УДК 539.26

Академик АН УССР И. Н. ФРАНЦЕВИЧ, Е. А. ЖУРАКОВСКИЙ, А. В. КУРДЮМОВ, Н. Н. ВАСИЛЕНКО

ЭКСПЕРИМЕНТАЛЬНОЕ ИССЛЕДОВАНИЕ ЭНЕРГЕТИЧЕСКОГО СПЕКТРА И ТОНКОГО КРИСТАЛЛИЧЕСКОГО СТРОЕНИЯ ВЮРЦИТОПОДОБНОЙ МОДИФИКАЦИИ НИТРИДА БОРА

Нитрид бора известен в четырех кристаллических модификациях: гексагональный графитоподобный $(BN)_r$ (¹), ромбоэдрический графитоподобный $(BN)_p$ (²), кубический сфалеритоподобный $(BN)_{c\phi}$ (³, ⁴) и гексагональный вюрцитоподобный $(BN)_B$ (⁴, ⁵). ВN_r и BN_p, а также BN_{c\phi} и BN_p соотносятся как политины, т. е. отличаются порядком чередования идентичных слоев. Для графитоподобных модификаций BN_r и BN_p характерно распределение связей B—N в плоскости слоя (координационное число 3), для плотных модификаций BN_c и BN_b — пространственное тетраэдрическое распределение (координационное число 4).

Исследованию кристаллической структуры и энергетического состояния BN_r и $BN_{c\phi}$ посвящено сравнительно много работ, тогда когда BN_B пока еще почти не изучен. Практически отсутствуют сведения об электронном строении BN_B ; отсутствуют точные значения параметров элементарной ячейки и длин связей B—N, B—B (N—N) в решетке.

В настоящей работе обсуждаются результаты комплексного рентгеноспектрального и рентгеноструктурного исследования BN_в, полученного в условиях импульсного сжатия BN_г. BN_в содержал примесь BN_r, которая в дальнейшем удалялась химическим путем с доведением содержания BN_в до 97%.

Спектры азота и бора в $BN_{c\phi}$ и BN_r ранее изучались В. А. Фомичевым (⁶), который обнаружил весьма существенное различие в их строении. Несколько позже появились теоретические расчеты $BN_{c\phi}$ (⁷, ⁸) и BN_r (⁹⁻¹¹). Наиболее тщательными и полными являются расчеты (⁷) для $BN_{c\phi}$ и расчеты (¹¹) для BN_r , на которые мы будем опираться при обсуждении наших собственных результатов. По $BN_{\rm B}$ нет ни рентгеноспектральных исследований, ни расчетов. Поэтому представляет интерес получить в единых условиях рентгеноспектральные данные для этих трех модификаций BN, сопоставить их с проведенными ранее В. А. Фомичевым исследованиями BN_r и $BN_{c\phi}$, точно определить основные кристаллохимические нараметры $BN_{\rm B}$ и провести совместное обсуждение всей совокупности накоиленных данных.

Рентгеноспектральные исследования были выполнены на ультрадлинноволновом спектрометре РСМ-500 после полного рентгеноструктурного отождествления всех препаратов. Методика получения спектров подробно изложена в (¹²). Рентгенограммы для структурного анализа были получены в дебаевской камере РКУ-114М на медном K_{α} -излучении. Для прецизионного определения параметров решетки в образец ВN_в подмешивался BN_г, для которого параметры определены с большой точностью (⁴).

На рис. 1 сопоставляются полученные нами спектры бора и азота в трех модификациях BN (1-6) с экспериментальными данными Фомичева по BN_r и BN_c(9-12) и расчетными данными $(^7, ^{11})$, представленными в виде гистограмм общей плотности N(E) для BN_r и BN_c(7-8), а также в виде теоретической интенсивности эмиссии бора и азота — под экспериментальными кривыми. На рис. 1 принята единая система обозна-

87

чений экстремумов интенсивности. Мы сохранили также единую энергетическую шкалу и близкий масштаб интенсивности полос, что позволяет оценивать их протяженность и относительные интенсивности максимумов того или иного происхождения.

