УДК 541.183

ФИЗИЧЕСКАЯ ХИМИЯ

н. п. золотарев, академик м. м. дубинин

О НАЧАЛЬНОЙ СТАДИИ ВНУТРИДИФФУЗИОННОЙ КИНЕТИКИ АДСОРБЦИИ В СФЕРИЧЕСКИХ ЗЕРНАХ АДСОРБЕНТА В СЛУЧАЕ НЕЛИНЕЙНЫХ ИЗОТЕРМ

Из опытов известно, что начальная стадия внутридиффузионной кинетики адсорбции в отдельных зернах адсорбента описывается зависимостью

$$\tilde{a}/a_0 = A\sqrt{t}, \quad A = \text{const},$$
 (1)

где $\bar{a}(t)$ — средняя по зерну величина адсорбции в момент $t,\ a_{\scriptscriptstyle 0}$ — равновесное значение $\bar{a}.$

Указанная зависимость во многих случаях (1 , 2) удовлетворительно выполняется до $\bar{a}/a_0 = 0.6 - 0.7$, т. е. аппроксимирует значительный участок кинетической кривой. Именно этот участок указанной кривой используется обычно для кинетических измерений. В связи со сказанным представляется существенным теоретическое изучение этой стадии кинетики адсорбции для различных изотерм и зерен различной формы. Внутридиффузионная кинетика достаточно хорошо исследована для линейной (1 , 3) и прямоугольной (3 , 5) изотерм адсорбции. В работах ($^{6-8}$) рассмотрена начальная стадия этого процесса для зерен адсорбента цилиндрической (призматической) формы с непроницаемой боковой поверхностью в случае произвольных нелинейных ломаных изотерм. В данной работе указанное рассмотрение обобщается на случай сферических зерен. Получены также приближенные формулы начальной стадии кинетики в таких зернах для случая непрерывных лэнгмюровских изотерм адсорбции. На основе найденных зависимостей даны формулы для определения коэффициента внутренней диффузии D_i .

1. Внутридиффузиопная кинетика физической адсорбции в сферическом зерне радиуса R в предположении постоянства D_i может быть описана следующими уравнениями и условиями:

$$\frac{\partial a}{\partial t} + \frac{\partial c}{\partial t} = \frac{D_i}{R^2 (1-y)^2} \frac{\partial}{\partial y} \left[(1-y)^2 \frac{\partial c}{\partial y} \right], \quad a = f(c), \quad 0 \leq y \leq 1; \quad (1)$$

$$c(0,t) = c_0, \quad c(y,0) = 0, \quad (1-y)^2 \frac{\partial c}{\partial y}\Big|_{y\to 1} = 0, \quad y = 1 - \frac{r}{R},$$
 (2)

тде c и a — локальные копцентрации адсорбтива в подвижной и неподвижной фазах, a=f(c) — уравнение изотермы, r — радиальная координата в зерне.

На начальной стадии кинетики адсорбция и градиент концентрации сосредоточены в тонком внешнем слое зерна $(0, y_1(t)), y_1(t) \ll 1$. Внутри этого слоя $(0, y_1(t))$ уравнение (1) можно упростить и записать как

$$\frac{\partial a}{\partial t} + \frac{\partial c}{\partial t} = \frac{D_i}{R^2} \frac{\partial^2 c}{\partial y^2} = D_i \frac{\partial^2 c}{\partial x^2}, \quad a = f(c), \quad x = yR.$$
 (3)

Отсюда видно, что на начальной стадии кинетики адсорбции в сферическом зерне распределения локальных концентраций c(x, t), a(x, t) будут такими же, как на начальной стадии этого процесса в цилиндрическом зерне, непроницаемом с боков $\binom{6}{7}$. Для произвольной ломаной изо-

термы из двух звеньев

$$a = a_1 = \gamma_1 c, \quad 0 \leqslant c \leqslant c_*; \quad a = a_2 = \gamma_1 c_* + \gamma_2 (c - c_*),$$

$$c_* \leqslant c \leqslant c_0; \tag{4}$$

тогда в согласии с (6, 7) имеем

$$\frac{c}{c_0} = 1 - \frac{(1 - c_*/c_0)\operatorname{erf}\left(\xi\sqrt{1 + \gamma_2}\right)}{\operatorname{erf}\left(\xi_0\sqrt{1 + \gamma_2}\right)}, \quad 0 \leqslant \xi \leqslant \xi_0;$$

$$\frac{c}{c_0} = \left(\frac{c_*}{c_0}\right) \frac{\operatorname{erfc}\left(\xi\sqrt{1 + \gamma_1}\right)}{\operatorname{erfc}\left(\xi_0\sqrt{1 + \gamma_1}\right)}, \quad \xi > \xi_0. \tag{5}$$

Здесь $\xi = x / (2\sqrt{D_i t})$ и постоянная ξ_0 находится из уравнения

$$\sqrt{1+\gamma_{2}}(c_{0}/c_{*}-1)\exp\left[-(1+\gamma_{2})\xi_{0}^{2}\right]\operatorname{erfc}\left(\xi_{0}\sqrt{1+\gamma_{1}}\right) = \sqrt{1+\gamma_{1}}\exp\left[-(1+\gamma_{1})\xi_{0}^{2}\right]\operatorname{erf}\left(\xi_{0}\sqrt{1+\gamma_{2}}\right). \tag{6}$$

В то же время

$$V(d\bar{a}/dt) = -D_i S(\partial c/\partial x)_{x=0}, \quad \bar{a}(0) = 0, \tag{7}$$

где V — объем зерна, S — площадь его проницаемой поверхности.

