейного темпе-	2) жидкости;
104.	ратурного расширения α поло-	3) каучука;
	жителен у	4) металла;
		5) газа.
	Температуру T можно определить производной	$1) \left(\frac{\partial U}{\partial V} \right)_{S};$
		$2) - \left(\frac{\partial U}{\partial S}\right)_{V};$
105.		$3) - \left(\frac{\partial U}{\partial V}\right)_{S};$
		$4)\left(\frac{\partial U}{\partial S}\right)_{V};$
		$5) \left(\frac{\partial U}{\partial P} \right)_{V}.$

No	Содержание вопроса	Варианты ответов
	Производной свободной энер-	1) – <i>S</i> ;
	*	2) S;
106.	$\left[$ гии F вида $\left(\frac{\partial F}{\partial T} \right)_{V}$ выражается	3) <i>-P</i> ;
	,	4) F,
	параметр	5) − <i>Ф</i> .
	Верхняя температура инверсии	1) 500 K;
	знака эффекта Джоуля – Томсо-	2) 603 K;
107.	на при нормальном давлении	3) 303 K;
	для воздуха равна	4) 698 K;
		5) 103 K.
		1) $K_S = -P^{-1} \left(\frac{\partial T}{\partial V} \right)_S$;
	Адиабатическая сжимаемость K_S — это Количество теплоты рассчитывается по формуле $Q = T (S_2 - S_1)$ в процессе.	2) $K_S = P^{-1} \left(\frac{\partial P}{\partial V} \right)_S$;
108.		3) $K_S = -V^{-1} \left(\frac{\partial P}{\partial V} \right)_S$;
		4) $K_S = P^{-1} \left(\frac{\partial P}{\partial T} \right)_S$;
		$5) K_S = -V^{-1} \left(\frac{\partial V}{\partial P} \right)_S.$
		1) адиабатическом;
		2) изотермическом;
109.		-
		4) изобарном;
		5) поливариантном.
	Магнитная проницаемость вещества μ , как функция температуры T – это	1) $\mu(T) = 1 + \frac{\pi \varkappa_m(T)}{S};$ 2) $\mu(T) = 1 + \frac{2\pi \varkappa_m(T)}{V};$
110.		
		$3) \mu(T) = 1 + \frac{4\pi \varkappa_m(T)}{S};$
		4) $\mu(T) = 1 + \frac{4\pi \varkappa_m(T)}{V};$ 5) $\mu(T) = \frac{4\pi \varkappa_m(T)}{V}.$
		5) $\mu(T) = \frac{4\pi \varkappa_m(T)}{V}$.

No	Содержание вопроса	Варианты ответов
		1) $\boldsymbol{p} = \boldsymbol{\varkappa}_e / \boldsymbol{E}$;
	В теории диэлектриков элек-	$2) \mathbf{p} = \mathbf{x}_e \cdot \mathbf{E};$
111.	трическая восприимчивость же	_
	определяется из соотношения	$4) \mathbf{p} = 2\pi \varkappa_e \cdot \mathbf{E};$
		5) $E = \varkappa_e \cdot p$.
		1) 0;
		2) 1;
		AE^2
112.	Для неполярных диэлектриков	3) $\frac{AE^2}{T^2}$;
112.	разность $c_E - c_p = \dots$	1
		4) $\frac{AE}{T}$;
		_
		5) R.
		1) $c_P = T \left(\frac{\partial S}{\partial T} \right)_{\sigma}$;
		$\left(\frac{1}{2} \right)^{C_P} = \left(\frac{1}{2} \left(\frac{1}{2} \right)^P \right)^{-1}$
		(25)
		2) $c_P = -T \left(\frac{\partial S}{\partial T} \right)_P$;
		$\langle CI \rangle_P$
112	Для изобарной теплоёмкости c_P	3) $c_P = T \left(\frac{\partial T}{\partial S} \right)_P$;
113.	верно соотношение	$\left(\partial S\right)_{P}$
		(av)
		4) $c_P = -T \left(\frac{\partial V}{\partial T} \right)_P$;
		$(OI)_P$
		$\int_{S_{1}} \int_{\Omega} \int_{T} $
		$5) c_P = T \left(\frac{\partial T}{\partial V} \right)_P.$
		1) Стефана – Больцмана;
	Физическая константа равная 8,31 Дж/(моль·К) называется постоянной	2) Планка;
114.		3) Вина;
		4) универсальной газовой;
		5) гравитационной.
		1) количество вещества N ;
115.	В определении термодинамического потенциала Гиббса $\Phi =TS + PV$ отсутствует	2) химический потенциал µ;
		· · · · · · · · · · · · · · · · · · ·
		4) внутренняя энергия U ;
		5) свободная энергия F .

116. Приведенное давление имеет размерность 1) Па; (2) Н/м²; (3) Дж/м³; (4) 1; (5) Па/м. 117. Магнитная восприимчивость жи сверхпроводника равна 1) − 1/2π; (2) 1/4π; (3) − 1/4π; (3) − 1/4π; (4) 0; (5) ∞. 118. КПД цикла Карно не зависит от характеристик 1) топлива; (2) кругового процесса; (3) рабочего тела; (4) нагревателя; (5) холодильника. 119. Изменение внутренней энергии идеального газа ΔU = 1) ст (T₂ − T₁); (2) сv (T₂ − T₁); (3) cv (S₂ − S₁); (4) cs (T₂ − T₁); (5) cp (T₂ − T₁). 2) энтальния W; (3) энтропия S; (4) внутренняя энергия U; (5) давление P. 120. Функция состояния, определяем мая производной (∂F/∂T) v, это 1) химический потенциал µ; (2) энтальния W; (3) энтропия S; (4) внутренняя энергия U; (5) давление P. 121. Опыты по адиабатическому растяжению проволок проводили 1) Джоуль и Хага; (2) Джоуль и Томсон; (3) Хага и Максвелл; (4) Максвелл и Фарадей; (5) Кельвин и Больнман.	No	Содержание вопроса	Варианты ответов
116. Приведенное давление имеет размерность 3) Дж/м³; 4) 1; 5) Па/м. 117. Магнитная восприимчивость ж _т 2) 1/4π; 3) -1/4π; 40; 5) ∞. 2) 1/4π; 3) -1/4π; 40; 5) ∞. 118. КПД пикла Карно не зависит от характеристик 1) топлива; 2) кругового процесса; 3) рабочего тела; 4) нагревателя; 5) холодильника. 119. Изменение внутренней энергии идеального газа ΔU = 1) cr (T₂ − T₁); 2) cv (T₂ − T₁); 3) cv (S₂ − S₁); 4) cs (T₂ − T₁). 120. Функция состояния, определяемая производной (∂F/∂T) _V , -3то 1) химический потенциал µ; 2) энтальпия W; 3) энтропия S; 4) внутренняя энергия U; 5) давление P. 121. Опыты по адиабатическому растяжению проволок проводили 1) Джоуль и Хага; 2) Джоуль и Томсон; 3) Хага и Максвелл; 4) Максвелл и Фарадей;			1) Пa;
размерность $\frac{3) \ A^{NN} \ N}{4) \ 1;}$ $\frac{3}{5} \ \Pi a/M.}$ $\frac{1}{2\pi};$ $\frac{1}{2\pi};$ $\frac{1}{4\pi};$ $\frac{2}{4\pi};$ $\frac{1}{4\pi};$ $\frac{3}{4\pi};$ $\frac{1}{4\pi};$ $\frac{4}{4\pi};$ $\frac{1}{1\pi};$			2) H/m ² ;
117. Магнитная восприимчивость \varkappa_m сверхпроводника равна	116.	_	3) Дж/м ³ ;
117. Магнитная восприимчивость \varkappa_m сверхпроводника равна $= \frac{10 - \frac{1}{2\pi};}{30 - \frac{1}{4\pi};}$ $= \frac{10 - \frac{1}{2\pi};}{30 - \frac{1}{4\pi};}$ $= \frac{10 - \frac{1}{2\pi};}{30 - \frac{1}{4\pi};}$ $= \frac{10 - \frac{1}{4\pi};}{30 - \frac{1}{4\pi};}$ $= 1$		размерноств	4) 1;
117. Магнитная восприимчивость ж _m сверхпроводника равна 2) 1/4π; 3) -1/4π; 3) -1/4π; 4) 0; 5) ∞. 118. 1) топлива; 2) кругового процесса; 3) рабочего тела; 4) нагревателя; 5) холодильника. 1) ст (T₂ − T₁); 2) сv(T₂ − T₁); 2) сv (T₂ − T₁); 3) cv (S₂ − S₁); 4) сs (T₂ − T₁); 5) ср (T₂ − T₁). 120. Функция состояния, определяемая производной (∂F/∂T) _V , это 1) химический потенциал µ; 2) энтальпия W; 3) энтропия S; 4) внутренняя энергия U; 5) давление P. 1) Джоуль и Хага; 2) Джоуль и Томсон; 3) Хага и Максвелл; 4) Максвелл и Фарадей;			5) Па/м.
117. сверхпроводника равна $3) - \frac{1}{4\pi};$ $4) 0;$ $5) \infty.$ $2)$ кургового процесса; $3)$ рабочего тела; $4)$ нагревателя; $5)$ холодильника. 4 нагревателя; 5 холодильника. 4 нагревателя; 5 холодильника. 4 нагревателя; 4 нагрев			$1)-\frac{1}{2\pi};$
118. $K\Pi\mathcal{I}$ цикла Карно не зависит от характеристик 119. Изменение внутренней энергии идеального газа $\Delta U = \dots$ Функция состояния, определяето оп торизводной $\left(\frac{\partial F}{\partial T}\right)_V$, это 121. Опыты по адиабатическому растяжению проволок проводили 3) $-\frac{1}{4\pi}$; 4) 0; 5) ∞ . 1) топлива; 2) кругового процесса; 3) рабочего тела; 4) нагревателя; 5) холодильника. 1) $c_T (T_2 - T_1)$; 2) $c_V (T_2 - T_1)$; 3) $c_V (S_2 - S_1)$; 4) $c_S (T_2 - T_1)$. 1) химический потенциал μ ; 2) энтальпия W ; 3) энтропия S ; 4) внутренняя энергия U ; 5) давление P . 1) \mathcal{I} жоуль и Хага; 2) \mathcal{I} жоуль и Томсон; 3) Хага и Максвелл и Фарадей;	117.	_	2) $\frac{1}{4\pi}$;
118. $R\Pi\Pi$ цикла Карно не зависит от характеристик 119. Изменение внутренней энергии идеального газа $\Delta U = \dots$ 119. Функция состояния, определяемая производной $\left(\frac{\partial F}{\partial T}\right)_{V}$, отом. 120. Опыты по адиабатическому растяжению проволок проводили 118. $R\Pi\Pi$ цикла Карно не зависит от характеристик 121. Опыты по адиабатическому растяжению проволок проводили 122. $R\Pi\Pi$ цикла Карно не зависит от харистерия $R\Pi$ довочего тела; $R\Pi\Pi$ довочего тела; $R\Pi\Pi\Pi$ довочего тела; $R\Pi\Pi\Pi$ довочего тела; $R\Pi\Pi\Pi$ довочего тела; $R\Pi\Pi\Pi\Pi\Pi$ довочего тела; $R\Pi$		сверхпроводника равна	
 118. КПД цикла Карно не зависит от характеристик 119. Изменение внутренней энергии идеального газа ДU = 119. Функция состояния, определяетот 120. мая производной (∂F/∂T), тото 121. Опыты по адиабатическому растяжению проволок проводили 121. Опыты по адиабатическому растяжению проволок проводили 121. Тупиты по адиабатическому растяжению проволок проводили 122. Кругового процесса; 23. кругового процесса; 34. нагревателя; 25. холодильника. 11. Ст (Т2 - Т1); 21. Ст (Т2 - Т1); 32. сv (S2 - S1); 41. химический потенциал µ; 22. энтальпия W; 33. энтропия S; 44. внутренняя энергия U; 55. давление P. 16. Джоуль и Хага; 26. Джоуль и Томсон; 27. Джоуль и Томсон; 38. Хага и Максвелл; 49. Максвелл и Фарадей; 			, ,
 118. КПД цикла Карно не зависит от характеристик 119. Изменение внутренней энергии идеального газа ΔU = 119. Функция состояния, определяемая производной (∂F/∂T)_V, — это 120. Опыты по адиабатическому растяжению проволок проводили 121. Опыты по адиабатическому растяжению проволок проводили 2) кругового процесса; 3) рабочего тела; 4) нагревателя; 5) холодильника. 1) c_T (T₂ − T₁); 2) c_V (T₂ − T₁); 3) c_V (S₂ − S₁); 4) c_S (T₂ − T₁); 5) c_P (T₂ − T₁). 1) химический потенциал µ; 2) энтальпия W; 3) энтропия S; 4) внутренняя энергия U; 5) давление P. 1) Джоуль и Хага; 2) Джоуль и Томсон; 3) Хага и Максвелл; 4) Максвелл и Фарадей; 			5) ∞.
118. RHM цикла Карно не зависит от характеристик 3) рабочего тела; 4) нагревателя; 5) холодильника. 1) $c_T (T_2 - T_1)$; 2) $c_V (T_2 - T_1)$; 3) $c_V (S_2 - S_1)$; 4) $c_S (T_2 - T_1)$; 5) $c_P (T_2 - T_1)$. 1) химический потенциал μ ; 2) энтальпия W ; 3) энтропия S ; 4) внутренняя энергия U ; 5) давление P . 1) Джоуль и Хага; 2) Джоуль и Томсон; 121. Опыты по адиабатическому растяжению проволок проводили 2) Джоуль и Томсон; 3) Хага и Максвелл; 4) Максвелл и Фарадей;			,
 характеристик з) раоочего тела; 4) нагревателя; холодильника. 1) c_T (T₂ − T₁); 2) c_V (T₂ − T₁); 3) c_V (S₂ − S₁); 4) c_S (T₂ − T₁); 5) c_P (T₂ − T₁). 4) c_S (T₂ − T₁); 5) c_P (T₂ − T₁). 1) химический потенциал µ; 2) энтальпия W; 3) энтропия S; 4) внутренняя энергия U; 5) давление P. 1) Джоуль и Хага; 2) Джоуль и Томсон; 3) Хага и Максвелл; 4) Максвелл и Фарадей; 	110	<i>КПЛ</i> пикла Карно не зависит от	
 119. Изменение внутренней энергии идеального газа ΔU = 120. Мая производной (∂F/∂T), это 121. Опыты по адиабатическому растяжению проволок проводили 121. Опыты по адиабатическому растяжению проволок проводили 121. Изменение внутренней энергии идеального газа ΔU = 122. Опыты по адиабатическому растяжению проволок проводили 123. Опыты по адиабатическому растяжению проволок проводили 124. Опыты по адиабатическому растяжению проволок проводили 125. Холодильника. 126. Опыты по адиабатическому растяжению проводили 126. Опыты по адиабатическому растяжению проводили 127. Опыты по адиабатическому растяжению проводили 128. Опыты по адиабатическому растяжению проводили 129. Опыты по адиабатическому растяжению проводили 120. Опыты по адиабатическому растяжению проводили 121. Опыты по адиабатическому растяжению проводили 122. Опыты по адиабатическому растяжению проводили 123. Опыты по адиабатическому растяжению проводили 124. Опыты по адиабатическому растяжению проводили 125. Опыты по адиабатическому растяжению проводили 126. Опыты по адиабатическому растяжению проводили 127. Опыты по адиабатическому растяжению проводили 128. Опыты по адиабатическому растяжению проводили 129. Опыты по адиабатическому растяжению проводили 120. Опыты по адиабатическому растяжения правежения п	118.	<u> </u>	
119. Изменение внутренней энергии идеального газа $\Delta U = \dots$ 119. Функция состояния, определяемая производной $\left(\frac{\partial F}{\partial T}\right)_{V}$, — 30 энтропия S ; — 31 энтропия S ; — 32 давление P . 121. Опыты по адиабатическому растяжению проволок проводили 110. $C_{T}(T_{2}-T_{1})$; — 21 $C_{T}(T_{2}-T_{1})$; — 32 $C_{T}(T_{2}-T_{1})$; — 33 $C_{T}(T_{2}-T_{1})$; — 31 $C_{T}(T_{2}-T_{1})$; — 32 $C_{T}(T_{2}-T_{1})$; — 32 $C_{T}(T_{2}-T_{1})$; — 33 $C_{T}(T_{2}-T_{1})$; — 37 $C_{T}(T_{2}-T_{1})$; — 37 $C_{T}(T_{2}-T_{1})$; — 38 $C_{T}(T_{2}-T_{1})$; — 39		1 1	
119. Изменение внутренней энергии идеального газа $\Delta U = \dots$ 120. Функция состояния, определяемая производной $\left(\frac{\partial F}{\partial T}\right)_{V}$, — это 121. Опыты по адиабатическому растяжению проволок проводили 122. Изменение внутренней энергии идеального газа $\Delta U = \dots$ 22) $c_{V}(T_{2} - T_{1})$; 33) $c_{V}(S_{2} - S_{1})$; 44) $c_{S}(T_{2} - T_{1})$. 13) химический потенциал μ ; 23) энтальпия W ; 33) энтропия S ; 44) внутренняя энергия U ; 55) давление P . 16) Джоуль и Хага; 26) Джоуль и Томсон; 37) Зага и Максвелл; 48) Максвелл и Фарадей;			,
119. Изменение внутренней энергии идеального газа $\Delta U = \dots$ 3) $cv(S_2 - S_1)$; $4) c_S(T_2 - T_1)$; $5) c_P(T_2 - T_1)$. 120. Функция состояния, определяемя производной $\left(\frac{\partial F}{\partial T}\right)_V$, — 30 энтальпия W ; 2) энтальпия W ; 2 0 энтальпия W ; 2 1 энтальпия W ; 2 2 энтальпия W ; 2 3 энтропия S ; 2 4 внутренняя энергия U ; 2 5 давление P . 121. Опыты по адиабатическому растяжению проволок проводили 2 1 Джоуль и Хага; 2 2 Джоуль и Томсон; 2 3 Хага и Максвелл; 2 4 Максвелл и Фарадей;			
119. идеального газа $\Delta U = \dots$ 4) $c_S(T_2 - T_1);$ 5) $c_P(T_2 - T_1).$ 120. Мая производной $\left(\frac{\partial F}{\partial T}\right)_V$, — 3) энтропия $S;$ 121. Опыты по адиабатическому растяжению проволок проводили 130. $c_V(S_2 - S_1);$ 4) $c_S(T_2 - T_1).$ 131. $c_S(T_2 - T_1)$ 132. $c_S(T_2 - T_1)$ 133. $c_S(S_2 - S_1);$ 4) $c_S(T_2 - T_1)$ 143. $c_S(T_2 - T_1)$ 154. $c_S(T_2 - T_1)$ 155. $c_S(T_2 - T_1)$ 165. $c_S(T_2 - T_1)$ 166. $c_S(T_2 - T_1)$ 176. $c_S(T_2 - T_1)$ 176. $c_S(T_2 - T_1)$ 176. $c_S(T_2 - T_1)$ 186. $c_S(T_2 - T_1)$ 196. $c_S(T_2 - T_1)$ 296. $c_S(T_2 - T_1)$ 297. $c_S(T_1 - T_1)$ 297. $c_S(T_1 - T_1)$ 298. $c_S(T_1 - T_1)$ 299. $c_S(T_1 - T_1)$ 299		Изменение впутренней знергии	2) $c_V(T_2-T_1)$;
4) $c_S(T_2 - T_1)$; 5) $c_P(T_2 - T_1)$. 120. Мая производной $\left(\frac{\partial F}{\partial T}\right)_V$, — это 121. Опыты по адиабатическому растяжению проволок проводили 121. Опыты по адиабатическому растяжению проволок проводили 121. Опыты по адиабатическому растяжению проволок проводили 122. Опыты по адиабатическому растяжению проволок проводили 123. Опыты по адиабатическому растяжению проволок проводили 124. Опыты по адиабатическому растяжению проволок проводили 125. Опыты по адиабатическому растяжению проводили 126. Опыты по адиабатическому растяжению проводили 127. Опыты по адиабатическому растяжению проводили 128. Опыты по адиабатическому растяжению проводили 129. Опыты по адиабатическому растяжению проводили 129. Опыты по адиабатическому растяжению проводили 120. Опыты по адиабатическому растяжению проводили	119.	· · · · · · · · · · · · · · · · · · ·	3) $c_V(S_2-S_1)$;
 Функция состояния, определяетом (4) $c_S(T_2-T_1)$;
 Функция состояния, определяетой (∂F/∂T), - Зітальпия W; мая производной (∂F/∂T), - Зітальпия W; это 121. Опыты по адиабатическому растяжению проволок проводили 121. Опыты по адиабатическому растяжению проволок проводили 121. Опыты по адиабатическому растяжению проволок проводили 122. Джоуль и Томсон; 33. Хага и Максвелл; 44. Максвелл и Фарадей; 			5) $c_P(T_2-T_1)$.
 120. мая производной (∂F/∂T)_V, - З) энтропия S; 4) внутренняя энергия U; 5) давление P. 121. Опыты по адиабатическому растяжению проволок проводили 121. Опыты по адиабатическому растяжению проволок проводили 2) Энтальпия W; 3) энтропия S; 4) внутренняя энергия U; 5) давление P. 1) Джоуль и Хага; 2) Джоуль и Томсон; 3) Хага и Максвелл; 4) Максвелл и Фарадей; 			1) химический потенциал µ;
это 4) внутренняя энергия <i>U</i> ; 5) давление <i>P</i> . 1) Джоуль и Хага; 2) Джоуль и Томсон; тяжению проволок проводили 3) Хага и Максвелл; 4) Максвелл и Фарадей;			2) энтальпия <i>W</i> ;
это 4) внутренняя энергия <i>U</i> ; 5) давление <i>P</i> . 1) Джоуль и Хага; 2) Джоуль и Томсон; тяжению проволок проводили 3) Хага и Максвелл; 4) Максвелл и Фарадей;	120.	мая производной $\left(\frac{CF}{2T}\right)$, $-$	3) энтропия <i>S</i> ;
 5) давление <i>P</i>. 1) Джоуль и Хага; 2) Джоуль и Томсон; 3) Хага и Максвелл; 4) Максвелл и Фарадей; 		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	4) внутренняя энергия U ;
121. Опыты по адиабатическому растяжению проволок проводили 2) Джоуль и Томсон; 3) Хага и Максвелл; 4) Максвелл и Фарадей;		910	 давление <i>P</i>.
121. Опыты по адиабатическому растяжению проволок проводили 3) Хага и Максвелл; 4) Максвелл и Фарадей;	121.		1) Джоуль и Хага;
тяжению проволок проводили 3) Хага и Максвелл; 4) Максвелл и Фарадей;			2) Джоуль и Томсон;
тяжению проволок проводили 4) Максвелл и Фарадей;		• 1	
c) Itember in Boundarien.			5) Кельвин и Больцман.

