УДК 517.11:518.5

MATEMATUKA

м. и, канович

ОБ УНИВЕРСАЛЬНОСТИ СИЛЬНО НЕРАЗРЕШИМЫХ МНОЖЕСТВ

(Представлено академиком П. С. Новиковым 2 XII 1971)

1. В статье (¹) рассматривается понятие сильно неразрешимого множества; в работе (²) вводится понятие сильно нерекурсивного множества. Оказывается, что эти понятия совпадают. Получаемая таким образом «сложностная» характеристика сильно неразрешимых множеств позволяет доказать их универсальность относительно П-сводимости, введенной в (¹). (Там же (¹) доказано, что всякое универсальное относительно П-сводимости множество сильно неразрешимо.)

Далее мы используем понятия и терминологию работ ($^{3-5}$). Все мате-

матические суждения понимаются конструктивно (см. (6)).

Определения. Перечислимое множество (натуральных чисел) \mathfrak{M} называется сильно неразрешимым, если для любой пары перечислимых множеств \mathfrak{R} и \mathfrak{R}_1 такой, что \mathfrak{R}_1 есть дополнение \mathfrak{R} , можно указать такое конечное множество \mathfrak{F} , что

$$\mathfrak{M} \cap \mathfrak{F} \neq \mathfrak{N} \cap \mathfrak{F}$$

(см. (¹), § 3).

Пусть \mathfrak{M} — перечислимое множество, n — натуральное число, φ — общерекурсивная функция. Ф-алгорифм \mathfrak{A} назовем $(\mathfrak{M}, n, \varphi)$ -разрешающим, если число шагов процесса применения алгорифма \mathfrak{A} к произвольному натуральному числу x, не большему, чем n, не превосходит $\varphi(x)$ и для всякого такого x

$$\mathfrak{A}(x) \equiv \Lambda \equiv x \in \mathfrak{M}$$

 $(CM. (^2)).$

Общерекурсивную функцию g назовем нижней φ -оценкой сложности разрешения множества \mathfrak{M} , если, каково бы ни было n, сложность всякого (\mathfrak{M} , n, φ)-разрешающего Φ -алгорифма не меньше чем g(n). (Под сложностью Φ -алгорифма понимается длина его изображения (см. (4)).)

Назовем перечислимое множество \mathfrak{M} сильно нерекурсивным, если для любой общерекурсивной функции ϕ можно указать неограниченную общерекурсивную нижнюю ϕ -оценку сложности разрешения множе-

ства **M** (ср. (²)).

Теорема 1. Для любого множества *М* следующие три предложения эквивалентны друг другу:

- 1) множество Ж сильно неразрешимо;
- 2) множество Ж сильно нерекурсивно;
- 3) для всякой частично рекурсивной функции ф можно указать такую неубывающую общерекурсивную функцию g, что если ф общерекурсивна, то g неограниченная нижняя ф-оценка сложности разрешения множества M.
- 2. Мы используем тот же способ записи алгорифмов, что и в (3), с заменой алфавита ab на алфавит o|. Запись Φ -алгорифма $\mathfrak A$ будем обозначать $\mathfrak A$ 3. Пары слов в алфавите o| понимаются, как в (3), $\mathfrak A$ 1, с заменой алфавита A на алфавит o| и буквы α на букву a.

П - оператором назовем всякий Ф-алгорифм D, перерабатывающий

всякую пару слов в алфавите $o \mid$, к которой он применим, в слово в алфавите $o \mid$, и такой, что

1) каковы бы ни были Ф-алгорифмы \mathfrak{D} и \mathfrak{C} , эквивалентные относительно алфавита o|, алгорифмы $\mathfrak{D}_{\mathfrak{E}\otimes 3a}$ и $\mathfrak{D}_{\mathfrak{E}\otimes 3a}$ * эквивалентны относительно алфавита o| (условие согласованности);

2) каков бы ни был Ф-алгорифм \mathfrak{D} , полный отпосительно алфавита o|, алгорифм $\widetilde{\mathfrak{D}}_{\mathfrak{L}\mathfrak{B}^{3a}}$ также полон относительно алфавита o| (условие пол-

ноты).

Следуя ('), § 5, назовем Ф-алгорифм $\mathfrak B$ частичным характеристическим алгорифмом мпожества $\mathfrak M$, если для любого натурального числа x такого, что $\mathfrak B(x)$,

 $\mathfrak{B}(x) \equiv \Lambda \equiv x \in \mathfrak{M}.$

Заметим, что Ф-алгорифм, не применимый ни к какому натуральному числу, является частичным характеристическим алгорифмом любого множества.

Будем говорить, что перечислимое множество \Re Π -сводится к перечислимому множеству \Re , если существует такой Π -оператор \Re , что, каков бы ни был частичный характеристический алгорифм \Re множества \Re , алгорифм \Re является чистичным характеристическим алгорифмом множества \Re **.

