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X

1°. Пусть U(со) = 2 СЛо)1— многочленная матрица (м.м.) размера 
1=0

Vi X v2. Здесь Ul — комплексные vt X %’2-матрицы, и — скалярная перемен- 
X

ная *.  Положим U(®) * = 2 Пусть D = diag {—1, 1, . . . , 1} — диа-

* Если UK =#= 0, то х — степень м.м. У (со) (запись: х = стУ(со)). Ниже приняты 
следующие обозначения и соглашения. Звездочка обозначает эрмитово сопряжение 
постоянной матрицы. Скаляры обозначены малыми греческими буквами, малыми ла­
тинскими буквами — векторы-столбцы высоты v, например, z = colon {4, £v}- Про­
писные латинские буквы оставлены для матриц. Через i обозначена мнимая едини­
ца, через / — единичная v X v-матрица. Символ э читается «такой (такие), что». 
Запись типа {1\ | Г2} используется для обозначения множества с общим элементом Г, 
и с определяющим это множество свойством Г2.

1=0
гональная v X v матрица, v 2. В заметке будет описана группа М всех, 
м.м. U(оз) размера v X v, удовлетворяющих уравнению

U(a) -D-U(ti))*  = D, (1)
т. е. группа м.м., унитарных в индефинитной метрике индекса 1. Описание 
эффективно: в определенной стандартной форме представлена произволь­
ная матрица из М. Основные результаты формулируются в п.п. 2°, 3°. Эту 
задачу целесообразно рассмотреть в связи с задачей (‘) факторизации 
знакопеопределенной м.м. А (и) = А (и)*  в виде А (со) = V (со) -С-У (со)*.  
Здесь У(м)—м.м., С = С*  — постоянная матрица, обе размера v X v. 
Задача факторизации стала рассматриваться в связи с приложениями в 
теории управления, в дифференциальных играх (2).

2°. Вводятся множества: 1) векторов 3 = {z = colon {^, . . ., £VJ | 
== 1, z*Dz  = 0}; Az° = {d\d*z  = d*Dz  = 0}, z e E; 2) вектор-много- 

членов Az = {g = gico + g2®2 + ■ ■. |g\ e A/}; 3) многочленов Ф = {ср = 
= ср(<D ) ] ф (0) — 0, ф*  = —ф}.

Имеем: 1) Е взаимно однозначно параметризует множество образую­
щих конуса А = {x\x*Dx  = 0}; 2) Az =¥= {0} лишь при v > 2; 3) элемент 
Ф еФ имеет вид ф(со) = i 2 PvCO1, гДе Р‘ вещественны, сумма конечна. При 

>1
Z £ 3, ф Е Ф, JE А, ПОЛОЖИМ

Gz('<P, g) = ^[г(ф — (1/2) -g*g)z ‘ + (zg’gz’)J 4- I. (2)
Определим множества матриц:
1) Mz = {£Дф, g) |ф ЕЕ Ф, geAj, zeE;
2) Mo = {С7(м) ее М|/7(0) =1}- Х== (УеМ| стУ = 0}; Т =

= {W е N| W — diag{l, L}}, где L — унитарные (v — 1) X (v — 1)-мат­
рицы.

Очевидно, произвольная м.м. U(со) е М единственным образом запи­
сывается в виде U(со) = /7о(со) • У, где 170(®) Мо, У е N.

Основной результат касается структуры группы Мо и формулируется 
следующим образом.
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Теорема 1. 1) При всяком zeE множество Mz является группой 
относительно умножения матриц. Группа Мо есть свободное произведение 
(3) групп Mz при индексе z, пробегающем множество В;

2) закон умножения в каждой из групп Mz подчинен соотношению

Сг(ф, g)-Cz(i(\ Л) = Сг(ф + ф+ (V2)-(A*g  —g*A),  g + h). (3)

Здесь z <= В, ф, ф is Ф, g, h <= Д2;
3) связь между различными группами Mz определяется соотношением

W-Gz(q, g)-W~l = GWl(q,Wg). (4)

Здесь W eT,se Е, ||еФ.?еЛ;:
4) отображение (z, ф, g) | —>СДф, g) взаимно однозначно на множестве

наборов {(z, ф, g) | z е В, ф е Ф, g (= A2, ф 0 или g #= 0}. Если U(ю) — 
= (ф1, gi) ■ . . . • Gr (фч, g„), причем z,=£ zl+1, i = 1, ц — 1,
Gr (фи gj У= Z, i = 1, ..., ц, то ст U(co) = CT Gz, (ф1; gj + ... 
... + CT Gzя (фп, g„) = СТ (ф! — gTgi) + ... + ст (ф„ — g,/g.). Здесь z e E, 
Фь ее Ф, g, <= AZ[, i = 1,. . . , л;

5) центр группы Mz, z e В, есть множество Tz = {С2(ф, 0) фЕФ}. 
При v > 2 коммутант группы Mz равен ее центру, при у = 2 группа Mz 
коммутативна и совпадает с ЧД.