No	Содержание вопроса	Варианты ответов
122.	Критическая температура газа, подчиняющегося второму уравнению Дитеричи, — это	1) $T_{\kappa p} = \frac{5a}{2^{\frac{16}{3}}Rb^{\frac{2}{3}}};$
		2) $T_{\kappa p} = \frac{a}{2^{\frac{16}{3}} R b^{\frac{2}{3}}};$
		3) $T_{\kappa p} = \frac{15a}{2^{\frac{16}{3}}Rb^{\frac{2}{3}}};$
		4) $T_{\kappa p} = \frac{15a}{2^{\frac{10}{3}}Rb^{\frac{2}{3}}};$
		5) $T_{\kappa p} = \frac{13a}{2^{\frac{16}{3}}Rb^{\frac{7}{3}}}.$
	В выражении для адиабатической сжимаемости $K_S = -\dots^{-1} \left(\frac{\partial V}{\partial P} \right)_S$ отсутствует	 давление P;
100		2) энтропия <i>S</i> ;
123.		3) температура <i>I</i>;4) объём <i>V</i>;
		5) энтальпия W.
	Взаимное отображение TS - и PV -плоскостей требует, чтобы якобиан $\frac{\partial(P,V)}{\partial(T,S)}$ был равен якобиану	1) $\frac{\partial(T,S)}{\partial(P,V)}$;
124.		$2) \frac{\partial(P,S)}{\partial(T,V)};$
		3) $\frac{\partial(P,T)}{\partial(V,S)}$;
		4) $\frac{\partial(T,V)}{\partial(P,S)}$;
		$5) \frac{\partial(S,V)}{\partial(T,P)}.$

No	Содержание вопроса	Варианты ответов
	Для идеального газа верно со-отношение	$1) C_P = \frac{\gamma R}{1 - \gamma};$
125.		$2) C_P = \frac{\pi \gamma R}{\gamma - 1};$
		$3) C_P = \frac{2\gamma R}{\gamma - 1};$
		4) $C_P = \frac{\gamma R}{\gamma - 1}$;
		$5) C_P = \frac{R}{\gamma - 1}.$
126.	Энтропия S , энтальпия W , объём V и давление P связаны между собой формулой	1) $W = \left(\frac{\partial V}{\partial P}\right)_{S};$
		$2) V = \left(\frac{\partial W}{\partial P}\right)_{S};$
		$3) V = \left(\frac{\partial W}{\partial S}\right)_{P};$
		$4) W = \left(\frac{\partial V}{\partial S}\right)_{P};$
		$5) P = \left(\frac{\partial W}{\partial V}\right)_{S}.$
		1) Вина;
	Физическая константа равная 2,9 · 10 ⁻³ м·К называется постоянной	2) Планка;
127.		3) Стефана – Больцмана;
		4) универсальной газовой;
		5) гравитационной.
		1) Вина;
	Выражение для излучательной способности $\varepsilon(T) = \sigma T^4$ называется законом	2) Гей-Люссака;
		3) Стефана – Больцмана;
		4) Майера;
		5) Рэлея – Джинса.

No	Содержание вопроса	Варианты ответов
129.	Формула Рэлея – Джинса наилучшим образом описывает тепловое чёрное излучение в диапазоне.	 оптическом; инфракрасном; ультрафиолетовом; рентгеновском; радио.
130.	В формуле $C_V = \frac{RT}{(\gamma - 1)(T - \theta)}$ параметр θ приравнивается к 0 вследствие эмпирически корректного поведения	 1) температуры <i>T</i>; 2) газовой постоянной <i>R</i>; 3) показателя адиабаты γ; 4) самой теплоёмкости <i>C_V</i>; 5) объема <i>V</i>.
131.	Объём V , термодинамический потенциал Гиббса Φ , температура T и давление P связаны между собой формулой	1) $\Phi = \left(\frac{\partial T}{\partial P}\right)_{V};$ 2) $V = \left(\frac{\partial \Phi}{\partial T}\right)_{P};$ 3) $V = \left(\frac{\partial \Phi}{\partial P}\right)_{T};$ 4) $\Phi = \left(\frac{\partial V}{\partial P}\right)_{T};$ 5) $T = \left(\frac{\partial V}{\partial \Phi}\right)_{P}.$
132.	Характеризующая процесс Гей-Люссака производная $\left(\frac{\partial T}{\partial V}\right)_U$ для газа Ван-дер-Ваальса равна	1) $-\frac{a}{V^2 c_V}$; 2) $\frac{a}{V^2 c_V}$; 3) $-\frac{a}{V c_V}$; 4) $\frac{a}{V c_V}$; 5) $-\frac{a}{V^2 c_P}$.

