УДК 539.2:536.4

ФИЗИЧЕСКАЯ ХИМИЯ

Г. В. ФЕДОРОВ

О КИНЕТИКЕ ФОРМИРОВАНИЯ СТРУКТУР ВАКУУМНЫХ КОНДЕНСАТОВ МЕТАЛЛОВ

(Представлено академиком С. А. Векшинским 16 III 1971)

Вакуумные конденсаты металлов, полученные при относительно низкой температуре, отличаются высокой степенью неравновесности, определяемой температурой (T) и скоростью (ω) конденсации и рядом других параметров (4) и др.). Показано, что в «массивных» конденсатах меди, полученных в широком интервале T $(300-1100^{\circ}\,\mathrm{K})$ и ω (до 50 мµ/мин), образуется дискретный набор структур разной степени неравновесности (2-4). Диаграмма структурных

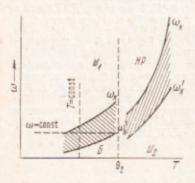


Рис. 1. Диаграмма образования структурных состояний конденсатов меди (д.с.с.) в зависимости от скорости конденсации и температуры

равновесности (2-4). Диаграмма структурных состояний (д.с.с.) конденсатов меди представлена на рис. 1. Аналогичные диаграммы получены для Ni, Со. Степень неравновесности структур уменьшается в порядке: Б— Ш₄ (Ш₂)— НР— ЭК (обозначения структур условные; структуры ЭК образуются при более высоких температурах и на рис. 1 не показаны (3)).

Л. С. Палатником с сотрудниками ((1) и др.) показано, что особенностями кинетики конденсации является существование двух критических температур $\theta_1 \approx 2T_s/3$, соответствующей переходу от механизма конденсации пар — жидкость — кристалл к механизму пар — кристалл при высоких T, и $\theta_2 \approx T_s/3$, соответствующей обратному переходу при низких T.д.с.с. показывает, что наравне с θ_1 , θ_2 существуют критические скорости кон-

денсации ω_k , $\omega_{k'}$ (рис. 1), при которых происходит скачкообразное изменение структур, отражающее изменение степени неравновесной системы. Из той же д.с.с. следует, что неравновесные конденсаты «аномальны»: при $T < \theta$, где $\theta \equiv \theta_2$ из (¹), повышение ω или понижение T приводит к образованию более равновесных структур \mathbf{H}_1 вместо ожидаемых менее равновесных \mathbf{E} (д.с.с.; T, ω = const соответственно). Аналогичные явления происходят при $T > \theta$ (структурные состояния \mathbf{H}_2 и HP). При еще более высоких T поведение конденсатов становится «нормальным»: скорость образования эпитаксиальных структур увеличивается при новышении T и уменьшении ω (³).

Применим теорию фазовых (структурных) превращений (5 , 6) к описанию кинетики перемещения границы раздела структур в конденсате, принимая, что $p\Delta v$ и $T\Delta S$ малы и воспользовавшись обозначениями рис. 3

$$V = e(kT/h)\lambda \exp(\Delta S_{\alpha}/k) \exp(-E_{\alpha}/kT) [1 - \exp(-E_{\pi}/kT) =$$

$$= A \exp(-E_{\alpha}/kT) [\exp(E_{\pi}/kT) - 1], \qquad (1)$$

где E_a' , ΔS_a — эффективная энергия и энтропия активации. Тогда E_a — истинная энергия активации $(E_a = E_a' + E_n, E_a' \to E_a$ при $E_n \to 0)$; E_n —

неравновесная энергия системы.

При конденсации увеличение ω (понижение T) увеличивает количество атомов, закрепленных в случайных положениях, поэтому представим E_{π} как результирующую энергии (ω .B) полностью пеупорядоченного состояния конденсата и энергии ω .C.exp($-E_m/kT$),

освобождаемой при образовании кристаллической решетки

$$E_{\pi} = \omega B - \omega C \exp(-E_{\pi}/kT), \qquad (2)$$

где B, C — некоторые коэффициенты, учитывающие энергию и подвижность атомов в поверхностном слое конденсата, E_m — энергия активации перемещения атомов в этом слое. Из (1) следует:

$$V = A \exp\left(-E_a/kT\right) \times \left\{\exp\frac{\omega\left[B - C \exp\left(-E_m/kT\right)\right]}{kT} - 1\right\} . (3)$$

Из (3) очевидна эквивалентность воздействия на формирование структуры кинетического параметра ω и термодинамического T (7).