Подставляя (5) в (7) и интегрируя, легко находим, что на начальной стадии

$$\frac{\bar{a}(t)}{a_0} = \frac{2}{\sqrt{\pi}} \left(\frac{c_0}{a_0}\right) \left(\frac{S}{V}\right) \frac{\sqrt{1+\gamma_2}(1-c_*/c_0)}{\operatorname{erf}(\xi_1)\sqrt{1+\gamma_2}} \sqrt{D_i t}. \tag{8}$$

Выражение (8) совпадает по внешнему виду с соответствующей формулой из (8), полученной для цилиндрического зерна с непроницаемой боковой поверхностью. При одной и той же изотерме и D_i разница между таким зерном и сферическим будет на начальной стадии только в геометрическом коэффициенте формы k = (S/V)*. Для сферического зерна радиуса R и цилиндрического высоты 2b, непроницаемого с боков, имеем соответственно

$$k_{\rm ch} = (S/V)_{\rm ch} = 3/R, \quad k_{\rm H} = (S/V)_{\rm H} = 1/b.$$
 (9)

Для прямоугольной и линейной изотерм, проходящих через (c_0, a_0) , $a_0/c_0 \gg 1$, из (8) получаем известные ранее $(^{3-8})$ формулы

$$\bar{a}/a_0 = k\sqrt{2}\sqrt{c_0}/a_0\sqrt{D_it}, \ \bar{a}/a_0 = k(2/\sqrt{\pi})\sqrt{c_0}/a_0\sqrt{D_it}. \tag{10}$$

Для D_i из (1), (8) имеем

$$D_{i} = \frac{\pi^{2} A^{2} \operatorname{erf}^{2} (\xi_{0} \sqrt{1 + \gamma_{2}})}{4 (c_{0}/a_{0})^{2} (S/V)^{2} (1 + \gamma_{2}) (1 - c_{*}/c_{0})^{2}}.$$
(11)

На основе формул (1), (6), (8), (9), (11) может быть предложен аналогичный (8) способ определения D_{i} для сферических зерен адсорбента, который учитывает вид изотермы адсорбции. При этом, очевидно, полностью сохраняются выводы (8) относительно ошибок, допускаемых при определении D_{i} , в случае замены реальной выпуклой или вогнутой изотермы липейной.

2. Исследуем теперь случай лэнгмюровских изотерм

$$a = f(c) = a_*c/(c+b), \quad a_0/c_0 = a_*/(c_0+b) \gg 1.$$
 (12)

Применим к (1), (2) метод интегральных соотношений (6, 9). Тогда нужно полагать

$$\frac{c}{c_0} \approx \frac{y_1 - y}{y_1(1 - y)}, \quad 0 \leqslant y \leqslant y_1(t); \quad \frac{c}{c_0} = 0, \quad y > y_1(t), \quad y_1(t) < 1. \quad (13)$$

^{*} Выражения (5) — (8) на указанной стадии должны, очевидно, выполняться и для зерен другой формы. Если адсорбцией на неоднородностях внешней поверхности зерна a_1 пренебрегать нельзя, то в правой части (8) нужно добавить слагаемое a_1/a_0 .

Величину $y_1(t)$ определяем из интегрального уравнения баланса массы адсорбата

$$\frac{d}{dt} \int_{0}^{y_{1}(t)} (a+c)(1-y)^{2} dy = -\frac{D_{i}}{R^{2}} \frac{\partial c}{\partial y} \Big|_{y=0}, \quad a=f(c).$$
 (14)

На начальной стадии $(y_1(t) \ll 1)$ вместо (13), (14) $(a \gg c)$ имеем

$$\frac{c}{c_0} \approx 1 - \frac{y}{y_1}, \quad \frac{d}{dt} \int_{0}^{y_1(t)} a \, dy = \frac{c \circ D_i}{R^2} \frac{1}{y_1(t)}, \quad y \leqslant y_1(t). \tag{15}$$

После подстановки (12) в (15) находим

$$\frac{d}{dt} \int_{0}^{y_1(t)} \frac{a_* (1 - y/y_1) dy}{(1 + b/c_0) - y/y_1} = \frac{c_0 D_i}{R^2} \frac{1}{y_1(t)}, \quad y_1(0) = 0.$$
 (16)