No	Содержание вопроса	Варианты ответов
	В дифференциале термодина-	1) <i>PdV</i> ;
	мического потенциала Гиббса	2) - <i>TdS</i> ;
133.	для двухфазной системы	3) <i>TdS</i> ;
	$d\Phi = \dots + VdP + \mu_1 dN_1 - \mu_2 dN_2$	4) <i>SdT</i> ;
	пропущено слагаемое	5) – <i>SdT</i> .
	В определении адиабатического термического коэффициента давления $\beta_{} = P^{-1} \left(\frac{\partial P}{\partial T} \right)_{}$ отсут-	1) объём <i>V</i> ;
		2) энтропия <i>S</i> ;
134.		
		4) внутренняя энергия U :
	ствует	5) свободная энергия <i>F</i>.
135.	Термодинамический коэффици-	1) $\frac{E}{c_E T}$;
		$2) \frac{AE}{c_E T};$
		3) 0;
		4) $\frac{E}{c_E TA}$;
		5) ∞.
		1) fl-плоскость;
	Плоскостью обобщенной силы и обобщенной координаты для магнетика является	2) <i>PV</i> -плоскость;
136.		3) НМ-плоскость;
		4) <i>ED</i> -плоскость;
		5) <i>TS</i> -плоскость.
	Формула Вина хорошо описывает тепловое чёрное излучение в диапазоне. Для идеального газа выполняется соотношение	1) радио;
		2) УКВ радио;
137.		3) инфракрасном;
138.		4) оптическом;
		5) ультрафиолетовом.
		1) $C_P = C_V$;
		2) $C_P = \gamma C_V$;
		3) $C_P = RC_V$;
		4) $C_V = \gamma C_P$;
		$5) C_P = (\gamma - 1)C_V.$

No	Содержание вопроса	Варианты ответов
		1) объём V;
139.	В данном определении энтальпии $W = U + P$ отсутствует.	2) показатель адиабаты ү;
		3) температура <i>T</i> ;
		4) энтропия <i>S</i> ;
		5) показатель политропы и.
	В 1911 году Нобелевскую премию по физике за открытия, ка-	1) Вильгельм Вин;
		2) Людвиг Больцман;
140.		3) Йозеф Стефан;
	сающиеся законов теплового из-	4) Пауль Эренфест;
	лучения, получил	5) Дмитрий Менделеев.
		1) 5,67 · 10^{-8} Дж/(м ² К ⁴ с);
	Provenus ve exeguier Credeve	2) 5,67 · 10^{-6} H/(M^2K^4c);
141.	Значение постоянной Стефана –	3) 5,67 · 10 ⁻⁸ Дж/(мКс);
	Больцмана равно	4) 5,67 · 10^{-13} Дж/(м ² K ⁴ c);
		5) 5,67 · 10^8 Дж/(м ⁴ K ² c).
		1) максимален;
	При условии ровновасия потан	2) минимален;
142.	При условии равновесия потенциал Гиббса	3) равен 0;
	циал г иооса	4) paвeн ∞;
		5) неопределён.
	Выражение	1) адиабату;
	$\lceil S \rceil$	2) изотерму;
143.	$T = T_1(V) \cdot exp \left[(\gamma - 1) \frac{S}{R} \right]$ в TS -плоскости задаёт	3) изоэнтальпу;
		4) изохору;
		5) изобару.
	В физической области изотермы выполняется неравенство	$1)\left(\frac{\partial V}{\partial P}\right)_{T} > 0;$
144.		$2)\left(\frac{\partial P}{\partial V}\right)_{T} > 0;$
		$3) \left(\frac{\partial P}{\partial V}\right)_T \neq 0;$
		$4) \left(\frac{\partial V}{\partial P}\right)_T \neq 0;$
		$5) \left(\frac{\partial P}{\partial V} \right)_T < 0.$

№	Содержание вопроса	Варианты ответов
145.	В определении адиабатической сжимаемости чёрного излучения $K_S = {4aT^4}$ пропущено число	1) 3; 2) 5; 3) 7; 4) 9;
146.	4aT ⁴ Семейство адиабат равновесного излучения – это	5) 13. 1) $TV = \text{const};$ 2) $T^5V = \text{const};$ 3) $T^3V = \text{const};$ 4) $TV^2 = \text{const};$ 5) $T^3V^4 = \text{const}.$
147.	Давление P можно определить производной	1) $-\left(\frac{\partial U}{\partial V}\right)_{S};$ 2) $\left(\frac{\partial U}{\partial V}\right)_{S};$ 3) $-\left(\frac{\partial V}{\partial U}\right)_{S};$ 4) $\left(\frac{\partial U}{\partial T}\right)_{S};$ 5) $-\left(\frac{\partial V}{\partial U}\right)_{T}.$
148.	Универсальная газовая постоянная R связана с постоянной Больцмана k и числом Авогадро N_A как	1) $R = \frac{k}{N_A}$; 2) $R = k^2 N_A$; 3) $R = kN_A$; 4) $R = 2kN_A$; 5) $R = \frac{\pi}{kN_A}$.
149.	В 1995 году при охлаждении атомов рубидия была достигнута минимальная температура, равная	1) 5,9 · 10 ⁻¹⁰ K; 2) 5,9 · 10 ⁻¹² K; 3) 9,9 · 10 ⁻¹² K; 4) 9,9 · 10 ⁻⁶ K; 5) 5,9 · 10 ⁻¹⁵ K.

No	Содержание вопроса	Варианты ответов
	В производной свободной энер-	1) энтропия <i>S</i> ;
	_	2) теплоёмкость c_P ;
150.	$\left $ гии F вида $\left(\frac{\partial F}{\partial \dots}\right)_T = -P$ отсут-	3) объём <i>V</i> ;
	_	4) внутренняя энергия U ;
	ствует	5) давление <i>P</i>.
151.	Равноценность TS - и fl -плоскостей требует, чтобы якобиан $\frac{\partial (f,l)}{\partial (T,S)}$ был равен якобиану	1) $\frac{\partial(f,l)}{\partial(S,T)}$;
		$2) \frac{\partial(S,T)}{\partial(l,f)};$
		3) $\frac{\partial(l,f)}{\partial(T,S)}$;
		$4) - \frac{\partial(T,S)}{\partial(f,l)};$
		$5) - \frac{\partial(S,T)}{\partial(l,f)}.$
		1) показатель адиабаты ү;
	B барометрической формуле $P = P_0 exp\left(-\frac{Mgh}{R}\right)$ отсутствует	, , , , , , , , , , , , , , , , , , , ,
152.		3) температура <i>T</i> ;
		4) энтропия <i>S</i> ;
		5) объём <i>V</i> .
	Равновесие твёрдой, жидкой и газообразной фаз невозможно для	1) железа;
		2) углерода;
153.		3) углекислого газа;
		4) гелия;
		5) воды.
	Коэффициент линейного температурного расширения α отрицателен у Размерность химического потенциала μ в СИ —	1) металлов;
154. 155.		2) газов;
		3) жидкостей;
		4) резин;
		5) плазмы.
		1) BT'c;
		2) Дж/моль;
		3) B _T /c;
		4) Дж·моль;
		5) Вт/моль.

No	Содержание вопроса	Варианты ответов
		1) <i>Q</i> < 0;
		2) $Q > 0$;
156.	При экзотермической реакции	3) A = 0;
		4) A < 0;
		5) $Q = 0$.
157.	Критическое давление газа, подчиняющегося первому уравнению Дитеричи, равно	$1) P_k = \frac{a}{b^2 e^2};$
		$2) P_k = \frac{a}{4b^2T^2};$
		$3) P_k = \frac{a}{4b^2e^2};$
		4) $P_k = \frac{3a}{4b^2e^2}$;
		$5) P_k = \frac{a}{4\pi b^2 e}.$
	Пля унициалите потанциала н	1) никогда;
	Для химического потенциала μ уверждение, что $\mu = \frac{\Phi}{N}$, справедливо	2) иногда;
158.		3) всегда;
		4) только для газов;
		5) только для плазмы.
	Энтропия равновесного излучения – это	1) $S = \frac{4\sigma T^3 V}{3} + \text{const};$
		$2) S = \frac{2\sigma T^3 V}{3} + \text{const};$
159.		3) $S = \frac{\sigma T^3 V}{3} + \text{const};$
		4) $S = \frac{4\sigma T^3 V}{5} + \text{const};$
		5) $S = 4\sigma T^3 V + \text{const.}$
160.	Верхнее значение температуры ограничено планковской температурой T_P равной	1) 1, 4168 · 10 ³² K;
		2) 1, 4168 · 10 ²² K;
		4) 2, 8336 · 10 ³² K;
		5) 2, 8336 · 10 ²² K.

No	Содержание вопроса	Варианты ответов
161.	Закон Кюри для магнетиков имеет вид	1) $M = \frac{H}{T}$; 2) $M = \varkappa_m H$; 3) $M = \varkappa_m \frac{H}{T}$; 4) $M = \frac{\gamma H}{T}$; 5) $M = \frac{AT}{H}$.
162.	Выражение вида $T \left(\frac{\partial P}{\partial T} \right)_{V} \cdot \left(\frac{\partial V}{\partial T} \right)_{P} \text{задаёт раз-}$ ность	1) $c_V - c_T$; 2) $c_V - c_P$; 3) $c_P - c_V$; 4) $c_T - c_P$; 5) $c_V - c_S$.
163.	В условиях равновесия свободная энергия F	 минимальна; максимальна; равна 0; равна ∞; неопределена.
164.	Приведенная температура имеет размерность	1) °C; 2) K; 3) 1; 4) °F; 5) Дж.
165.	Давление смеси химически не взаимодействующих идеальных газов определяется законом	 Дальтона; Гей-Люссака; Бойля – Мариотта; Пуассона; Шарля.
166.	В уравнении состояния идеального стержня $f = E\sigma \left\{ \frac{l \left[1 - \alpha (T - T_0) \right]}{l_0} - 1 \right\} \text{ве-}$ личина T_0 равна	1) 0 K; 2) 0 °C; 3) 0 °F; 4) 100 °C; 5) 100 K.

№	Содержание вопроса	Варианты ответов
	Выражение вида	1) $c_S - c_l$;
		2) $c_f - c_l$;
167.	$T\left(\frac{\partial f}{\partial T}\right)$ · $\left(\frac{\partial l}{\partial T}\right)$ задаёт раз-	3) $c_l - c_f$,
		4) $c_f - c_S$;
	ность	5) $c_f - c_V$.
		1) 1;
	Отношение критических объёмов	2) 1,5;
168.	для второго и первого уравне-	3) 2;
	ний Дитеричи равно	4) 2,5;
		5) 3.
	Физически корректное определение химического потенциала μ – это	1) $\mu = \left(\frac{\partial U}{\partial S}\right)_{V,T};$
		2) $\mu = \left(\frac{\partial F}{\partial N}\right)_{S,T};$
169.		3) $\mu = \left(\frac{\partial \Phi}{\partial T}\right)_{V,S};$
		4) $\mu = \left(\frac{\partial U}{\partial T}\right)_{V, P};$
		5) $\mu = \left(\frac{\partial \Phi}{\partial N}\right)_{P,T}$.
	Если координаты тройной точ- ки $T = -56,6$ °C и $P = 0,52$ МПа, то это вещество	1) озон;
		2) углекислый газ;
170.		3) кислород;
		4) азот;
		5) водород.
		1) Планка;
	Физическая константа равная $5,67 \cdot 10^{-8} \text{ Bt/(m}^2\text{K}^4)$ называется постоянной	2) Вина;
171.		3) Стефана – Больцмана;
		4) Рэлея – Джинса;
		5) Гиббса.
	Лорд Рэлей в 1904 году получил	1) неона;
172.	Нобелевскую премию по физике за исследование реальных газов и открытие	2) аргона;
		3) ксенона;
		4) криптона;
		5) астата.

No	Содержание вопроса	Варианты ответов
	D	1) 621 K;
	Верхняя температура инверсии	2) 611 K;
173.	знака эффекта Джоуля – Томсо-	3) 601 K;
	на при нормальном давлении	4) 591 K;
	для N_2 равна	5) 581 K.
		1) приведенная;
	F	2) высокая;
174.	Если температура стала безраз-	3) приравненная;
	мерной, то она	4) нефизическая;
		5) низкая.
		1) энтальпия <i>W</i> ;
	В данном определении свобод-	2) энтропия <i>S</i> ;
175.	ной энергии $F = U - T$ отсут-	3) теплоёмкость <i>c_P</i> ;
	ствует.	4) теплоёмкость <i>cv</i> ;
	j	5) объём <i>V</i> .
		1) внутренней энергии;
	T	2) энтропии;
176.	Теплосодержание – это сино-	3) энтальпии;
	ним	4) теплоёмкости;
		5) теплопроводности.
	T 11	1) $dW = SdT + VdP + \mu dN$;
	Дифференциал энтальпии dW	2) $dW = -TdS + VdP - \mu dN$;
177.	для системы с переменным ко-	3) $dW = TdS + VdP + \mu dN$;
	личеством вещества имеет	4) $dW = SdT - VdP + \mu dN$;
	вид	5) $dW = TdS + PdV + \mu dNi$.
	Наличие внешнего потенциального поля позволяет для давления <i>Р</i> получить барометрическую формулу вида	1) $P = P_0 exp\left(-\frac{Mh}{RT}\right);$
		2) $P = P_0 exp\left(-\frac{Mgh}{T}\right);$
178.		3) $P = -P_0 exp\left(-\frac{Mgh}{RT}\right);$
		4) $P = P_0 exp\left(-\frac{Mgh}{RT}\right);$
		$5) P = -P_0 exp\left(\frac{Mgh}{RT}\right).$

No	Содержание вопроса	Варианты ответов
	•	1) BT;
	D	2) Bt'c;
179.	Размерность свободной энергии F в СИ $$	3) Дж·с;
	F B CYI	4) Дж/с;
		5) B _T /c.
	-	1) электрического поля;
	Переход металлов в сверхпро-	2) магнитного поля;
180.	водящее состояние в отсутствии	3) гравитационного поля;
	внешнего является фазовым	4) давления;
	переходом второго рода.	5) подогрева.
		1) $T = T_1(P) exp \left[(\gamma - 1) \frac{S}{2R} \right];$
		2) $T = T_1(P) exp \left[2(\gamma - 1) \frac{S}{R} \right];$
181.	Изобара в <i>TS</i> -плоскости задаёт- ся выражением	3) $T = T_1(P) exp \left[(\gamma - 1) \frac{S}{\gamma R} \right];$
		4) $T = T_1(P) exp \left[(\gamma - 1) \frac{\gamma S}{R} \right];$
		5) $T = T_1(P) exp \left[(\gamma - 1) \frac{S}{\pi R} \right].$
		$1)\pm\infty;$
	Изотермическая сжимаемость K_T чёрного излучения равна	2) ± <i>e</i> ;
182.		$3)\pm\pi;$
		4) ∞;
		5) 0.
	Процесс нарачена в развидае	1) выравнивание;
	Процесс перехода в равновесное состояние неравновесной	2) выпрямление;
183.	ное состояние неравновесной системы, состоящей из равно-	3) приравнивание;
	весных подсистем, – это	4) расслабление;
	весных подопетем, — это	5) расслоение.
184.		1) 100-летний;
	В 2018 году отмечался юбилей Джеймса Джоуля.	2) 150-летний;
		3) 200-летний;
		4) 250-летний;
		5) 50-летний.