Обратимся вначале к теоретическим кривым плотности N(E). Их сходство велико в низкоэнергетической части спектра (участок e - 2s-состояния азота и бора), значительно в средней (участок d, c, b — вырожденные 2sp-состояния азота и бора σ -характера) и почти пропадает в высокоэнергетической части, где у BN_r имеется лишний пик a, отсутст-

Рис. 1. 1-3- рентгеновская эмиссионная Ка-полоса В в трех модификациях ΒN (наши данные); 4---_ рентгеновская эмиссионная Ка-полоса N в трех модифи-BNкапиях (наши данные); 7 — распределение плотности состояний в пределах валентной зоны и попроводимости, лосы рассчитанное теоретически (11) для ВÑ_г; 8 — то же для ВN_{сф} (⁷); 9—10 — рентгеновская эмиссионная *К*_α-полоса В в ВN_г и ВN_{сф} по (⁶); 11—12 рентгеновская эмиссионная К_а-полоса N в ВN_г и ВN_{сф} по (⁶); штриховыми кривыми показаны рассчитанные теоретически $(^{7})$ интенсивности эмиссии В и N в BNcф

вующий в $BN_{c\phi}$. Согласно данным расчетов (⁴¹), этот пик отражает максимум плотности π-состояний. Верхняя валентная зона и нижняя зона проводимости в BN_r являются л-зонами (⁴¹). Аналогичные результаты получены и в предыдущих менее совершенных расчетах (⁸, ⁹). Следует отметить, что такое распределение имеет место и для графита (¹⁰) с той разницей, что в этом случае имеет место смыкание валентной л-зоны с л-зоной проводимости. Сходство в структурах BN_r и графита проявляется и в зонных структурах этих соединений. Отсутствие зоны π-состояний в $BN_{c\phi}$ сближает его с алмазом, что объясняет близость прочностных свойств $BN_{c\phi}$ и алмаза и отсутствие в них проводимости. Переходя к рассмотрению спектров, сразу же отметим, что в полученном нами спектре бора в $BN_{c\phi}$ коротковолновый максимум *а* (л-зона) полностью отсутствует, тогда как у Фомичева (⁶) он все же проявляется довольно слабым наплывом. По-видимому, автор (⁶) пользовался при съемке не очень чистым препаратом $BN_{c\phi}$. Это сказалось и на форме максимума *cb* (рис. 1, *10*), который размыт, тогда как в наших опытах он имеет острую форму. Поскольку разница в смещении ΔE максимума В K_{α} -полосы в $BN_{c\phi}$ и BN_r относительно чистого бора достигает ~ 1 эв ($\Delta E = -1.5$ эв в $BN_{c\phi}$ и $BN_{\rm B}$, и -2.4 эв в BN_r), наблюдавшееся Фомичевым уширение верхушки В K_{α} в $BN_{c\phi}$ может быть связано с наложением друг на друга максимумов *c* от двух модификаций в двухфазном образце.

Таблица 1

Длины связей и междуслойные расстояния в трех модификациях BN (Å)

Тип связи	BN _{c∯}	BNB	BNr
В — В (N — N)	$2,56 \\ 1,567 \\ 2,09$	2,55-2,58	2,504
В — N		1,564-1,590	1,44
Междуслойное расстояние		2,12	3,33