3". Вещественный случай. Обозначим подгруппу м.м. из М с 
вещественными коэффициентами через М'. Пусть В', Ф', АД z е В',— ве­
щественные аналоги множеств В, Ф, Аг, введенных в п. 2°. Очевидно, Ф' = 
= {0}. Аналогично и. 2° определим М '. Мо'. Опишем структуру груп­
пы Мо'.

Теорема 2. Если у = 2, то группа Мо' тривиальна. Если v > 2, 
то группа Мо' не тривиальна и является свободным произведением групп 
М/ при индексе z, пробегающем множество В'. Группы МД z е В', ком­
мутативны.

Интересно также описать подгруппу м.м. из М с вещественными коэф­
фициентами относительно переменной % =йо. Как и раньше, введем Ф" = 
= {ф = ф(%) |ф(0) = 0, ф*  = —ср}. Здесь окажется ф(Х) = рА + р2%3 + 
+ p3V + ... (р, вещественны, сумма конечна). Определим Az", z В', 
и далее МД, Мо".

Теорема 3. 1) Группа Мо" есть свободное произведение групп МД 
при индексе z, пробегающем множество В';

2) если v = 2, то вышеуказанное свободное произведение содержит 
лишь две группы МД и эти группы коммутативны-,

3) если v > 2, то группа МД, z е В', некоммутативна. Ее коммутант 
совпадает с центром и равен {С2(ф, 0) | <р с= ф"}.

4°. Доказательства. Линейную зависимость а и Ъ обозначим че­
рез а || Ь; пишем а\ | | 6, если а || Ъ и коэффициенты нетривиальной нулевой 
линейной комбинации векторов а и Ъ могут быть взяты вещественными. 
Доказательства лемм 1—6 особых затруднений не вызовут.

Лемма 1. (а, Ъ е А) => ((a*Db  = 0) -ее- (а || Ь)).
Л е м м а 2. (ab*  = ba*)  о (а | | | Ь).
Лемма 3. (XDX*  = X*DX  = 0) =>- (Ну, z е В, а 3 X = aDyz* ).
Лемма 4. Пусть у, z <= 3 и выполнено a) XDz = 0; б) у*Х  = 0; 

в) Vk е= X^tXDk || Dy).
Тогда 3s е АД г АД а 3 X = D(rz*  — ys*  + ayz*).
Лемма 5. Пусть z, Е S, i = 1, .,. ,ф Имеем
(Dzizr-Dz2z2*-.  ..-Dz^r = 0) о (Яц(1 гД ц < ц) э zl0 = zlo+1).
Лемма 6. Пусть фЕф, geAz(z е В) и пусть ф, g не нули одновре­

менно.
Тогда 1) старший коэффициент м.м. (Д(ф, g) пропорционален Dzz*-,
2) ст Сг(ф, g) == ст (ф — g*g)  > 0.
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Наиболее сложно доказывается
Лемма 7. Умножением м.м. U(со) е М справа или слева на подходя­

щую м.м. вида (2) (вещественную при вещественной С7(ш)) можно пони­
зить степень м.м. U(w), если ст U(со) > 0.

X
Доказательство леммы 7. Пусть U ((а) = 2 ст U (ы) =

1=0
= х. Из (1) вытекает U(a)*-D-U (w) = D. Доопределив при i > х после­
довательность матриц Хх нулями, получим семейство равенств

т
2 xldx;_l = о,
1=0
V
2 XtDX^ = 0.
1=0

(5Д

(6у>

Здесь у = 0, 1, ..., 2х — 1. Применяя лемму 3 к X = Хо, получим Хо = 
= ttaDyz*  при некоторых у, z£ а0. Покажем, что выполнена хотя бы 
одна из возможностей: I) Я<р е Ф, §еА:эст [Z7(®)-Gz(<p, g) < х; 
II) Яхр е Ф, h Д„з ст [СДтр, h) -U(со)] < х. (Ммножества Е, Ф, Д2, Да 
нужно соответственно изменить в вещественном случае.)