No	Содержание вопроса	Варианты ответов
		1) $d\mu = -\frac{SdT}{N} - \frac{VdP}{N};$
		$2) d\mu = -\frac{SdT}{N} + \frac{VdP}{N};$
185.	Дифференциал химического потенциала µ имеет вид	$3) d\mu = \frac{SdT}{N} + \frac{VdP}{N};$
		$4) d\mu = \frac{SdT}{N} - \frac{VdP}{N};$
		$5) d\mu = -\frac{TdS}{N} + \frac{VdP}{N}.$
		1) $cv < 0$;
100	Одно из термодинамических	2) $c_V > 0$;
186.	неравенств утверждает, что	3) $cv \neq 0$;
		4) $c_V > C_P$; 5) $c_V > C_T$.
	Аналог формулы Майера для плазмы имеет вид $C_P - C_V = \dots$	1) $R\left(1+\frac{5A}{6RT^{\frac{3}{2}}V^{\frac{1}{2}}}\right);$
		$2) R \left(1 + \frac{5A}{6RT^{\frac{3}{2}}V}\right);$
187.		$3) R \left(1 + \frac{5A}{6RTV^{\frac{1}{2}}}\right);$
		4) $R\left(1+\frac{A}{RT^{\frac{3}{2}}V^{\frac{1}{2}}}\right);$
		$5) R \left(1 + \frac{A}{6RT^{\frac{3}{2}}V^{\frac{1}{2}}} \right).$
		1) принципом Нернста;
188.	Положение изотермы-изобары для газа Ван-дер-Ваальса определяется	
		3) правилом Максвелла;
		4) правилом левой руки;
		5) законом Шарля.

No	Содержание вопроса	Варианты ответов
		1) $T_0 = 0.0078$ °C,
		$P_0 = 0,006$ атм.;
189.	Параметры тройной точки воды	2) $T_0 = 0.78$ °C, $P_0 = 0.1$ atm.;
109.	равны соответственно	3) $T_0 = 78$ °C, $P_0 = 3.6$ aTM.;
		4) $T_0 = 178$ °C, $P_0 = 6$ aTM.;
		5) $T_0 = 0$ °C, $P_0 = 1$ atm.
	П1-1	1) $SdT - VdP + \mu_1 dN_1 + \mu_2 dN_2$;
	Дифференциал термодинамиче-	2) $-SdT + VdP + \mu_1 dN_1 - \mu_2 dN_2$;
190.	ского потенциала Гиббса для двухфазной системы имеет вид	3) $-SdT + VdP - \mu_1 dN_1 + \mu_2 dN_2$;
	$d\Phi = \dots$	4) $SdT + VdP + \mu_1 dN_1 + \mu_2 dN_2$;
	<i>u</i> Ψ	$5) - SdT + VdP + \mu_1 dN_1 + \mu_2 dN_2.$
		1) испарение;
	Пантана	2) процесс Джоуля – Том-
191.	Процессом выравнивания по	сона;
171.	температуре и давлению является	3) кипение;
	СТСЯ	4) плавление;
		5) сублимация.
		1) Московском;
	Й Л Ром нов Роси с обущенов	2) Боннском;
192.	Й. Д. Ван-дер-Ваальс обучался	3) Лейденском;
	в университете.	4) Амстердамском;
		5) Оксфордском.
	При эндотермической реакции	1) $Q < 0$;
		2) $Q = 0$;
193.		3) $Q > 0$;
		4) A < 0;
		5) A = 0.
		1) физического;
	Runaweiihe bhila $\Sigma_{\text{HW}} = 0$ ato	2) статического;
194.	Выражение вида $\Sigma_i \mu_i v_i = 0$ – это условие равновесия.	3) химического;
		4) динамического;
		5) температурного.
		1) Bt/K;
195.	Размерность энтропии <i>S</i> в СИ —	2) Дж/К;
		3) K/BT;
		4) BT·K;
		5) Дж [.] К.

No	Содержание вопроса	Варианты ответов
	Утверждение, что внешнее воз-	1) Пуассона;
196.	действие на систему вызывает	2) Нернста;
	в ней реакцию уменьшающую	3) Ле-Шателье;
	результат этого воздействия, -	4) Клаузиуса;
	это принцип	5) Эренфеста.
		1) $\frac{3}{4aT^4}$; 2) $\frac{9}{4aT^4}$;
197.	Адиабатическая сжимаемость чёрного излучения $K_S =$	3) $\frac{9}{7aT^4}$;
		2) $\frac{9}{4aT^4}$; 3) $\frac{9}{7aT^4}$; 4) $\frac{9}{4T^4}$; 5) $\frac{7}{4a}$.
		5) $\frac{7}{4a}$.
		1) остаётся неизменной;
	При изохорном процессе в тер-	2) возрастает;
198.	мостате свободная энергия F	3) убывает;
	мостате свооодная энергия г	4) неопределена;
		5) равна 0.
	Выражение вида	1) Клапейрона – Клаузиуса;
	$U=F-Tigg(rac{\partial F}{\partial T}igg)_{\!\!V}$ называют урав-	2) Гиббса – Гельмгольца;
199.		3) Дирака;
		/ 1 1 /
	нением	5) Клейна – Гордона – Фока.
	Газ, подчиняющийся уравнению Бертло, имеет критическое давление	$1) P_{\kappa p} = \frac{aR}{21b^3};$
		1) $P_{\kappa p} = \frac{aR}{21b^3};$ 2) $P_{\kappa p} = \left(aRb^3\right)^{\frac{1}{2}};$
200.		$3) P_{\kappa p} = \left(\frac{aR}{2b^3}\right)^{\frac{1}{2}};$
		4) $P_{\kappa p} = \left(\frac{aRT}{26b^3}\right)^{\frac{1}{2}};$
		$5) P_{\kappa p} = \left(\frac{aR}{216b^3}\right)^{\frac{1}{2}}.$

2. ТЕСТОВЫЕ ЗАДАНИЯ НА АНГЛИЙСКОМ ЯЗЫКЕ – TEST TASKS IN ENGLISH

No	The content of the question	Answer options
	-	1) $dU = -TdS - PdV + \mu dN$;
	The differential of internal energy	2) $dU = -TdS + PdV + \mu dN$;
1.	of a gas system with a variable	3) $dU = TdS - PdV + \mu dN$;
	amount of substance has the	4) $dU = TdS - PdV - \mu dN$;
	form	$5) dU = TdS + PdV - \mu dN.$
		1) f and l ;
	The generalized force and	2) (<i>-f</i>) and (<i>-l</i>);
2.	generalized coordinate for the rods	3) f and $(-l)$;
	are respectively	4) <i>l</i> and (<i>-f</i>);
		5) (<i>-f</i>) and <i>l</i> .
		1) kg·m²·s;
2	The Gibbs thermodynamic potential	2) kg·m/s ² ;
3.	in SI has the dimension	3) $kg \cdot m^2/s$;
	in 51 has the difficusion	4) kg·m/s;
		$5) \text{ kg} \cdot \text{m}^2/\text{s}^2.$
	The general name for the processes	1) an equalization;
	of transition of a macrosystem	2) a sublimation;
4.	from a nonequilibrium state to an	3) a relaxation;
	equilibrium state is	4) a work;
	equinorium state is	5) a heat transfer.
		1) Redlich – Kwong;
	The critical volume $V_{cr} = 4b$	· · · · · · · · · · · · · · · · · · ·
5.	corresponds to the equation of state.	·
		4) Diterici-II;
		5) Berthelot.
		1) $0 < \eta < 10$;
	The efficiency of a heat engine	2) $0 < \eta < 1$;
6.	η varies within the range of	3) $1 < \eta < 2$;
	The range of the	4) $1 < \eta < 10$;
		$5) 0,5 < \eta < 1,5.$
		1) the molar entropies;
	The first Ehrenfest equation follows from the equality of of the phases.	2) the molar volumes;
7.		3) the chemical potentials;
		4) the Gibbs thermodynamic
		potentials;
		5) the temperatures.

No	The content of the question	Answer options
		1) Clapeyron – Clausius;
	From the equality of the chemical	2) Mendeleev – Clapeyron;
8.	potentials of the phases follows	3) Van der Waals;
	the equation.	4) Berthelot;
		5) polytropic.
		1) Charles's;
	If the polytropic index $\alpha = 0$ then	2) Bernoulli's;
9.	If the polytropic index $\varkappa = 0$, then the process obeys law.	3) Boyle – Mariotte;
	the process obeys law.	4) Gay-Lussac;
		5) Poisson's.
		1) the second Dieterici equation;
	If in the DV alone the igotherms	2) the first Dieterici equation;
10.	If in the <i>PV</i> -plane the isotherm cannot have a point of contact with	3) the Berthelot equation;
10.	_	4) the Redlich – Kwong
	the V axis, we are dealing with	equation;
		5) the Van der Waals equation.
	The Joule – Thomson process is	1) isothermal;
		2) isobaric;
11.		3) isochoric;
		4) isenthalpic;
		5) adiabatic.
	In two-parameter equations of state, the parameter <i>b</i> has the dimension of	1) energy;
		2) pressure;
12.		3) volume;
		4) entropy;
		5) temperature.
		1) F = U + TS + PV;
	The free energy of a gas F is	2) F = U - TS + PV;
13.	determined by the expression	3) F = U + PV;
	determined by the expression	4) F = U - TS;
		5) F = U + TS.
	The isotherms of the Van der Waals gas in the PV -plane at $T < T_{cr}$ have	1) one extremum;
14.		2) two extrema;
		3) an inflection point;
		4) many inflection points;
		5) a discontinuity.

No	The content of the question	Answer options
		1) adiabatic;
	Thermodynamic systems that have	2) polytechnic;
15.	several non-thermal degrees of	· • •
	freedom are called	4) polytropic;
		5) polyvariant.
		1) a function of state;
	The quantity of heat O in	2) a function of balance;
16.	The quantity of heat Q in	3) a function of the process;
	thermodynamics is	4) a functional of measure;
		5) a functional of action.
		1) a 1 st -order phase transition;
	A change in the type of crystal	2) a 2 nd -order phase transition;
17.	lattice that results in a jump in heat	3) a 0 th -order phase transition;
	capacity is	4) a non-phase transition;
		5) a phaseless transition.
		1) $c_l - 2c_f = 0$;
	The analogue of Mayor's formula	2) $c_l + c_f = 0$;
18.	The analogue of Mayer's formula for ideal rods is	3) $c_f + 2c_l = 0$;
		4) $c_f - c_l = R$;
		5) $c_f - c_l = 0$.
	If in the equation of state	1) Fahrenheit;
	of an ideal gas we assume that	2) Celsius;
19.	$R = 8.31 \text{ J/(deg \cdot mol)}, \text{ then the}$	3) Kelvin;
	temperature scale becomes the	4) Planck;
	scale.	5) Boltzmann.
	The Nernst principle is called the of thermodynamics.	1) third law;
		2) second law;
20.		3) first law;
		4) 0 th law;
		5) absolute principle.
		1) equal to 0;
	The second law of thermodynamics	2) equal to 1;
21.	prohibits having a cycle efficiency	3) equal to 0,5;
		4) at all;
		5) less than 1.
		1) 1 adiabat and 2 isotherms;
22.		2) 2 adiabats and 2 isotherms;
	The Carnot cycle consists of	3) 2 adiabats and 1 isotherm;
		4) 2 isochores and 2 isobars;
		5) 1 isotherm and 2 isobars.

No	The content of the question	Answer options
23.	The thermodynamic coefficient of the form $\left(\frac{\partial T}{\partial V}\right)_P$ for an ideal gas is equal to	1) $\frac{T}{P}$; 2) $\frac{R}{P}$; 3) $\frac{P}{R}$; 4) $\frac{V}{P}$; 5) $\frac{R}{V}$.
24.	The table of thermodynamic coefficients contains partial derivatives.	1) 19; 2) 13; 3) 8; 4) 10; 5) 12.
25.	The physical equality of <i>PV</i> - and <i>TS</i> -planes is achieved by the condition	1) $\frac{\partial(PV)}{\partial(TS)} = 0;$ 2) $\frac{\partial(PV)}{\partial(TS)} = 1;$ 2) $\frac{\partial(PV)}{\partial(PV)} = 0;$
26.	The differential of is full.	 work <i>A</i>; heat <i>Q</i>; heat capacity <i>c_P</i>; entropy <i>S</i>; heat capacity <i>c_V</i>.
27.	The molar Gibbs thermodynamic potential is potential.	1) a chemical; 2) an adiabatic; 3) an isothermal; 4) an isobaric; 5) an isochoric.

No	The content of the question	Answer options
		1) the 1 st -Dieterici equation;
28.	The equation of state of the form	2) the Berthelot equation;
	$P = \frac{RT}{V - b} - \frac{a}{V_3^{\frac{5}{3}}} - is$	3) the Clapeyron equation;
	$V-b$ $V^{\frac{3}{3}}$	4) the Clausius equation;
	•	5) the 2 nd -Dieterici equation.
	The non-physical region of	1) $P \le 8,485P_{cr}$;
	the Joule – Thomson effect	2) $P > 8,485 P_{cr}$;
29.	for the Berthelot gas satisfies the	3) $\lambda > 0$;
	condition	$4) \lambda < 0;$
		5) $P < 0$.
		$1)\left(\frac{X}{X_{cr}}\right)^2;$
30.	The reduced form of variable <i>X</i> is	$\frac{(X_{cr})}{2)\frac{X_{cr}}{X}};$
30.	determined by a relation	3) $X_{cr} \cdot X$;
	·	3) $X_{cr} \cdot X$; 4) $\frac{X}{X_{cr}}$;
		$5) X \cdot (X_{cr})^{\frac{1}{2}}.$
	In relation to the amount of	1) extensive;
	substance of the system N ,	2) additive;
31.	temperature T and pressure P are	3) intensive;
		4) indifferent;
	r · · · · · · · ·	5) polyvariant.
	On the Van der Waals gas isotherms in the <i>PV</i> -plane, there is a non-physical region where	$1) \left(\frac{\partial P}{\partial V} \right)_T > 0;$
		$2) \left(\frac{\partial P}{\partial V}\right)_T < 0;$
32.		$3) \left(\frac{\partial S}{\partial V}\right)_T > 0;$
		$4) \left(\frac{\partial P}{\partial S}\right)_T > 0;$
		$5) \left(\frac{\partial P}{\partial V} \right)_{V} > 0.$

No	The content of the question	Answer options
33.	The adiabatic heat capacity of a thermodynamic system c_S is equal to	1) <i>R</i> ; 2) ∞; 3) 0; 4) 1; 5) <i>c</i> _T .
34.	A metastable state of a stretched liquid arises under the condition	1) $P < 0$, $V > 0$, $T > 0$; 2) $P > 0$, $V > 0$, $T > 0$; 3) $P < 0$, $V < 0$, $T > 0$; 4) $P < 0$, $V > 0$, $T < 0$; 5) $P < 0$, $V < 0$, $T < 0$.
35.	There is no in the equation of state of an ideal rod.	 Young's modulus; cross-sectional area; temperature; volume; length.
36.	The phase equilibrium condition has the form	1) $V_1(T, S) = V_1(T, S);$ 2) $P_1(T, S) = P_1(T, S);$ 3) $S_1(P, V) = S_2(P, V);$ 4) $W_1(T, V) = W_2(T, V);$ 5) $\mu_1(P, T) = \mu_2(P, T).$
37.	In thermally insulated systems, entropy increases in processes.	1) leveling; 2) equalization; 3) straightening; 4) curvature; 5) equilibrium.
38.	The physical and chemical heterogeneity of a system is respectively characterized by the presence of different	 types and orders; components and phases; phases and components; orders and types; chaos and fractals.
39.	About temperature we can say that it is	 binary; additive; intensive; extensive; polyvariant.
40.	The differential of internal energy in rod theory has the form	1) $dU = -TdS - fdl$; 2) $dU = TdS - fdl$; 3) $dU = -TdS + fdl$; 4) $dU = TdS + fdl$; 5) $dU = TdS - PdV$.