Введем относительные температуры и скорости: $\theta/T = q$, $\omega/\omega_h = p$. Так как экспериментально определяемые A, E_a обычно не являются константами (6 , 8), то при T=

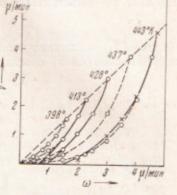


Рис. 2. Зависимость скорости превращения структур от скорости конденсации (ω) при T= const. Теоретические кривые — пунктир, экспериментальные данные — сплошные линии

периментально определяемые A, E_s обычно не являются константами (6 , 8), то при $T=T_i$ введем A_i и обозначим $\exp(-E_{ai}/kT_i)=\alpha_i$. Тогда (3) сводится к алгебраическому уравнению

$$V(\omega, T) = A\alpha \left[x_k^p(T) - 1 \right], \tag{4}$$

где $x_h = \exp\{\omega_h[B-C\exp(-E_m/kT)]/kT\}$. Найдем $A\alpha$ при $T=T_i$, $\omega==\omega_{i1},\;\omega_{i2}$ (и $\omega_{i2}>\omega_{i1}$), $V=V_{i1},\;V_{i2}$:

$$A_i \alpha_i = (V_{i2} - V_{i1})/(x_{ki}^{p_{i2}} - x_{ki}^{p_{i1}}), \tag{5}$$

где x_{M} является корнем уравнения ($\beta_i = V_{i2}/V_{ii}$):

$$W(x_{ki}) = x_{ki}^{p_{i2}} - \beta_i x_{ki}^{p_{i1}} + (\beta_i - 1).$$
 (6)

Применяя (4) для T_i , T_i при $T_i > T_i$ и произвольных ω и обозначая; $\exp(-E_m/kT_i) = [\exp(-E_m/k\theta)]^{q_i} = u^{q_i}$, а также используя условие

V=0 при $T=\theta$, т. е. $B=C\cdot \exp(-E_m/k\theta)$, находим B,C,E_m .

Уравнение (3) качественно хорошо описывает кинетику превращений в конденсатах. Количественная обработка кривых показывает, что если $T \to 0$, то одновременно с $V \to 0$ также и $A_i \alpha_i \to 0$. Следовательно, произведение $A_i \alpha_i$ включает сомножитель, могущий принимать цулевое значение. Покажем, что таким сомножителем может быть переменная концентрация неравновесных вакансий, зависящая от ω , T.

Если E_a — энергия активации самодиффузии (5), то выразим V через

коэффициент самодиффузии D аналогично (9 , 11):

$$V = \varepsilon (D/\lambda) \left[\exp(E_{\pi}/kT) - 1 \right] = \varepsilon (c_v^0 D_v/\lambda) \left[\exp(E_{\pi}/kT) - 1 \right], \quad (7)$$

где $\varepsilon \approx 10$; c_v^0 , D_v — квазиравновесная концентрация и коэффициент диффузии вакансий (дивакансий). Так как $D = c_v D_v$ при любых c_v , в том числе неравновесных ((10) и др.), то c_v входит в (7) вместо c_{v0} , или:

$$A_i \alpha_i = A_{\phi_i} \alpha_{\theta_i} (c_{vi}/c_{v0}) = A_{\phi_i} \alpha_{\theta_i} \exp(\Delta \mu_i / kT_i),$$

$$V = A \exp[-(E_a - \Delta \mu / kT)] [\exp(E_{\eta} / kT) - 1],$$
(8)

где A, E_s приобретают теоретическое (равновесное) значение, $\Delta \mu - {
m xu}$ мический потенциал неравновесной концентрации вакансий.

