УДК 553.321

ПЕТРОГРАФИЯ

И. В. МУШКИН, Р. И. ЯРОСЛАВСКИЙ

ОБ ЭКЛОГИТИЗАЦИИ ГНЕЙСОВ И ВОЗМОЖНОМ ЗНАЧЕНИИ ЭТОГО ПРОЦЕССА (НА ПРИМЕРЕ ИЗУЧЕНИЯ КСЕНОЛИТОВ В ДАЙКАХ ЩЕЛОЧНЫХ ГАББРОИДОВ ЮЖНОГО ТЯНЬ-ШАНЯ)

(Представлено академиком В. С. Соболевым 29 III 1971)

Эклогитизация кристаллических сланцев и гнейсов впервые описана на примере включений в кимберлитах Якутии А. П. Бобриевичем, В. С. Соболевым и др. (1-3). Нами подобные явления наблюдались в ксенолитах двупироксеновых гнейсов, заключенных в дайках калиевых щелочных габброидов (щелочные пикритовые порфириты, камптониты, тералит-порфиры) Северо-Нуратинского хребта. Площадь развития по-

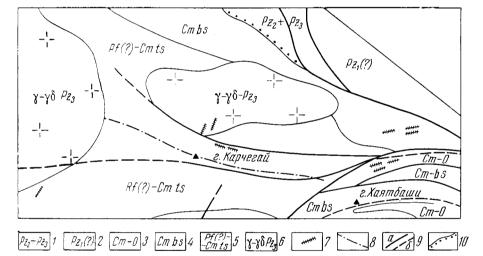


Рис. 1. Схема геологического строения центральной части Северо-Нуратинского хребта. 1— средне-верхнепалеозойские карбонатные и терригенные отложения; 2— условно нижнепалеозойские зеленокаменные образования; 3— кембро-ордовикские известняково-сланцевые отложения; 4— бесапанская свита: алевролиты, сланцы, песчаники; 5— тасказганская свита: углеродистые кварциты с линзами доломитов, углистые сланцы, песчаники; 6— биотитовые граниты, адамеллиты; 7— дайки щелочных габброидов; 8— ось Северо-Нуратинского антиклинория; 9— разрывные нарушения (a— установленные, 6— предполагаемые); 10— граница трансгрессивного налегания

добных даек приурочивается к выходам кварцито-алевролито-сланцевых толщ рифея (?) и кембро-ордовика, соответствующих комплексу основания в понимании М. В. Муратова (4) с неглубоко залегающим (6—6,5 км), по геофизическим данным, кристаллическим фундаментом (рис. 1). Наиболее вероятный возраст щелочных габброидов — триасовый. Отдельные дайки зафиксированы среди позднепалеозойских гранитоидов.

Двупироксеновые гнейсы, принадлежащие фундаменту, образуют включения преимущественно овальной формы, размером от нескольких миллиметров до 20 см. Наряду с ними в дайках отмечаются ксенолиты гранатпироксеновых и гиперстен-биотитовых гнейсов, роговообманковых вебсте-

ритов, шпинелевых пироксенитов, гранитов, реже перидотитов и глим-меритов.

Макроскопически видимые в гнейсах приконтактовые изменения выражаются в появлении в них маломощных (до 1 мм) участков лейкократизации и дезинтеграции (плавления). Породы состоят из плагиоклаза (Ап 45-55%), иногда с антипертитовыми вростками калишпата, гинерстена — бронзита ($f_{06\text{m}}=20-30$, редко 40-50%), авгита и акцессорных минералов (магнетит, ильменит, апатит, рутил, циркон). Магнетиты, судя по результатам химического анализа, содержат до 16,6% TiO₂, что позволяет считать их титаномагнетитами и указывает на температуру образования пород в 900° (5). Близ контакта с щелочными габброидами в гнейсах появляются новообразованные керсутит, биотит, реже роговая обманка обыкновенная и щелочной амфибол, близкий арфведсониту; эгиринизируется авгит и альбитизируется плагиоклаз.

Привлекают к себе внимание гранат-пироксеновые гнейсы, отличающиеся от вышеописанных пород более основным характером плагиоклаза (Ап до 70%), почти полным отсутствием ортопироксена и весьма неравномерным распределением граната. Последний образует прожилкообразные и неправильной формы обособления, нередко пересекающие гнейсовидность и иногда окруженные лейкократовыми, существенно полевошпатовыми оторочками (рис. 2).