No	The content of the question	Answer options
		1) <i>P</i> and (- <i>V</i>);
	The generalized force and	2) <i>V</i> and <i>P</i> ;
41.	generalized coordinate in gas	3) <i>P</i> and <i>V</i> ;
	theory are respectively	4) <i>V</i> and (– <i>P</i>);
	-	5) (– <i>P</i>) and <i>V</i> .
		1) $kg \cdot m^2/s^2$;
	Fadeda III in the CI to the	2) $kg \cdot m^2/s$
42.	Enthalpy W in the SI has the	3) kg·m/s ² ;
	dimension	4) $kg \cdot s^2/m^2$;
		5) kg·m/s.
		1) sublimation;
	A direct phase transition from a	2) desublimation;
43.	gaseous state to a solid state is	3) diffusion;
	called	4) crystallization;
		5) anti-sublimation.
		1) a Dieterici-I;
	The critical volume of a Van der	2) a Dieterici-II;
44.	Waals gas coincides with the	3) an ideal;
	critical volume of gas	4) a Clausius;
		5) a Berthelot.
		1) $1 + \frac{T_1}{T_2}$;
	The efficiency of the Counct and	$1) 1 + \frac{\cdot}{T_2};$
		T.
		2) $1 - \frac{T_1}{T}$;
		I_2
	η_C is determined by the temperature	3) $\frac{T_1}{T_2} - 1$;
45.	of the heater T_1 and the temperature of the refrigerator T_2 as	$\frac{1}{T_0}$ -1;
		4) $1 + \frac{T_2}{T_1}$;
		$4) 1 + \frac{I_2}{2};$
		T_1
		$5) 1 - \frac{T_2}{T_1}$.
		1
	The second Ehrenfest equation for second-order phase transitions follows from the equality of of the phases.	1) the internal energies;
46.		2) the molar enthalpies; 3) the Gibbs potentials:
		3) the Gibbs potentials;
		4) the molar volumes; 5) the molar entropies
		5) the molar entropies.

No	The content of the question	Answer options
	During first order phase transitions	1) the molar volumes;
	During first-order phase transitions,	2) the molar entropies;
47.	the presence of heat exchange with	3) the molar enthalpies;
	external systems is due to a change in of the phases.	4) the heat capacities;
	iii of the phases.	5) the compressibilities.
		1) 0;
	If the polytropic equation leads to	2) ∞;
48.	the Boyle – Mariotte law, then the	3) 1;
	polytropic index \varkappa is equal to	4) π;
		5) −∞.
		$1) \varkappa = \frac{c - c_V}{c - c_P};$
	The polytropic index is determined by the ratio	$2) \varkappa = \frac{c - c_T}{c - c_S};$
49.		$3) \varkappa = \frac{c - c_P}{c - c_V};$
		$4) \varkappa = \frac{c - c_S}{c - c_T};$
		$5) \varkappa = \frac{c - c_P}{c - c_T}.$
		1) $P_1 < P_2$;
	In the Joule – Thomson process, the pressures of the initial state P_1 and final state P_2 are related as	2) $P_1 > P_2$;
50.		3) $P_1 = P_2$;
		$4) P_1 \neq P_2;$
		5) $P_1 \approx P_2$.
		1) 1910;
	Johannes Diderik van der Waals	2) 1920;
51.	received the Nobel Prize in Physics in	3) 1930;
		4) 1940;
		5) 1900.
		1) $\Phi = F - U + PV$;
52.	The Gibbs thermodynamic potential Φ is determined by the expression	$(2) \Phi = U + PV + TS;$
		3) $\Phi = U - TS + PV$;
		$4) \Phi = F + PV;$
		$5) \Phi = F - U.$

No	The content of the question	Answer options
	The family of isotherms of an ideal	1) parabolas;
53.	rod in the fl -plane is represented	2) hyperbolas;
	by emanating from the point	3) exponentials;
	$f = -\sigma E$.	4) straight lines;
	J = -0E.	5) sinusoids.
	A polyvariant system is considered	1) 0;
	binary if the number of its non-	2) 1;
54.	thermal degrees of freedom is equal	3) 2;
	to	4) 3;
		5) 4.
		1) isothermal;
		2) isochoric;
55.	Zero work corresponds to process.	3) isobaric;
		4) adiabatic;
		5) circular.
		1) volume and temperature;
	The phenomenon of crystallization	2) volume and pressure;
56.	occurs at constant	3) pressure and temperature;
	occurs at constant	4) entropy and volume;
		5) entropy and pressure.
		1) $C_V - C_P = R$;
		$2) C_V + C_P = R;$
57.	Mayer's formula is	3) $C_V - C_P = 0$;
		$4) C_P + C_V = 2R;$
		$5) C_P - C_V = R.$
	The universal gas constant R is equal to	1) 6,67 m ² kg/(s ² K·mol);
50		2) 8,31 m ² kg/(s ² K·mol);
58.		3) 9,8 m ² kg/(s ² K·mol);
		4) 5,67 m ² kg/(s ² K·mol);
		5) $2.9 \text{ m}^2\text{kg/(s}^2\text{K·mol})$.
		1) pressure;
50	The Nernst principle regulates the	2) entropy;
59.	behavior of when $T \rightarrow 0$.	3) Gibbs potential;
		4) volume;
		5) free energy.
	The second law of thermodynamics	1) of the first kind;
60	indicates the impossibility of creating a perpetual motion machine	2) of the second kind;
60.		3) of the third kind;
		4) of the internal combustion;
		5) on fast neutrons.

No	The content of the question	Answer options
61.	The statement that there is more than one single-valued state function that remains constant for any process in a thermostat is	 the principle of uniqueness; the entropy principle; the Nernst principle; the energy principle; the temperature principle.
62.	The expression $\Delta = \frac{R}{\gamma - 1} \cdot \ln \frac{PV^{\gamma}}{P_0 V_0^{\gamma}}$ determines the change in	1) molar enthalpy W;
63.	The total differential of the free energy F of a gas has the form	1) $dF = -SdT - PdV$; 2) $dF = SdT - PdV$; 3) $dF = -SdT + PdV$; 4) $dF = SdT + PdV$; 5) $dF = -TdS - PdV$.
64.	Adiabatic coefficient of volumetric expansion is	1) $\alpha_{P} = V^{-1} \left(\frac{\partial V}{\partial T} \right)_{P};$ 2) $\alpha_{S} = V^{-1} \left(\frac{\partial V}{\partial T} \right)_{S};$ 3) $\alpha_{W} = V^{-1} \left(\frac{\partial V}{\partial T} \right)_{W};$ 4) $\alpha_{S} = V \left(\frac{\partial V}{\partial T} \right)_{S};$ 5) $\alpha_{T} = V^{-1} \left(\frac{\partial V}{\partial P} \right)_{T}.$
65.	The element of the table of thermodynamic coefficients is supposed to be independent.	1) $\left(\frac{\partial P}{\partial T}\right)_{S}$; 2) $\left(\frac{\partial P}{\partial S}\right)_{V}$; 3) $\left(\frac{\partial S}{\partial T}\right)_{P}$; 4) $\left(\frac{\partial P}{\partial T}\right)_{V}$; 5) $\left(\frac{\partial P}{\partial S}\right)_{T}$.

No	The content of the question	Answer options
66.	The upper temperature of the sign inversion of the Joule-Thomson effect at normal pressure equal to 723 K corresponds to	 carbon dioxide; oxygen; hydrogen; argon; helium.
67.	The main component of air is	1) ozone; 2) molecular oxygen; 3) carbon dioxide; 4) molecular hydrogen; 5) molecular nitrogen.
68.	The correct thermodynamic inequality is	1) $\left(\frac{\partial T}{\partial S}\right)_{V} = \frac{T}{c_{V}} < 0;$ 2) $\left(\frac{\partial T}{\partial S}\right)_{V} = \frac{P}{c_{V}} > 0;$ 3) $\left(\frac{\partial T}{\partial S}\right)_{V} = \frac{R}{c_{V}} > 0;$ 4) $\left(\frac{\partial T}{\partial S}\right)_{V} = \frac{T}{c_{V}} > 0;$ 5) $\left(\frac{\partial T}{\partial S}\right)_{V} = \frac{R}{c_{V}} < 0.$
69.	The transition of metals into a superconducting state in an external magnetic field is a	 1) 1st-order phase transition; 2) 2nd-order phase transition; 3) 0th-order phase transition; 4) non-phase transition; 5) tunnel transition.
70.	According to the Gibbs phase rule, the number of phases r and the number of components n are related by the inequality	1) $r > n$; 2) $r > n + 2$; 3) $r \le n + 1$; 4) $r \le n + 2$; 5) $r \le n + 3$.
71.	On the equilibrium curve of the liquid and gaseous phases, the number of degrees of freedom Γ that do not lead to a violation of equilibrium is equal to	1) 0; 2) 1; 3) 2; 4) 3; 5) 4.

No	The content of the question	Answer options
	The equation of state of the form	1) dielectrics;
72.	$f = E\sigma \left\{ \frac{l[1 - \alpha(T - T_0)]}{l_0} - 1 \right\}$	2) ferromagnets;
		3) magnets;
		4) non-ideal rods;
	describes	5) ideal rods.
		1) equal to 0;
	The change in any state function as	2) equal to π ;
73.	a result of a circular process is	3) equal to 1;
	a result of a circular process is	4) equal to ∞ ;
		5) negative.
		1) decreases;
	In an isobaric process in a thermostat,	2) increases;
74.	the Gibbs thermodynamic potential	3) remains unchanged;
	Φ	4) is equals 0;
		5) is equals ∞ .
	The coefficients v_i , indicating how many molecules of the i -th substance appear or disappear as a result of one reaction act, are	1) stoichiometric;
		2) stereometric;
75.		3) quantitative;
		4) qualitative;
	called	5) stochastic.
		1) The Utrecht University;
	J. Gibbs made significant contributions to thermodynamics while working at	2) The University of Bonn;
76.		3) The University of Rome;
		4) The University of Vienna;
		5) The Yale University.
	The reduced entropy has the dimension	1) 0;
		2) 1;
77.		3) J/K;
		4) W·s/K;
		5) W/K.
	T 1 1100	1) rigidity <i>k</i> ;
	In the differential entropy of an ideal $rod dS = \frac{c_l dT}{T} + \frac{\alpha \sigma l dl}{l_0} is$ absent	2) volume <i>V</i> ;
78.		3) enthalpy <i>W</i> ;
70.		4) heat capacity c_f ;
		5) Young's modulus <i>E</i> .
		o, roung s modulus L.

No	The content of the question	Answer options
		1) a chemical potential;
		2) a physical potential;
79.	The molar Gibbs thermodynamic	3) a heat capacity;
	potential is	4) a thermal conductivity;
		5) a heat content.
		1) Boyle;
	In the TC alone the constant to the	2) Charles;
80.	In the TS-plane the cycle looks	3) Carnot;
	like a rectangle.	4) Ehrenfest;
		5) Joule.
	In the definition of the isochoric	1) pressure <i>P</i> ;
	thermal pressure coefficient	2) entropy <i>S</i> ;
81.	<u>.</u> ♣ .	3) volume <i>V</i> ;
	$\beta_V = P^{-1} \left(\frac{\partial \dots}{\partial T} \right)_{\dots}$ is absent	4) work <i>A</i> ;
	$(OI)_V$	5) heat <i>Q</i> .
		1) $P = \left(\frac{\partial F}{\partial T}\right)_V$;
		$2) P = -\left(\frac{\partial F}{\partial T}\right)_{V};$
82.		3) $P = \left(\frac{\partial F}{\partial V}\right)_T$;
		4) $P = -\left(\frac{\partial F}{\partial V}\right)_T$;
		$5) P = \left(\frac{\partial F}{\partial S}\right)_T.$
	If the reaction constant satisfies the	1) neutral;
		2) retarded;
83.	condition $\frac{\partial [lnK(P,T)]}{\partial T} < 0$, then the reaction is	3) advanced;
		4) exothermic;
		5) endothermic.
		1) The University of Bonn;
	Ludwig Boltzmann graduated from	2) The University of Trier;
84.		3) The University of Vienna;
		4) The University of Graz;
		5) The University of Rome.