Интегрируя (16), получаем

$$y_1(\tau) = \frac{\sqrt{2\tau}}{\sqrt{(a_*/c_0)\{1 + (b/c_0)[\ln(b/c_0) - \ln(1 + b/c_0)]\}}}, \quad \tau = \frac{D_i t}{R^2}. \tag{17}$$

После подстановки (15), (17) в (7) и интегрирования для изотерм (12) находим

$$\frac{\tilde{a}(t)}{a_0} = \sqrt{2k} \sqrt{\frac{c_0 (1 + b/c_0)^2}{a_s}} \{1 + (b/c_0) [\ln (b/c_0) - \ln (1 + b/c_0)]\} \sqrt{D_i t}.$$
 (18)

Выражение (18) записано в виде, пригодном как для сферических (k=3/R), так и для цилиндрических непроницаемых с боков зерен (k=1/b) и зерен другой формы.

При $(b'/c_0) \ll 1$, $a_0 \approx a_*$, из (18) получаем совпадающую с (12) формулу для прямоугольной изотермы. При $(b/c_0) \gg 1$, $a_*/b \approx \gamma$, из (18) должно получиться соответствующее выражение для линейной изотермы. Оно имеет вид

$$\bar{a}/a_0 = k \sqrt{c_0/a_0} \sqrt{D_i t}. \tag{19}$$

Сравнивая (19) со второй формулой (10), видим, что различие между \bar{a}/a_0 , вычисленными по (10) и (19), составляет 12%. Из всех выпуклых изотерм, проходящих через (c_0,a_0) , метод интегральных соотношений, как нетрудно показать, должен давать наибольшую ошибку для предельной линейной изотермы (в данном случае 12%); для других выпуклых изотерм эта ошибка меньше.

Другой вопрос заключается в том, как долго формулы (8), (18) согласуются с полной кинетической кривой. Этот вопрос теоретически может быть прямо решен только для линейной и прямоугольной изотерм, для которых имеются решения, справедливые и для малых и для больших времен (3-8).

Сравнение (10) и (19) с точным решением для линейной изотермы ноказывает, что формула (10) дает все время завышенное значение \bar{a}/a_0 ; с увеличением \bar{a}/a_0 ошибка увеличивается (при $\bar{a}/a_0 = 0.4$ (10) выполняется с точностью 12%). Формула (19) дает сначала заниженное, а потом завышенное значение \bar{a}/a_0 ; в результате до $\bar{a}/a_0 \approx 0.6$ ошибка при счете по (19) также не превышает 12%. Сравнение с решением (5) показывает, что формула (10) для прямоугольной изотермы удовлетворительно выполняется до $\bar{a}/a_0 \approx 0.6$.

Из выражения (18) с учетом (9) нетрудно получить формулу для определения D_i (выпуклые лэнгмюровские изотермы, сферические зерна) по

известному времени достижения $\bar{a}/a_0 = 0.5$ ($t_{0.5}$):

$$D_{i} \approx 0.028\delta \left(a_{0}/c_{0}\right) R^{2}/t_{0,5}, \quad \delta = \frac{1}{2\left(1 + b/c_{0}\right)\left\{1 + \left(b/c_{0}\right)\left[\ln\left(b/c_{0}\right) - \ln\left(1 + b/c_{0}\right)\right]\right\}} \ . \tag{20}$$

В частном случае линейной изотермы, например, $(b/c_0 \gg 1, a_*/b \approx \gamma)$, из формулы (20) получаем ($\delta = 1$) выражение для D_i , практически совпалающее с рассмотренным в (').

Проведенные выше оценки для крайних случаев семейства выпуклых изотерм (линейной и прямоугольной) гарантируют, что при $\bar{a}/a_0 = 0.5$ формула (18), а следовательно, и (20) хорошо выполняются для любых выпуклых изотерм.

Институт физической химии Академии паук СССР Москва Поступило 25 XI 1971

ПИТИРОВАННАЯ ЛИТЕРАТУРА

¹ Д. П. Тимофеев, Кинетика адсорбции, Изд. АН СССР, 1962. ² И. Т. Ерашко, Кандидатская диссертация, М., 1969. ³ А. В. Лыков, Теория теплопроводности, М., 1967. ⁴ Д. П. Тимофеев, ЖФХ, 39, 2735 (1965). ⁵ В. Ф. Фролов, П. Г. Романков, Теоретич. основы хим. технол., 2, 396 (1968). ⁶ П. П. Золотарев, Изв. АН СССР, сер. хим., 1969, 711; 1968, 2403. ⁷ П. П. Золотарев, Теоретич. основы хим. технол., 3, 854 (1969). ⁸ П. П. Золотарев, М. М. Дубинин, И. Т. Ерашко, ДАН, 201, № 2, 386 (1971). ⁹ Т. Гудмен, Сбори. Проблемы теплообмена, 1967, стр. 41.