Наблюдается сходство спектров бора в BNr, BNco и BNs, что с учетом приведенных на рис. 1, 7 и 1, δ гистограмм N(E), можно объяснить тем, что л-состояния не проявляются в спектрах бора и сосредоточены, главным образом, в сфере атома азота как более электроотрицательного элемента. В этом убеждает и рассмотрение спектров азота в трех модификациях BN (рис. 1, 4-6). Относительная интенсивность максимума aздесь очень велика и претерпевает значительные изменения при переходе от одной модификации к другой. Между тем, по данным нашей работы и работы (⁶) видно, что сильный пик а у NK_a в BN_r далеко превосходит по интенсивности пики b и c, тогда как в BN_{cф} они имеют почти одинаковую интенсивность, испытывая лишь некоторое ослабление возле пиков b и с. Именно в этой характеристике проявляется основное отличие энергетического спектра BN_в от BN_г и BN_{сф}. Рассмотрение рис. 1, 4-6 показывает, что относительная интенсивность максимума a в K_{α} у BN_в меньше, чем у BN_r, но больше, чем у BN_{сф} или, другими словами, количество л-состояний в зоне BN_в занимает промежуточное положение между модификациями BN_г и BN_{сф}. Ту же картину мы отмечали в спектре бора: в $BN_{c\Phi}$ максимум *a* отсутствует, в BN_r достаточно четок, а в BN_B занимает по интенсивности промежуточное положение между двумя первыми.

Заметное различие в спектрах $BN_{c\phi}$ и BN_{B} можно объяснить, если учесть различие в длинах связей B-N и B-B (N-N) в решетках, обнаруженное в результате точного определения параметров по обеим осям в BN_{B} . Длины связей и междуслойные расстояния в $BN_{c\phi}$, BN_{B} и BN_{r} приведены в табл. 1. Для BN_{B} даны два значения длин связей, первое из которых отвечает направлению оси *а* или примыкающему к нему (в случае B-N), второе — направлению оси *с* или близкому к нему (в случае B-B или N-N). Отсутствие π -зоны в энергетическом спектре $BN_{c\phi}$ объясняется тем, что в $BN_{c\phi}$ атом бора, подобно углероду в алмазе, находится в центре правильного тетраэдра, где все длины связей B-N и валентные углы равны между собой (sp^{3} -гибридизация) и все связи носят насыщенный ковалентный характер. В BN_{r} имеет место тригональное окружение (sp^{2} -гибридизация), и один невовлеченный в эту гибридизацию электрон остается для организации π -связей.

Как видно из табл. 1, в BN_в правильная тетраэдрическая конфигурация атомов В и N нарушается; длина связи в направлении оси *с* несколько больше, чем в других направлениях, что сближает BN_в с BN_r, где анизотропия связей чрезвычайно велика. Однако несмотря на различие в спектрах и длинах связей в $BN_{c\phi}$ и $BN_{в}$ последний, как показывают результаты настоящего исследования, по энергетической и кристаллической структуре значительно ближе к $BN_{c\phi}$, чем к BN_{r} , хотя и занимают промежуточное положение.

Институт проблем материаловедения Академии наук УССР Киев

Поступило 11 VI 1971

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ R. S. Pease, Acta crystallogr., 5, 356 (1952). ² A. Herold, B. Marzluf, P. Perio, C. R., 246, 1866 (1958). ³ R. H. Wentorf, J. Chem. Phys., 26, 956 (1957). ⁴ F. P. Bundy, R. B. Wentorf, J. Chem. Phys., 26, 956 (1957). ⁵ Л. Ф. Верещагин, Е. В. Зубоваидр., ДАН, 178, № 1 (1968). ⁶ В. А. Фомичев, ФТТ, 13, в. 3 (1971). ⁷ В. П. Алешин, В. А. Смирнов, ФТТ, 11, 1920, 2010 (1969). ⁸ R. Тауlor, С. А. Coulson, Proc. Phys. Soc., 65, 834 (1952). ⁹ E. Dony, P. G. Paravicini, Nuovo Cimento, 64, 117 (1969). ¹⁰ F. Herman, Rev. Mod. Phys., 30, 102 (1958). ¹¹ М. С. Нахмансон, В. П. Смирнов, ФТТ, в. 3 (1971). ¹² И. Н. Францевич, Е. А. Жураковский, Н. Н. Василенко, ДАН, 184, № 5, 81 (1970).