No	The content of the question	Answer options
	In this physically correct	1) entropy S;
0.7	definition of chemical potential	2) internal energy <i>U</i> ;
85.	$d = (\partial \Phi)$ is absent	3) free energy <i>F</i> ;
	$\mu = \left(\frac{\partial \Phi}{\partial \dots}\right)_{P,T}$ is absent	4) volume <i>V</i> ;
	\```\',T	5) amount of substance <i>N</i> .
		1) $T = \left(\frac{\partial W}{\partial S}\right)_P;$
		$2) T = \left(\frac{\partial S}{\partial W}\right)_{P};$
86.	Entropy <i>S</i> , enthalpy <i>W</i> , temperature <i>T</i> and pressure <i>P</i> are related to each other by the formula	3) $P = \left(\frac{\partial W}{\partial S}\right)_T;$
	other by the formula	$4) P = \left(\frac{\partial W}{\partial T}\right)_{S};$
		$5) T = \left(\frac{\partial P}{\partial S}\right)_{W}.$
	For one mole of an ideal gas the following relation is true	1) $C_V = \frac{\gamma R}{\gamma - 1}$; 2) $C_V = \frac{R}{\gamma - 1}$;
		·
87.		$3) C_V = \frac{R}{1-\gamma};$
		$4) C_V = \frac{2\pi R}{\gamma - 1};$
		5) $C_V = \gamma R$.
		1) 1822;
	Robert Mayer established the first law of thermodynamics in	2) 1842;
88.		3) 1862;
		4) 1882;
		5) 1902.
	At the triple point, the number of	1) 0;
89.	degrees of freedom Γ that do not lead to a violation of equilibrium is equal to	2) 1;
		3) 2;
		4) 3;
		$(5) \infty$.

No	The content of the question	Answer options
		1) 0 th -order phase transition;
		2) 2 nd -order phase transition;
90.	The transition of helium to a	3) 1 st -order phase transition;
	superfluid state is a	4) tunnel transition;
		5) non-phase transition.
		1) greater than;
	Always the efficiency of the cycle	2) is equal to;
91.	inscribed in the Carnot cycle the	3) less than;
	efficiency of the Carnot cycle.	4) two times greater than;
		5) two times less than.
		1) W·m/s ² ;
	The dimension of isochoric heat	2) W·m/s;
92.	capacity C_V of a thermodynamic	3) W·s/K;
	system in SI is	4) J·m/s;
		5) W·s/mol.
		1) transformation;
	The law of mass action determines	2) decay;
93.	the value of $K(P, T)$, called the	3) induction;
	constant.	4) reduction;
		5) reaction.
	In 1913, the Nobel Prize in Physics	1) liquid nitrogen;
	was awarded to H. Kamerlingh-	2) liquid hydrogen;
94.	Onnes for his low temperature	3) liquid neon;
	research and the discovery of	4) liquid helium;
	research and the discovery of	5) liquid air.
	If pressure is dimensionless, then	1) low;
		2) high;
95.	it is	3) verified;
		4) diluted;
		5) reduced.
	The number of degrees of freedom	
	Γ that do not lead to a violation of	
96.	equilibrium is related to the number of phases r and the number of	
	components <i>n</i> as	5) $\Gamma = n - r - 2$.
	Th	1) an ideal gas;
97.	The entropy differential $dS = \frac{c_l dT}{T} + \frac{\alpha E \sigma l dl}{l_0} \text{ has}$	2) a non-ideal gas;
		3) an ideal rod;
		4) an non-ideal rod;
		5) an ideal membrane.

No	The content of the question	Answer options
98.	In the expression for isothermal compressibility $K_T =^{-1} \left(\frac{\partial V}{\partial P} \right)_T$	1) pressure <i>P</i> ;
		2) amount of substance <i>N</i> ;
		3) volume <i>V</i> ;
	is absent	4) temperature <i>T</i> ;
	is doscit	5) entropy <i>S</i> .
		1) $\beta_V = P^{-1} \left(\frac{\partial P}{\partial T} \right)_V$;
		2) $\beta_T = P^{-1} \left(\frac{\partial P}{\partial V} \right)_T$;
99.	The isochoric thermal pressure coefficient is	3) $\beta_V = T^{-1} \left(\frac{\partial P}{\partial T} \right)_V$;
		4) $\beta_S = P^{-1} \left(\frac{\partial P}{\partial V} \right)_S$;
		$5) \beta_W = T^{-1} \left(\frac{\partial P}{\partial V} \right)_W.$
	The assertion that there is more than one single-valued function of state that remains constant for any process in the adiabat is the principle of	1) temperature;
		2) entropy;
100.		3) energy;
		4) unambiguity;
		5) Nernst.
	An endothermic reaction requires that the reaction constant $K(P, T)$ satisfy the condition	1) $\frac{\partial [lnK(P,T)]}{\partial T} < 0;$
		$2) \frac{\partial [lnK(P,T)]}{\partial T} > 0;$
101.		3) $\frac{\partial [lnK(P,T)]}{\partial P}$ < 0;
		4) $\frac{\partial [lnK(P,T)]}{\partial P} > 0;$
		$5) \frac{\partial [lnK(P,T)]}{\partial T} = 0.$

No	The content of the question	Answer options
	(3)	1) tomporature T
	In the derivative $\left(\frac{\partial \dots}{\partial V}\right)_U$	2) pressure <i>P</i> ;
102.		3) entropy <i>S</i> ;
	characterizing the Gay-Lussac	4) enthalpy <i>W</i> ;
	process, there is no	5) free energy <i>F</i> .
		1) $S = \left(\frac{\partial \Phi}{\partial T}\right)_P$;
	Entropy S, Gibbs thermodynamic	2) $S = -\left(\frac{\partial \Phi}{\partial T}\right)_P;$
103.	potential F , temperature T and pressure P are related to each other by the formula	3) $P = \left(\frac{\partial \Phi}{\partial T}\right)_{S};$
		$4) P = \left(\frac{\partial \Phi}{\partial S}\right)_T;$
		$5) T = \left(\frac{\partial \Phi}{\partial S}\right)_{P}.$
		1) plasma;
	The coefficient of linear thornal	2) liquid;
104.	The coefficient of linear thermal expansion α is positive for	3) rubber;
	expansion α is positive for	4) metal;
		5) gas.
	Temperature T can be determined by the derivative	$1) \left(\frac{\partial U}{\partial V} \right)_{S};$
		$2) - \left(\frac{\partial U}{\partial S}\right)_{V};$
105.		3) $-\left(\frac{\partial U}{\partial V}\right)_{S}$;
		$4)\left(\frac{\partial U}{\partial S}\right)_{V};$
		$5) \left(\frac{\partial U}{\partial P} \right)_{V}.$

No	The content of the question	Answer options
	The derivative of free energy F of	1) -S;
106.	the form $\left(\frac{\partial F}{\partial T}\right)_V$ expresses the	2) S;
	the form $\left(\frac{\partial}{\partial T}\right)_{V}$ expresses the	3) -P;
	parameter	$\begin{array}{c} 4) P; \\ 5) -\Phi. \end{array}$
		1) 500 K;
	The upper inversion temperature of	2) 603 K;
107.	the sign of the Joule – Thomson	3) 303 K;
	effect at normal pressure for air is	4) 698 K;
	equal to	5) 103 K.
		1) $K_S = -P^{-1} \left(\frac{\partial T}{\partial V} \right)_S$;
		2) $K_S = P^{-1} \left(\frac{\partial P}{\partial V} \right)_S$;
108.		3) $K_S = -V^{-1} \left(\frac{\partial P}{\partial V} \right)_S$;
		4) $K_S = P^{-1} \left(\frac{\partial P}{\partial T} \right)_S$;
		$5) K_S = -V^{-1} \left(\frac{\partial V}{\partial P} \right)_S.$
		1) adiabatic;
	the process.	
109.		
		4) isobaric;
		5) polyvariant.
	The permeability of a substance μ as a function of temperature T is	1) $\mu(T) = 1 + \frac{\pi \varkappa_m(T)}{S};$
110.		1) $\mu(T) = 1 + \frac{\pi \varkappa_m(T)}{S};$ 2) $\mu(T) = 1 + \frac{2\pi \varkappa_m(T)}{V};$
		3) $\mu(T) = 1 + \frac{4\pi \varkappa_m(T)}{S};$
		3) $\mu(T) = 1 + \frac{4\pi \varkappa_m(T)}{S};$ 4) $\mu(T) = 1 + \frac{4\pi \varkappa_m(T)}{V};$ 5) $\mu(T) = \frac{4\pi \varkappa_m(T)}{V}.$
		$5) \mu(T) = \frac{4\pi \varkappa_m(T)}{V}.$

No	The content of the question	Answer options
	_	1) $p = \kappa_e / E$;
	In the theory of dielectrics, the	$2) \boldsymbol{p} = \boldsymbol{\varkappa}_e \cdot \boldsymbol{E};$
111.	l	2
	determined from the relation	$4) \mathbf{p} = 2\pi \mathbf{x}_e \cdot \mathbf{E};$
		$5) \mathbf{E} = \varkappa_e \cdot \mathbf{p}.$
		1) 0;
		2) 1;
		AF^2
112.	For non-polar dielectrics the	3) $\frac{AE^2}{T^2}$;
112.	difference $c_E - c_P = \dots$	1
		4) $\frac{AE}{T}$;
		1
		5) R.
		1) $c_P = T \left(\frac{\partial S}{\partial T} \right)_S$;
	22002	$\left(\frac{1}{\partial T}\right)_{p}$,
		(ag)
		2) $c_P = -T \left(\frac{\partial S}{\partial T} \right)_{-}$;
		$\langle OI \rangle_P$
113.		$T(\partial T)$
		3) $c_P = T \left(\frac{\partial T}{\partial S} \right)_P$;
		(31/)
		4) $c_P = -T \left(\frac{\partial V}{\partial T} \right)_P$;
		$(OI)_{P}$
		$T \left(\partial T \right)$
		5) $c_P = T \left(\frac{\partial T}{\partial V} \right)_P$.
		1) Stefan – Boltzmann;
	A physical constant equal to	2) D1 1
114.		3) Wien;
	constant.	4) universal gas;
		5) gravitational.
		1) amount of substance <i>N</i> ;
115.	In the definition of the	
	$\Phi = \dots -TS + PV$ there is no	4) internal energy <i>U</i> ;
		5) free energy <i>F</i> .

No	The content of the question	Answer options
116.	The reduced pressure has the dimension	1) Pa; 2) N/m ² ; 3) J/m ³ ; 4) 1; 5) Pa/m
117.	The magnetic susceptibility \varkappa_m of a superconductor is equal to	1) $-\frac{1}{2\pi}$; 2) $\frac{1}{4\pi}$; 3) $-\frac{1}{4\pi}$; 4) 0; 5) ∞ .
118.	The efficiency of the Carnot cycle does not depend on the characteristics of the	
119.	The change in internal energy of an ideal gas $\Delta U = \dots$	1) $c_T (T_2 - T_1)$; 2) $c_V (T_2 - T_1)$; 3) $c_V (S_2 - S_1)$; 4) $c_S (T_2 - T_1)$; 5) $c_P (T_2 - T_1)$.
120.	The state function defined by the derivative $\left(\frac{\partial F}{\partial T}\right)_V$ is	 chemical potential μ; enthalpy W; entropy S; internal energy U; pressure P.
121.	Experiments on adiabatic stretching of wires were carried out by	 Joule and Haga; Joule and Thomson; Haga and Maxwell; Maxwell and Faraday; Kelvin and Boltzmann.

No	The content of the question	Answer options
122.	The critical temperature of a gas	1) $T_{cr} = \frac{5a}{2^{\frac{16}{3}}Rb^{\frac{2}{3}}};$
		2) $T_{cr} = \frac{a}{2^{\frac{16}{3}}Rb^{\frac{2}{3}}};$
		3) $T_{cr} = \frac{15a}{2^{\frac{16}{3}}Rb^{\frac{2}{3}}};$
		4) $T_{cr} = \frac{15a}{2^{\frac{10}{3}}Rb^{\frac{2}{3}}};$
		$5) T_{cr} = \frac{13a}{2^{\frac{16}{3}}Rb^{\frac{7}{3}}}.$
	In the expression for adiabatic	1) pressure <i>P</i> ;
	$1(\partial V)$	2) entropy <i>S</i> ;
123.		3) temperature T;
		4) volume <i>V</i>;5) enthalpy <i>W</i>.
	The mutual mapping of TS - and PV -planes requires that the Jacobian $\frac{\partial(P,V)}{\partial(T,S)}$ be equal to the Jacobian	1) $\frac{\partial(T,S)}{\partial(P,V)}$;
		$2) \frac{\partial(P,S)}{\partial(T,V)};$
124.		3) $\frac{\partial(P,T)}{\partial(V,S)}$;
		$4) \frac{\partial(T,V)}{\partial(P,S)};$
		$5) \frac{\partial(S,V)}{\partial(T,P)}.$

No	The content of the question	Answer options
125.	For an ideal gas the relation is true.	1) $C_P = \frac{\gamma R}{1 - \gamma}$;
		2) $C_P = \frac{\pi \gamma R}{\gamma - 1};$ 3) $C_P = \frac{2\gamma R}{\gamma - 1};$
		$4) C_P = \frac{\gamma R}{\gamma - 1};$
		$5) C_P = \frac{R}{\gamma - 1}.$
	Entropy S , enthalpy W , volume V and pressure P are related to each other by the formula	1) $W = \left(\frac{\partial V}{\partial P}\right)_S;$
126.		2) $V = \left(\frac{\partial W}{\partial P}\right)_{S};$
		3) $V = \left(\frac{\partial W}{\partial S}\right)_P;$
		4) $W = \left(\frac{\partial V}{\partial S}\right)_P;$
		$5) P = \left(\frac{\partial W}{\partial V}\right)_{S}.$
		1) Wien;
10-	A physical constant equal to	
127.		
	constant.	4) universal gas; 5) gravitational
128.		5) gravitational.1) Wien's;
		2) Gay-Lussac's;
	The expression for the emissivity $\varepsilon(T) = \sigma T^4$ is called law.	3) Stefan – Boltzmann's;
		4) Mayer's;
		5) Rayleigh – Jeans.