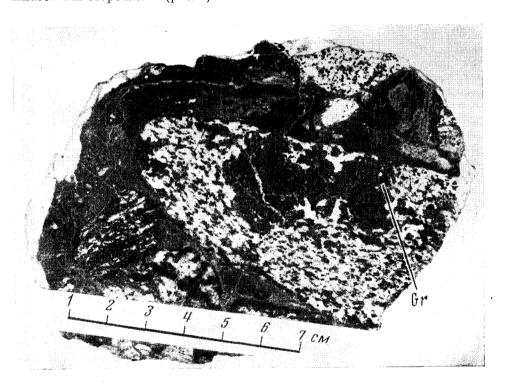


Рис. 2. Развитие граната (Gr) в ксенолите двупироксенового гнейса

Гранат большей частью коричневато-красный, различных оттенков. Микроскопические наблюдения указывают на отчетливое замещение им орто- и клинопироксенов, реже — плагиоклаза. Показатели преломления минерала (иммерсия) варьируют в пределах $1,776 \div 1,785 \pm 0,003$.

минерала (иммерсия) варьируют в пределах $1,776 \div 1,785 \pm 0,003$. Судя по химическому анализу* (SiO₂ 40,6, TiO₂ 0,13; Al₂O₃ 22,0; Fe₂O_{306m} 20,9; MgO 10,0; MnO 0,30; CaO 5,50; K₂O < 0,05; Na₂O

^{*} Анализы пород и минералов выполнялись в Центральной лаборатории треста «Самаркапдгеология» под руководством С. Р. Тилляевой.

0.1; $\mathrm{Cr_2O_3}$ 0.02; п.п.п. 0.9%), минерал соответствует пироп-альмандину с содержанием нормативных компонентов: пиропа 36.9; альмандина 48.7; гроссуляра 13.7; спессартина 0.7%; $f_{.05m}=53.3\%$.

Сопоставление химизма двух типов гнейсов (табл. 1) при помощи критерия Фишера при p=0.05 указывает на наличие значимых различий в содержании всех породообразующих элементов, кроме Al и Mn.

Таблица 1 Химический состав гнейсов (вес. %)

Компо- нент	Двупироксеновые тнейсы				Г ранат-пироксеновые тней с ы			
	n	a.	s	V, %	n	, x	s	V, %
SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ FeO MgO MnO CaO K ₂ O	9 9 10 10 9 10 10 10	51,03 0,79 17,45 3,19 4,63 5,05 0,13 8,57 1,52	1,21 0,16 0,66 0,63 0,61 1,19 0,02 0,95 0,21	2,4 24,0 3,8 19,7 13,2 23,6 15,4 11,1 13,8	11 11 11 11 11 11 11 11	46,13 1,03 17,06 5,18 6,60 6,83 0,16 10,98 1,12	2,46 0,22 1,58 0,89 0,96 1,57 0,04 1,75 0,45	5,3 21,4 9,3 17,1 14,5 22,9 25,0 15,9 39,9
Na ₂ O Р ₂ O₅ П.п.п.	10 9 8	$\begin{array}{c c} 4,13 \\ 0,27 \\ 3,12 \end{array}$	$\substack{0,79\\0,07}$	$\begin{array}{c} 19,1\\25,9\end{array}$	11 8 10	$2,67 \\ 0,15 \\ 2,66$	$0,73 \\ 0,05$	$\begin{array}{c} 27,3 \\ 33,3 \end{array}$

Примечание. Плотность двупироксеновых гнейсов 2,83 \pm 0,06, гранат-пироксеновых 2,86 \pm 0.13 г/см³.

Расчет баланса вещества (в) при эклогитизации свидетельствует о выносе из 1000 смв исходной породы Si 37,47; K 3,93; Na 13,68 г, причем преобразование происходило с выделением 850 кал/смв.

Представляется, что так называемый базальтовый слой в пределах Северного Нуратау сложен главным образом в различной степени эклогитивированными гнейсами, химически эквивалентными габбро-нориту и оливиновому габбро. Процессы эклогитизации (соответствуют дегранитизации в понимании В. В. Белоусова (7)), по-видимому, могут приводить к значительному выносу щелочей, кремнезема и воды, обусловливать гранитизацию более верхних частей земной коры и, возможно, способствовать образованию гранитных магм.

Трест «Самаркандгеология» Поступило 23 III 1971

ПИТИРОВАННАЯ ЛИТЕРАТУРА

¹ А. П. Бобриевич, В. С. Соболев, Зап. Всесоюзн. мин. общ., 87, в. 4 (1957). ² А. П. Бобриевич и др., Алмазные месторождения Якутии, 1959. ³ В. С. Соболев, Н. В. Соболев, ДАН, 158, № 1 (1964). ⁴ М. В. Муратов, Геотектоника, № 6 (1965). ⁵ Ю. В. Казицын, В. А. Рудник, Руководство к расчету баланса вещества и внутренней эпергии при формировании метасоматических пород, 1968. ⁷ В. В. Белоусов, Закономерности размещения полезных ископаемых, 8, «Наука», 1967.