УДК 577.15.02 ХИМИЯ

И. А. КОЗЛОВ, Р. К. ЛЕДНЕВА, З. А. ШАБАРОВА, член-корреспондент АН СССР М. А. ПРОКОФЬЕВ

ГИДРОЛИЗ ОЛИГОДЕЗОКСИНУКЛЕОТИДОВ ЭКЗОНУКЛЕАЗОЙ А₅ В ПРИСУТСТВИИ НУКЛЕОФИЛЬНЫХ АГЕНТОВ

Способность некоторых экзонуклеаз осуществлять перенос нуклеотида вуклеофильные агенты (1-3) представляет большой интерес для выясвения механизма ферментативного катализа. С другой стороны, использание этих ферментов для синтетических целей открывает новые возможности получения труднодоступных соединений: широко известны,
вапример, успехи, достигнутые в синтезе межнуклеотидной связи при
вомощи различных рибонуклеаз и ряда других ферментов нуклеотидного
обмена (4).

В настоящей работе была исследована возможность переноса 5'-дезовсирибонуклеотида на нуклеофильные акцепторы при инкубации олигодезоксинуклеотидов в присутствии экзонуклеазы A₅ (3).

В качестве нуклеофильных акценторов были использованы уридин, метиловый эфир фенилаланина и пара-бромбензальоксим. Нуклеозиды и аминокислоты — широко распространенные в природе нуклеофильные акценторы. Выбор пара-бромбензальоксима обусловлен его чрезвычайно высокой нуклеофильностью (6) и наличием сильного хромофора, что позводит применить этот акцентор в будущем для кинетического изучения мехашизма действия экзонуклеазы А5.

Субстратами ферментативной реакции служили синтетические одигодезоксинуклеотиды — (dpA), и (dpG)₂, полученные по методу Кораны (⁷).

Для осуществления реакции переноса мононуклеотидного остатка на пукпеофильный акцептор олигодезоксинуклеотиды инкубировали в течение
15 мин. при 20° с экзонуклеазой A₅ * в присутствии соответствующих нукпеофильных агентов. Состав пробы: 1·10⁻³ M субстрат, 0,001 мг фермента, нуклеофильный акцептор в концентрации, указанной в табл. 1,
1·10⁻² M трис-буфер рН 8,66 и 5·10⁻³ M Mg²⁺ в общем объеме 1 мл. Контролем служила реакционная смесь того же состава без фермента. Продукты
пеакции разделяли электрофорезом на бумаге в 0,05 M триэтиламмонийпкарбонатном буфере рН 7,5 в течение 3,5 час. при 350 в. В процессе ферментативной реакции наблюдали полное превращение исходных олигодезпксинуклеотидов в 5'-мононуклеотиды, являющиеся продуктами гидролипка на соответствующий нуклеофильный агент. Некоторые характеистики полученных соединений представлены в табл. 1.

Препарат экзонуклеазы А₅ был любезно предоставлен сотрудниками Института элекулярной биологии АН СССР Р. И. Татарской и Т. Н. Львовой.

Для облегчения идентификации соединения, образующегося при использовании в качестве акцентора нуклеозида, применяли С14-уридин. Сравнение электрофоретической и хроматографической подвижностей соединения, полученного в результате ферментативного переноса остатка 5'-дезоксиадениловой кислоты на С15-уридин, с синтезированным по ме-

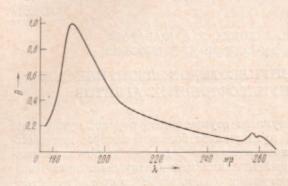


Рис. 1. У.-ф. спектр соединений I и II

тоду Кораны dApU свидетельствует о том, что это соединение является динуклеозидфосфатом, природу межнуклеотидной связи в котором не устанавливали. Строение метилового эфира дезоксиаденилил- $(5' \rightarrow N)$ -фенилаланина доказывали гидролизом 6 N HCl (2 часа, 37°) и определением соотношения аденин : фенилаланин : 1,05). Хроматографическая и электрофоретическая подвижности метилового эфира дезоксиаденилил-(5'- N)-фе-

иилаланина, полученного в присутствии экзонуклеазы А₅ и синтезированного из смешанного ангидрида дезоксиаденозин-5'-фосфата и дифенилфос-

форной кислоты (8), совпадали (табл. 1).