Кривые ов, V хорошо аппроксимируются формальными функциями:

$$\ln \omega_k = mT - a,$$

$$V = K \left[\exp \left(\omega - \omega_k' \right) - 1 \right] = K \left\{ \exp \left[\omega - \exp \left(mT - a \right) \right] - 1 \right\},$$
(9)

где К. т., а - константы. В таком случае

$$E_{\pi} \equiv kT \left[\omega - \exp\left(mT - a\right) \right]. \tag{10}$$

Форма (10) несколько отличается от (2), но форма (2) является лишь постулированной из общих представлений, а (10) позволяет рассчитать

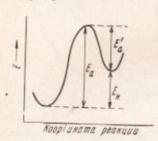


Рис. 3. Энергетическое состояние конденсата (схема)

 $E_{\rm H}$, не раскрывая ее внутреннего содержания; $E_{\rm H} \approx 2700$ кал/г атом при T=0 и $\omega=\omega_{\rm h}$, что очень близко к скрытой теплоте плавления $L_{\rm s}$. Микрокалориметрические измерения при отжиге структуры Б показали, что выделение $E_{\rm H}$ протекает в нескольких температурных интервалах, соответствующих структурным превращениям, а суммарный тепловой эффект действительно достигает $0.3 \div 0.5 L_{\rm s}$.

Д.с.с. конденсатов подтверждает «внутрифазовое правило ступеней» (2), а кинетика формирования структур вскрывает двойственный характер воздействия с, на скорость процессов: кинетический (с, входит сомножителем в пред-

экспоненциальный множитель (3)), и энергетический (энергия образования неравновесных вакансий входит слагаемым в $E_{\rm u}$), причем первое может оказаться более существенным.

Можно предположить, что в конденсатах при $T<\theta$ неравновесность вакансионного происхождения и является следствием механизма пар—жидкость — кристалл; при $T>\theta$ неравновесность имеет дислокационную природу как следствие образования дислокационных границ, возникающих при столкновении кристаллитов, растущих из зародышей по механизму пар — кристалл, при еще более высоких T происходит автоэпитаксиальный рост конденсата, т. е. также по механизму пар — кристалл, однако без образования зародышей, а температура начала эпитаксиальной конденсации является такой же критической величиной, как и θ .

Мы считаем, что эти эксперименты и расчет существенно подтверждают правильность гипотезы Л. С. Палатника ((¹) и др.) о смене механизмов конденсации при низких температурах.

Описание энергетического состояния системы в терминах рис. З и в виде уравнения (1) и учет влияния на кинетику процессов концентрации перавновесных вакансий позволяет в нашем случае избавиться от формальных трудностей, связанных с объяснением экспериментально наблюдаемых переменных значений предэкспоненциального множителя и «эффективной» энергии активации (6, 8).

Харьковский политехнический институт им. В. И. Лепина Поступило 25 XII 1970

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ Л. С. Палатник, Сборн. Структура и свойства металлических пленок, Киев, 1966, стр. 2. ² Л. С. Палатник, Г. В. Федоров, ДАН, 166, 1095 (1966). ³ Г. В. Федоров, Л. С. Палатник, Я. С. Павляк, Физ. мет. и металловед., 23, 925 (1967). ⁴ Г. В. Федоров, Л. С. Палатник и др., Укр. физ. журн., 12, 1980 (1967). ⁵ Б. Я. Любов, Кинетическая теория фазовых превращений, М., 1969. ⁶ Д. Е. Бурке, Д. Тарибалл, Сборн. Усиехи физики металлов, 1, М., 1956, стр. 368. ⁷ Я. Е. Гегузин, Физ. мет. и металловед., 7, в. 1, 72 (1959). ⁸ С. С. Горелик, Рекристаллизация металлов и сплавов, М., 1967. ⁹ Л. Н. Лариков, Вопр. физ. мет. и металловед., № 13, 47 (1961). ¹⁰ Я. Е. Гегузии, УФН, 61, в. 2, 217 (1957). ¹¹ Я. Е. Гегузин, Физика спекания, «Наука», 1967.