No	The content of the question	Answer options
		1) optical;
	The Rayleigh – Jeans formula best	2) infrared;
129.	describes thermal blackbody	3) ultraviolet;
	radiation in the range.	4) X-ray;
		5) radio.
	In the formula C	1) temperature <i>T</i> ;
	In the formula $C_V = \frac{RT}{(\gamma - 1)(T - \theta)}$	2) gas constant <i>R</i> ;
130.	` ` ` ` ` ` `	3) adiabatic index γ;
	to the empirically correct behavior	4) heat capacity C_V itself;
	of the	5) volume <i>V</i> .
	Volume V , Gibbs potential Φ , temperature T and pressure P are related to each other by the formula	1) $\Phi = \left(\frac{\partial T}{\partial P}\right)_V$;
		2) $V = \left(\frac{\partial \Phi}{\partial T}\right)_P$;
131.		3) $V = \left(\frac{\partial \Phi}{\partial P}\right)_T$;
		4) $\Phi = \left(\frac{\partial V}{\partial P}\right)_T$;
		$5) T = \left(\frac{\partial V}{\partial \Phi}\right)_{P}.$
	process for a Van der Waals gas is equal to	$1) -\frac{a}{V^2 c_V};$
		$2) \frac{a}{V^2 c_V};$
132.		$3) -\frac{a}{Vc_V};$
		4) $\frac{a}{Vc_v}$;
		$5) -\frac{a}{V^2 c_P}.$

No	The content of the question	Answer options
		1) <i>PdV</i> ;
	In the differential of the Gibbs	2) – <i>TdS</i> ;
133.	potential for a two-phase system	3) <i>TdS</i> ;
	$d\Phi = \dots + VdP + \mu_1 dN_1 - \mu_2 dN_2$ the term is missing.	4) <i>SdT</i> ;
	the term is missing.	5) – <i>SdT</i> .
	In the definition of the adiabatic	1) volume <i>V</i> ;
	thermal pressure coefficient	2) entropy <i>S</i> ;
134.	$\frac{1}{2} \left(\frac{\partial P}{\partial r} \right)$	3) enthalpy <i>W</i> ;
	$\beta_{} = P^{-1} \left(\frac{\partial P}{\partial T} \right)_{}$ there is no	4) internal energy <i>U</i> ;
	(01)	5) free energy <i>F</i> .
	The thermodynamic coefficient $\left(\frac{\partial T}{\partial E}\right)_{S}$ for polar dielectrics is	1) $\frac{E}{c_E T}$;
125		$2) \frac{AE}{c_E T};$
155.		3) 0;
		4) $\frac{E}{c_E TA}$;
		5) ∞.
		1) the <i>fl</i> -plane;
	The plane of generalized force	2) the <i>PV</i> -plane;
136.		3) the <i>HM</i> -plane;
	magnet is	4) the <i>ED</i> -plane;
		5) the TS-plane.
		1) the radio;
	Wien's formula describes well	2) the VHF radio;
137.	thermal black radiation in range.	3) the infrared;
	thermal black radiation in range.	4) the optical;
		5) the ultraviolet.
138.		1) $C_P = C_V$;
	For an ideal gas the relation is satisfied.	$2) C_P = \gamma C_V;$
		$3) C_P = RC_V;$
		4) $C_V = \gamma C_P$;
		$5) C_P = (\gamma - 1)C_V.$

No	The content of the question	Answer options
	-	1) volume <i>V</i> ;
139.	To the definition of without	2) adiabatic index γ;
	In the definition of enthalpy $W = U + D$, there is no	3) temperature <i>T</i> ;
	W = U + P there is no	4) entropy <i>S</i> ;
		5) polytropic index κ.
	T. 1011 (L. N. 1. 1.D.)	1) Wilhelm Wien;
	In 1911, the Nobel Prize in Physics	2) Ludwig Boltzmann;
140.	for discoveries concerning the laws of thermal radiation was awarded	3) Joseph Stefan;
	to	4) Paul Ehrenfest;
	10	5) Dmitri Mendeleev.
		1) 5,67 · 10^{-8} J/(m^2K^4s);
	The value of the Stefan – Boltzmann	2) 5,67 · 10^{-6} N/(m^2K^4s);
141.	constant is	3) 5,67 · 10 ⁻⁸ J/(mKs);
	Constant is	4) 5,67 · 10^{-13} J/(m^2K^4s);
		5) 5,67 · 10^8 J/(m^4 K ² s).
		1) maximum;
	Under equilibrium conditions, the	2) minimum;
142.	Gibbs potential is	3) equal 0;
	Globs potential is	4) equal to ∞ ;
		5) indefinite.
	The expression $T = T_1(V) \cdot exp\left[(\gamma - 1)\frac{S}{R}\right] \text{ in the } $ TS-plane defines	1) the adiabatic;
		2) the isotherm;
143.		3) the isenthalpe;
		4) the isochore;
		5) the isobar.
	In the physical region of the isotherm, the inequality is satisfied.	$1) \left(\frac{\partial V}{\partial P}\right)_T > 0;$
		$2)\left(\frac{\partial P}{\partial V}\right)_{T} > 0;$
144.		$3) \left(\frac{\partial P}{\partial V}\right)_T \neq 0;$
		$4) \left(\frac{\partial V}{\partial P}\right)_T \neq 0;$
		$5) \left(\frac{\partial P}{\partial V}\right)_T < 0.$

№	The content of the question	Answer options
	In the definition of the adiabatic	1) 3;
	compressibility of blackbody	2) 5;
145.	radiation $K_S = \frac{\dots}{\dots}$ the number	3) 7;
	radiation $K_S = {4aT^4}$ the number	4) 9;
	is missing.	5) 13.
		1) <i>TV</i> = const;
	The family of equilibrium radiation	2) $T^5V = \text{const};$
146.	adiabats is	3) $T^3V = \text{const};$
		4) $TV^2 = \text{const};$
		$5) T^3 V^4 = \text{const.}$
		1) $-\left(\frac{\partial U}{\partial V}\right)_{S}$;
		$2)\left(\frac{\partial U}{\partial V}\right)_{S};$
147.	The pressure <i>P</i> can be determined by the derivative	3) $-\left(\frac{\partial V}{\partial U}\right)_{S}$;
		$4)\left(\frac{\partial U}{\partial T}\right)_{S};$
		$5) - \left(\frac{\partial V}{\partial U}\right)_T.$
	The universal gas constant R is related to the Boltzmann constant k and the Avogadro number N_A as	$1) R = \frac{k}{N_A};$
		$2) R = k^2 N_A;$
148.		3) $R = kN_A$;
		$4) R = 2kN_A;$
		$5) R = \frac{\pi}{kN_A}.$
		1) 5,9 · 10 ⁻¹⁰ K;
	In 1995, when cooling rubidium	2) 5,9 · 10 ⁻¹² K;
149.		3) $9.9 \cdot 10^{-12} \text{ K};$
		4) 9,9 · 10 ⁻⁶ K;
		5) $5.9 \cdot 10^{-15}$ K.

№	The content of the question	Answer options
	In the derivative of free energy F	1) entropy <i>S</i> ;
		2) heat capacity c_P ;
150.	of the form $\left(\frac{\partial F}{\partial \dots}\right)_T = -P$ there	3) volume <i>V</i> ;
		4) internal energy U ;
	1S no	5) pressure <i>P</i> .
		1) $\frac{\partial(f,l)}{\partial(S,T)}$;
	The equivalence of the TS- and	$2) \frac{\partial(S,T)}{\partial(l,f)};$
151.	fl-planes requires that the Jacobian $\frac{\partial(f,l)}{\partial(T,S)}$ be equal to the Jacobian	3) $\frac{\partial(l,f)}{\partial(T,S)}$;
	$\partial(T,S)$	$4) - \frac{\partial(T,S)}{\partial(f,l)};$
		$5) - \frac{\partial(S,T)}{\partial(l,f)}.$
		1) adiabatic index γ;
	In the barometric formula	2) enthalpy <i>W</i> ;
152.	$P = P_0 exp\left(-\frac{Mgh}{R_{out}}\right)$ there is no	3) temperature <i>T</i> ;
	R	4) entropy <i>S</i> ;
		5) volume <i>V</i> .
	Equilibrium of solid, liquid and gaseous phases is impossible for	1) iron;
		2) carbon;
153.		3) carbon dioxide;
		4) helium;
		5) water.
		1) metals;
	The coefficient of linear thermal expansion α is negative for	2) gases;
154.		3) liquids;
		4) rubbers;
		5) plasma.
		1) W·s;
1.5.	The dimension of chemical	2) J/mol;
155.	potential μ in SI is	3) W/s;
		4) J·mol;
		5) W/mol.

No	The content of the question	Answer options
		1) <i>Q</i> < 0;
		(2) Q > 0;
156.	In an exothermic reaction	3) A = 0;
		4) A < 0;
		5) $Q = 0$.
		$1) P_k = \frac{a}{b^2 e^2};$
	The critical pressure of a gas	$2) P_k = \frac{a}{4b^2T^2};$
157.	The critical pressure of a gas obeying the first Dieterici equation is	
		4) $P_k = \frac{3a}{4b^2e^2}$;
		$5) P_k = \frac{a}{4\pi b^2 e}.$
	For a chemical potentiala μ , the statement that $\mu = \frac{\Phi}{N}$, is true $-\dots$	1) never;
		2) sometimes;
158.		3) always;
		4) only for gases;
		5) only for plasma.
	The entropy of equilibrium radiation is	1) $S = \frac{4\sigma T^3 V}{3} + \text{const};$
		$2) S = \frac{2\sigma T^3 V}{3} + \text{const};$
159.		3) $S = \frac{\sigma T^3 V}{3} + \text{const};$
		4) $S = \frac{4\sigma T^3 V}{5} + \text{const};$
		5) $S = 4\sigma T^3 V + \text{const.}$
160.		1) 1, 4168 · 10 ³² K;
	The upper value of the temperature is limited by the Planck temperature T_P equal to	2) 1, 4168 · 10 ²² K;
		3) 1, 4168 · 10 ¹² K;
		4) 2, 8336 · 10 ³² K;
		5) 2, 8336 · 10 ²² K.

No	The content of the question	Answer options
161.	Curie's law for magnets is	1) $M = \frac{H}{T}$; 2) $M = \varkappa_m H$;
		3) $M = \varkappa_m \frac{H}{T}$;
		$4) M = \frac{\gamma H}{T};$
		$5) M = \frac{AT}{H}.$
	An expression of type $T\left(\frac{\partial P}{\partial T}\right)_{V} \cdot \left(\frac{\partial V}{\partial T}\right)_{P}$ specifies the	1) $c_V - c_T$;
1.60	$T(\partial P)$ (∂V) specifies the	$2) c_V - c_P;$
102.	$\left(\frac{\partial T}{\partial T}\right)_{V} \left(\frac{\partial T}{\partial T}\right)_{P}$ specifies the	$\frac{3) CP - CV}{A) cr cr}$
	difference	4) $c_T - c_P$; 5) $c_V - c_S$.
		1) minimum;
		2) maximum;
163.	Under equilibrium conditions, the	3) equal to 0;
	free energy F is	4) equal to ∞ ;
		5) undefined.
		1) °C;
	The dimension of the reduced	2) K;
164.	temperature is	3) 1;
	temperature is	4) °F;
		5) J.
		1) Dalton's;
	The pressure of a mixture of	
165.	chemically non-interacting ideal gases is determined by the law.	3) Boyle – Mariotte's;
		4) Poisson's;
		5) Charles's.
	In the equation of state of an ideal	1) 0 K;
166.		2) 0 °C;
	rod $f = E\sigma \left\{ \frac{l[1-\alpha(T-T_0)]}{l_0} - 1 \right\}$	3) 0 °F;
	value of T_0 is equal to	4) 100 C,
	raide of 10 is equal to	5) 100 K.

№	The content of the question	Answer options
	An expression of type	1) $c_S - c_l$;
		2) $c_f - c_l$;
167.	$T\left(\frac{\partial f}{\partial T}\right)_{l} \cdot \left(\frac{\partial l}{\partial T}\right)_{f}$ specifies the	3) $c_l - c_f$;
	· · · · · · · · · · · · · · · · · · · ·	4) $c_f - c_S$;
	difference	5) $c_f - c_V$.
		1) 1;
	The ratio of the critical volumes for	2) 1,5;
168.	the second and first Dieterici	3) 2;
	equations is	4) 2,5;
		5) 3.
	The physically correct definition of the chemical potential μ is	1) $\mu = \left(\frac{\partial U}{\partial S}\right)_{V,T};$
		2) $\mu = \left(\frac{\partial F}{\partial N}\right)_{S,T};$
169.		3) $\mu = \left(\frac{\partial \Phi}{\partial T}\right)_{V,S};$
		4) $\mu = \left(\frac{\partial U}{\partial T}\right)_{V,P};$
		5) $\mu = \left(\frac{\partial \Phi}{\partial N}\right)_{P,T}$.
		1) ozone;
	If the coordinates of the triple point	2) carbon dioxide;
170.	are $T = -56.6$ °C and $P = 0.52$ M Π a,	3) oxygen;
	then this substance is	4) nitrogen;
		5) hydrogen.
		1) Planck;
	The physical constant equal to	
171.	$5,67 \cdot 10^{-8}$ BT/(M^2K^4) is called the constant.	
		4) Rayleigh – Jeans;
		5) Gibbs.
	Lord Rayleigh received the Nobel	1) neon;
172.	Prize in Physics in 1904 for his study of real gases and the discovery of	2) argon;
		3) xenon;
		4) krypton;
		5) astatine.