Гидролиз динуклеотида (dpG)₂ экзонуклеазой A₅ в присутствии парабромбензальоксима приводит к образованию соединений I и II. У.-ф. спектры этих соединений близки по характеру, причем оба продукта имеют ярко выраженный максимум в далеком ультрафиолете (рис. 1). Цля идентификации соединений I и II были синтезированы нуклеотидные производные пара-бромбензальоксима из смешанного ангидрида дезоксигуанозин-5'-фосфата и дифенилфосфорной кислоты. Синтезированные этим путем соединения полностью идентичны по хроматографическим и спектральным свойствам соединениям I и II. При инкубации соединения II при рН 5,5 в течение 7 дней (2°) образуются в эквимолярных количествах пара-бромбензальоксим (λ_{max} 261 мµ, ϵ_{261} 2·10°) и дезоксигуанозин-5'-фосфат. Соединение I в этих условиях устойчиво. Известно, что ароматические оксиомы вступают в реакции нуклеофильного замещения с обра-

Таблица 1

Некоторые характеристики соединений, образующихся при гидролизе одигодезоксинуклеотидов экзонуклеазой A₅ в присутствии нуклеофильных агентов

Олиго- дезок- синук- леотид	Акцептор	Концентрация акцептора	Продукты акцептирования	Выход продук- тов * акцепти- рования,	R _f в си- стеме вта- нол: i M ацетат аммония pH 7,5 (7:3)	U _{ОТВ} УМФ-5′ рН 7,5
(dpA)4	С14-уридин	1·10 ⁸ расп/мин **	Динуклеозидфос- фат, содержащий С ¹⁴ -уридин ***	0,22	0,60	0,45
	Метиловый эфир фенил- аланина	3-10-2 M	Дезоксиаденилил- (5'-)-фенилаланин, метиловый эфир	15	0,50	0,55
(dpG)2	п-Бромбенз- альоксим	2·10-3 M	I II	100 1 30X	0,10 0,02	0,35 0,50

Выход продуктов акцептирования относительно реагента, взятого в педостатке.
 Акцептирование С¹⁴-уридином проводили в присутствии избытка олигодезоксимувлеотида.
 Природу межнуклеотидной связи в динуклеозидфосфате не устанавливали.

жеванием как N-, так и О-производных. Учитывая идентичность хромофорных систем соединений I и II (близкий характер у.-ф. спектров), а также кислотолабильность соединения II, мы предполагаем для этих создинений следующее строение:

Наличие частичного отрицательного заряда на связанном с азотом атоме кислорода соединения II объясияет его несколько большую электрофоретическую и меньшую хроматографическую подвижность.

Все использованные нами нуклеофильные акцепторы существенно отличаются как по своему строению, так и по нуклеофильности. Отсутствие у фермента специфичности к структуре акцептора свидетельствует, повидимому, о том, что в ходе реакции имеет место скорее всего активация субстрата, а не акцептора.

Московский государственный университет им. М. В. Ломоносова Поступило 19 IV 1971

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

² K. M. J. Menon, M. Smith, Biochemistry, 9, 1585 (1970). ² W. E. Razzell, E. G. Khorana, J. Biol. Chem., 236, 1144 (1961). ³ L. A. Heppel, et al., Biochem. L. 60, 1, 8 (1955). ⁴ C. M. Женодарова, Усп. хим., 39, 1479 (1970). ⁵ R. I. Tatarskaya, T. N. Lvova et al., Europ. J. Biochem., 15, 442 (1970). ⁶ W. P. Jencks, L. Carriuola, J. Am Chem. Soc., 82, 1778 (1960). ⁷ R. Lahrmann, H. G. Khorana, J. Am. Chem. Soc., 88, 2981 (1966). ⁸ H. И. Соколова, Р. К. Леднева др., Хим. природных соед., 4, 290 (1967).