Для натуральных параметров т р, g, рассмотрим условия: А) Ясь,. 
0 с А; т — 1,эХ, = aJDyz*-,  Б) X.Dz = 0, т с ц — 1, XJJz Д= 0; 
В) у*Х х = 0, т I - 1, у*Х- ъ =£ 0; Г) Hs е= АД г е Ди°, щ еэ Хх =
= D(rz*  — ys" + OrZ/Z*).

Возьмем наибольшее тэА). Очевидно, 1фтф2. Возьмем нэБ), 
5 э В). Очевидно, т Ц, g ==£ х. Предположим, ц < 2т. Проверим выпол­
нение I). Используя лемму 2, из (5ц) выводим: Яр = Re р э a0Dy + 
+ ipX^Dz = 0. Чтобы обеспечить I), можно взять ф (со) = <рсоц, g'(co) = 0.. 
(В вещественном случае переменной со по необходимости получим ср (со) = 
= 0. В вещественном случае переменной X получим ср (X) =0 при чет­
ных у). Аналогично можно установить II) при В < 2т. Пусть рс, ; 2т.
Проверим Г), воспользовавшись при X = Хх леммой 4. Условия а) и б) 
очевидны, а для проверки в) воспользуемся леммой 1. Пусть к е Дг°, и = 
= XxDk. Надо установить F) v*Dv  = 0, IF) y*v  = 0. Соотношение (62т) 
умножим справа на Dk. слева — на k*D.  В левой части все члены, кроме 
одного, обратятся в нуль в силу предположений. Получим Г). Имеем 
y*v  = (y*X x)Dk = 0, т. е. IF).

Не нарушая общности считаем, что s =/= 0 (возможность г Д= 0 симмет­
рична, случай s = г = 0 противоречит определению т).

Пусть w = X2xDz, р = a0Dy. Используя лемму 1, покажем, что w\\p. 
Установим I") w*Dw  = 0, II") p*Dw  = 0. Из равенства (64т) получим I"). 
Умножим (62г) справа на Dz. Получим aozy*w  = 0, откуда II"). Итак, w = 
= ((То + фо) • р, где (То, Ро вещественны. (В вещественном случае пере­
менной со получим ро = 0. Соответствующее изменение нужно произвести 
в вещественном случае переменной X.)

В (52т) подставим Хо == pz*,  X2xDz = (<т0 + ip0) -р, Хх = —pSo*  + nz*,  
где п = D(r аху), s0 = sIае. Получим рр*  (2о0 + s0*Ds 0) = 0. С учетом 
равенства s0*Dso  = | s012 получаем ст0 = —7г | «о |2.

Теперь все готово для проверки I). Положим ф(и) = ipco2T, g(w) = 
= dcoT, где d е Дг° и вещественное р — неопределенные пока константы, 
которые надо подобрать из условия Хо + XZxDzz*  (ip—1/2|с^|2)Ч- 

XxD(zd*  — dz*)  = pz*e  — 0. Здесь е = 1 + sQ*d  + (ip0 — ‘/21«о j2 X 
X (ip —7г | d|2). Ищем d в виде й = йх0, где -0 — неопределенная константа. 
Имеем е = — i • 7г | So |2 • е2, где е, = 11 + 7гй • | «о |212 — р • ро, е2 = ро X
X | й |2 — 2 • Im й + р. В случае р0 = 0, полагая р = 0, й = —21 1 ~2, полу­
чим е = 0. Иначе имеем е, = 0, если р = 11 -|- 7гй • | s01212 / р0, и в этом 
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случае е2 = р»-1 {1 + | -Д |2 • [р02 + (’/а | «о |2)2] — 2 [р0 • Im -ft — (>/21 s |2) X: 
X Re О]}, Если теперь положить ф = (ipa — ’/г1 «о |2 (р02 + (7г | «о |2)2)_1, то> 
окажется е2 = 0. Лемма 7 доказана.

Доказательство теорем получается несложной проверкой с 
использованием лемм 5, 6, 7.

Автор выражает глубокую признательность В. А. Якубовичу и 
Д. К. Фаддееву за внимание к работе.

Ленинградский государственный университет 
им. А. А. Жданова

Поступило
4 VII1971

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

1 В. А. Якубович, ДАН, 194, № 3 (1970). 2 В. А. Якубович, ДАН, 195
№ 2 (1970). 3 А. Г. К у р о ш, Теория групп, изд. 3, М., 1967.

31