No	The content of the question	Answer options
		1) 621 K;
	The upper temperature of the sign	2) 611 K;
173.	inversion of the Joule – Thomson	3) 601 K;
	effect at normal pressure for N_2 is	4) 591 K;
		5) 581 K.
		1) reduced;
	TC distance and as it discount along	2) high;
174.	If the temperature is dimensionless,	3) equalized;
	then it is	4) non-physical;
		5) low.
		1) enthalpy W;
		2) entropy <i>S</i> .
175.	In the definition of free energy	3) heat capacity c_P .
	F = U - T there is no	4) heat capacity c_V .
		5) volume <i>V</i> .
		1) internal energy;
		2) entropy;
176.	Heat content is a synonym for	3) enthalpy;
1,00	2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	4) heat capacity;
		5) thermal conductivity.
		1) $dW = SdT + VdP + \mu dN$;
	The enthalpy differential dW for a	-
177.	system with a variable amount of	3) $dW = TdS + VdP + \mu dN$;
	substance has the form	4) $dW = SdT - VdP + \mu dN$;
		5) $dW = TdS + PdV + \mu dNi$.
		1) $P = P_0 exp\left(-\frac{Mh}{RT}\right);$
	The presence of an external	$2) P = P_0 exp\left(-\frac{Mgh}{T}\right);$
178.	potential field allows us to obtain for pressure <i>P</i> a barometric formula	3) $P = -P_0 exp\left(-\frac{Mgh}{RT}\right);$
	of the form	4) $P = P_0 exp\left(-\frac{Mgh}{RT}\right);$
		$5) P = -P_0 exp\left(\frac{Mgh}{RT}\right).$

No	The content of the question	Answer options		
		1) W;		
170	The dimension of free energy F	1) W; 2) W·s; 3) J·s; 4) J/s; 5) W/s. 1) electric field; 2) magnetic field; 3) gravitational field; 4) pressure; 5) heating. 1) $T = T_1(P) exp \left[(\gamma - 1) \frac{S}{2R} \right];$ 2) $T = T_1(P) exp \left[(\gamma - 1) \frac{S}{R} \right];$ 3) $T = T_1(P) exp \left[(\gamma - 1) \frac{S}{R} \right];$ 4) $T = T_1(P) exp \left[(\gamma - 1) \frac{S}{R} \right];$ 5) $T = T_1(P) exp \left[(\gamma - 1) \frac{S}{R} \right];$ 1) $\pm \infty;$ 2) $\pm e;$ 3) $\pm \pi;$ 4) $\infty;$ 5) 0. 1) equalization;		
179.	in SI is	, ,		
		, ,		
		<i>'</i>		
	The transition of metals to the	· ·		
100	superconducting state in the			
180.	absence of an external is a			
	second-order phase transition.			
		F 7		
		1) $T = T_1(P) exp \left[(\gamma - 1) \frac{S}{2R} \right];$		
		2) $T = T_1(P) exp \left[2(\gamma - 1) \frac{S}{R} \right];$		
181.	An isobar in the <i>TS</i> -plane is defined by the expression	3) $T = T_1(P) exp \left[(\gamma - 1) \frac{S}{\gamma R} \right];$		
		5) $T = T_1(P) exp \left[(\gamma - 1) \frac{S}{\pi R} \right].$		
		1) ±∞;		
	The igothermal communicibility	2) ± <i>e</i> ;		
182.	The isothermal compressibility K_T of blackbody radiation is	$3)\pm\pi;$		
	RT of blackbody fadiation is	4) ∞;		
		5) 0.		
	The process of transition to	1) equalization;		
	The process of transition to an equilibrium state of a	2) straightening;		
183.	nonequilibrium system consisting	3) equating;		
	of equilibrium subsystems is	4) relaxation;		
	or equilibrium succeptions is	5) stratification.		
		1) 100 th ;		
	2018 marked the anniversary of	2) 150 th ;		
184.	James Joule's birth.	3) 200 th ;		
	valles voule s offul.	4) 250 th ;		
		5) 50 th .		

№	The content of the question	Answer options		
		1) $d\mu = -\frac{SdT}{N} - \frac{VdP}{N};$		
		$2) d\mu = -\frac{SdT}{N} + \frac{VdP}{N};$		
185.	The differential of chemical potential μ has the form	3) $d\mu = \frac{SdT}{N} + \frac{VdP}{N}$;		
		4) $d\mu = \frac{SdT}{N} - \frac{VdP}{N};$		
		$5) d\mu = -\frac{TdS}{N} + \frac{VdP}{N}.$		
		1) $cv < 0$;		
106	One of the thermodynamic	$(2) c_V > 0;$		
186.	inequalities states that	3) $cv \neq 0$;		
		4) $c_V > C_P$; 5) $c_V > C_T$.		
		1) $R\left(1+\frac{5A}{6RT^{\frac{3}{2}}V^{\frac{1}{2}}}\right);$		
		$2) R \left(1 + \frac{5A}{6RT^{\frac{3}{2}}V}\right);$		
187.	The analogue of Mayer's formula for plasma has the form $C_P - C_V =$	$3) R \left(1 + \frac{5A}{6RTV^{\frac{1}{2}}}\right);$		
		4) $R\left(1+\frac{A}{RT^{\frac{3}{2}}V^{\frac{1}{2}}}\right);$		
		$5) R \left(1 + \frac{A}{6RT^{\frac{3}{2}}V^{\frac{1}{2}}} \right).$		
		1) Nernst's principle;		
100	The position of the isotherm-isobar			
188.				
	determined by	4) left-hand rule; 5) Charles's law		
		5) Charles's law.		

No	The content of the question	Answer options
		1) $T_0 = 0.0078$ °C,
		$P_0 = 0,006$ atm.;
190. 191. 192. 193.	The parameters of the triple point	2) $T_0 = 0.78$ °C, $P_0 = 0.1$ atm.;
109.	of water are respectively	3) $T_0 = 78$ °C, $P_0 = 3.6$ atm.;
		4) $T_0 = 178$ °C, $P_0 = 6$ atm.;
		5) $T_0 = 0$ °C, $P_0 = 1$ atm.
	The differential of the Gibbs	1) $SdT - VdP + \mu_1 dN_1 + \mu_2 dN_2$;
	thermodynamic potential for	2) $-SdT + VdP + \mu_1 dN_1 - \mu_2 dN_2$;
190.	a two-phase system has the form	3) $-SdT + VdP - \mu_1 dN_1 + \mu_2 dN_2$;
	$d\Phi = \dots$	4) $SdT + VdP + \mu_1 dN_1 + \mu_2 dN_2$;
	$u\Psi - \dots$	5) $-SdT + VdP + \mu_1 dN_1 + \mu_2 dN_2$.
		1) evaporation;
	The process of equalization by	2) Joule – Thomson process;
191.	temperature and pressure is	3) boiling;
	temperature and pressure is	4) melting;
		5) sublimation.
		1) Moscow;
	J. D. van der Waals studied at the University.	2) Bonn;
192.		3) Leiden;
		4) Amsterdam;
		5) Oxford.
		1) $Q < 0$;
		2) $Q = 0$;
193.	In an endothermic reaction	3) $Q > 0$;
		(4) A < 0;
		5) A = 0.
		1) physical;
	An expression of the form $\Sigma_i \mu_i v_i = 0$	2) static;
191. 192.	is the condition of equilibrium.	3) chemical;
	is the condition of equinorium.	4) dynamic;
		5) temperature.
		1) W/K;
	The dimension of entropy S in SI	2) J/K;
195.	is	3) K/W;
	13	4) W·K;
		5) J·K.

No	The content of the question	Answer options
196.	The statement that an external influence on a system causes a reaction in it that reduces the result of this influence is the principle.	 Poisson's; Nernst's; Le Chatelier's; Clausius; Ehrenfest's.
197.	The adiabatic compressibility of blackbody radiation $K_S =$	1) $\frac{3}{4aT^4}$; 2) $\frac{9}{4aT^4}$; 3) $\frac{9}{7aT^4}$; 4) $\frac{9}{4T^4}$; 5) $\frac{7}{4a}$.
198.	In an isochoric process in a thermostat, the free energy F	 remains unchanged; increases; decreases; is undefined; is equal to 0.
199.	An expression of the form $U = F - T \left(\frac{\partial F}{\partial T} \right)_V$ is called the equation.	 Clapeyron – Clausius; Gibbs-Helmholtz; Dirac; Ehrenfest; Klein – Gordon – Fock.
200.	A gas obeying the Berthelot equation has a critical pressure	1) $P_{cr} = \frac{aR}{21b^3}$; 2) $P_{cr} = \left(aRb^3\right)^{\frac{1}{2}}$;

3. OTBETЫ K TECTOВЫМ ЗАДАНИЯМ – ANSWERS TO THE TEST TASK

В этом пункте приводятся номера правильных ответов на все вопросы теста (таблица 1). Эти номера выделены жирным шрифтом и располагаются под номерами вопросов.

This section lists the numbers of correct answers to all test tasks (table 1). These numbers are in bold type and appear below the task numbers.

Таблица 1 — Ответы к тестовым заданиям Table 1 — Answers to the test task

1	2	3	4	5	6	7	8	9	10
3	5	5	3	4	2	1	1	4	2
11	12	13	14	15	16	17	18	19	20
4	3	4	2	5	3	2	5	3	1
21	22	23	24	25	26	27	28	29	30
2	2	3	5	2	4	1	5	2	4
31	32	33	34	35	36	37	38	39	40
3	1	3	1	4	5	2	3	3	4
41	42	43	44	45	46	47	48	49	50
3	1	2	5	5	4	2	3	3	2
51	52	53	54	55	56	57	58	59	60
1	3	4	3	2	3	5	2	2	2
61	62	63	64	65	66	67	68	69	70
5	3	1	2	4	4	5	4	1	4
71	72	73	74	75	76	77	78	79	80
2	5	1	1	1	5	2	5	1	3
81	82	83	84	85	86	87	88	89	90
1	4	4	3	5	1	2	2	1	2
91	92	93	94	95	96	97	98	99	100
3	3	5	4	5	1	3	3	1	2
101	102	103	104	105	106	107	108	109	110
2	1	2	4	4	1	2	5	2	4
111	112	113	114	115	116	117	118	119	120
2	1	1	4	4	4	3	3	2	3
121	122	123	124	125	126	127	128	129	130
1	3	4	1	4	2	1	3	5	4
131	132	133	134	135	136	137	138	139	140
3	1	5	2	2	3	5	2	1	1
141	142	143	144	145	146	147	148	149	150
1	2	4	5	4	3	1	3	2	3
151	152	153	154	155	156	157	158	159	160
2	3	4	4	2	1	3	3	1	1

Окончание таблицы 1 End of table 1

161	162	163	164	165	166	167	168	169	170
2	3	1	3	1	2	3	3	5	2
171	172	173	174	175	176	177	178	179	180
3	2	1	1	2	3	3	4	2	2
181	182	183	184	185	186	187	188	189	190
3	1	1	3	2	2	1	3	1	5
191	192	193	194	195	196	197	198	199	200
2	3	3	3	2	3	2	3	2	5

ЛИТЕРАТУРА – LITERATURE

- 1. Румер, Ю. Б. Термодинамика, статистическая физика и кинетика / Ю. Б. Румер, М. Ш. Рывкин. Новосибирск : Изд-во Новосибирского университета, 2016. 608 с.
- Rumer, Yu. B. Thermodynamics, Statistical Physics and Kinetics / Yu. B. Rumer, M. Sh. Ryvkin. Novosibirsk: Novosibirsk University, 2016. 608 p. (in Russian).
- 2. Rau, J. Statistical Physics and Thermodynamics / J. Rau. Oxford: Oxford University Press, 2017. 376 p.
- 3. Kittel, C. Thermal Physics / C. Kittel, H. Kroemer. San Francisco : W. H. Freeman and Company, 2013. 475 p.
- 4. Байков, В. И. Теплофизика. Термодинамика и статистическая физика / В. И. Байков, Н. В. Павлюкевич. Минск : Вышэйшая школа, 2018. 447 с.
- Baikov, V. I. Thermal physics. Thermodynamics and Statistical Physics / V. I. Baikov, N. V. Pavlyukevich. Minsk: Vysheishaya Shkola, 2018. 447 p. (in Russian).
- 5. Квасников, И. А. Термодинамика и статистическая физика. Теория равновесных систем / И. А. Квасников. М.: Ленанд, 2022. 328 с.
- Kvasnikov, I. A. Thermodynamics and Statistical Physics. Theory of Equilibrium Systems / I. A. Kvasnikov. Moscow: Lenand, 2022. 328 p. (in Russian).
- 6. Сивухин, Д. В. Общий курс физики : в 5 т. Т. 2: Термодинамика и молекулярная физика / Д. В. Сивухин. М. : Физматлит, 2024. 544 с.
- Sivukhin, D. V. General Course of Physics: in 5 Volumes. Vol. 2: Thermodynamics and Molecular Physics / D. V. Sivukhin. Moscow: Phyzmathlit, 2024. 544 p. (in Russian).
- 7. Агеев, Е. П. Неравновесная термодинамика в вопросах и ответах / Е. П. Агеев. М.: Едиториал УРСС, 2019. 136 с.
- Age'ev, E. P. Non-equilibrium Thermodynamics in Questions and Answers / E. P Age'ev. Moscow : Editorial URSS, 2019. 136 p. (in Russian).
- 8. Мазур, П. Неравновесная термодинамика / П. Мазур, С. де Гроот. М. : Мир, 1999. 288 с.
- Mazur, P. Non-equilibrium Thermodynamics / P. Mazur, S. de Groot. New York: Dover Publications, 1984. 510 p.

ПОЛЕЗНЫЕ САЙТЫ – USEFUL SITES

- 1. https://www.edx.org/learn/thermodynamics/
- 2. https://pll.harvard.edu/course/energy-and-thermodynamics/
- 3. https://www2.ph.ed.ac.uk/~gja/thermo/
- 4. https://www.physics.ox.ac.uk/system/files/file_attachments/all_the rmo_notes.pdf/
- 5. https://www.thermodynamics-forum.com/post/best-online-resources-to-study-thermodynamics-fluid-mechanics-and-heat-transfer/
 - 6. https://www.cpp.edu/meonline/thermodynamics.shtml/
 - 7. https://www.udemy.com/topic/thermodynamics/
 - 8. http://ihed.ras.ru/~thermo/thermo_inet_ru.htm/
- 9. https://teachin.ru/course/1?tag=entangled|лекции|спецкурс|семин ары&category=physics&sort=title_asc&search=термодинамика/
 - 10. https://profbeckman.narod.ru/InformLekc.files/Inf03.pdf/
 - 11. https://www.thermopedia.com/ru/;
 - 12. https://www.homework.ru/spravochnik/termodinamika/
- 13. https://www.thegreatcourses.com/courses/thermodynamics-four-laws-that-move-the-universe/
 - 14. https://mechmath.ipmnet.ru/lib/?s=thermodynamics/
- 15. https://vsesdal.com/promo/reshenie_zadach_po_termodinamike? utm_referrer=https%3A%2F%2Fwww.google.com%2F/

Учебное издание

Тюменков Геннадий Юрьевич

ТЕРМОДИНАМИКА

Tyumenkov Gennady Yuryevich

THERMODYNAMICS

Учебно-методическое пособие

Редактор Е. С. Балашова Корректор В. В. Калугина

Подписано в печать 03.04.2025. Формат 60х84 1/16. Бумага офсетная. Ризография. Усл. печ. л. 4,88. Уч.-изд. л. 5,34. Тираж 30 экз. Заказ 229.

Издатель и полиграфическое исполнение: учреждение образования «Гомельский государственный университет имени Франциска Скорины». Специальное разрешение (лицензия) № 02330 / 450 от 18.12.2013 г. Свидетельство о государственной регистрации издателя, изготовителя, распространителя печатных изданий в качестве: издателя печатных изданий № 1/87 от 18.11.2013 г.; распространителя печатных изданий № 3/1452 от 17.04.2017 г. Ул. Советская, 104, 246028, Гомель.