Теорема 2. Если множество \Re П-сводится κ множеству \Re , то осуществимо число C такое, что для всякой общерекурсивной функции f можно указать такие общерекурсивные функции φ и g, что, каков бы ни был Φ -алгорифм \Re , квазиосуществим такой Φ -алгорифм \Im , что

1) сложность алгорифма $\mathfrak E$ не превосходит $2\mathfrak B_3 + 2l + C$, где l-cлож-

ность Ф-алгорифма, вычисляющего функцию f,

2) число шагов процесса применения алгорифма С к произвольному

натуральному числу x не превосходит $\varphi(x)$,

3) каково бы ни было число n, если алгорифм $\mathfrak B$ является $(\mathfrak M, g(n), f)$ -разрешающим, то алгорифм $\mathfrak G$ является $(\mathfrak N, n, \phi)$ -разрешающим алгорифмом.

Следствие 1 ((1), § 5, теорема 1). Перечислимое множество, к которому Π -сводимо некоторое сильно неразрешимое множество, само сильно неразрешимо.

Теорема 2 совместно с теоремой 10 статьи (2) дает

Спедствие 2. Если перечислимое множество \mathfrak{M} Π -сводится к некоторому гиперпростому множеству, то можно указать такую общерекурсивную функцию φ , что для всякой неограниченной общерекурсивной функции h можно указать такое бесконечное перечислимое множество, что для всякого члена n этого множества квазиосуществим $(\mathfrak{M}, n, \varphi)$ -разрешающий Φ -алгорифм сложности не выше чем h(n).

3. Перечислимое множество ЭТ назовем универсальным относительно П-сводимости (П-универсальным), если любое

перечислимое множество П-сводится к множеству М.

Перечислимое множество \mathfrak{M} назовем тривиально Π -универсальным, если осуществим Π -оператор \mathfrak{D} такой, что, каков бы ни был частичный характеристический алгорифм \mathfrak{D} множества \mathfrak{M} , алгорифм $\mathfrak{D}_{\mathfrak{E}\mathfrak{B}^3a}$ не применим ни к какому натуральному числу.

Очевидно, что всякое тривиально П-универсальное множество П-уни-

версально.

«Сложностная» характеристика сильно неразрешимых множеств теоремы 1 позволяет доказать следующее утверждение.

* Обозпачение \mathfrak{S}_P понимается, как в (7).

^{**} Наше определение П-оператора отличается от определения полного функционального оператора статьи (¹). Поэтому наше определение П-сводимости иное, чем в (¹). Однако можно показать, что оба определения эквивалентны.

T е о р е м а 3. Bсякое сильно неразрешимое множество тривиально Π -универсально.

В статье (²) приводятся примеры сильно неразрешимых множеств, являющихся, по нашей терминологии, тривиально П-универсальными. Теорема 3 показывает, что подобная ситуация не случайна.

Объединяя следствие 1 и теорему 3, получаем следующее

Следствие 3. Для всякого множества $\mathfrak M$ следующие три предложения попарно эквивалентны:

1) множество Ж сильно неразрешимо,

2) множество M П-универсально,

3) множество Ж тривиально П-универсально.

4. Рассмотрим соотношение Π -сводимости и некоторых других видов сводимости, введенных в (8 , 9).

Нетрудно видеть, что если множество \Re таблично сводится κ множеству \Re , то множество \Re Π -сводится κ множеству \Re .

Tе орема 4. Осуществима такая пара перечислимых множеств $\mathfrak M$ и $\mathfrak N$, что

1) множество $\mathfrak R$ не сводится по Tьюрингу κ множеству $\mathfrak M$,

2) множество \mathfrak{M} Π -универсально $(u, cледовательно, множество <math>\mathfrak{N}$ Π -сводится \mathfrak{k} множеству \mathfrak{M}).

Будем говорить, что множество \Re слабо m - сводится к множеству \Re , если осуществимы общерекурсивная функция f и Φ -алгорифм \Re такие, что для любого x

1) если $f(x) \subseteq \mathfrak{M}$, то $\mathfrak{A}(x)$ и

$$\mathfrak{A}(x) \equiv \Lambda \equiv x \in \mathfrak{R},$$

2) если $f(x) \not \in \mathfrak{M}$, то $x \not \in \mathfrak{N}$ (ср. (2), пункт 6).

Теорема 5. Для всякого перечислимого множества Ж можно указать такое перечислимое множество Ж, что

1) множество \mathfrak{N} слабо m-с ϵ о ∂ ится κ множеству \mathfrak{M} ,

2) множество Ж 1-сводится к множеству Я,

3) если множество \mathfrak{M} нерекурсивно, то множество \mathfrak{N} сильно нерекурсивно (см. $(^2)$, теорема 8).

Теорема 5 и следствие 2 дают

Следствие 4. Осуществима такая пара перечислимых множеств \mathfrak{M} и \mathfrak{R} , что

1) множество \Re слабо m-сводится κ множеству \Re ,

2) множество \mathfrak{M} 1-сводится к множеству \mathfrak{R} ,

3) неверно, что множество \mathfrak{N} Π -сводится κ множеству \mathfrak{M} .

Таким образом, П-сводимость и слабые сводимости (слабая *m*-сводимость, слабая табличная сводимость, сводимость по Тьюрингу) не «сравнимы». Однако на уровне «универсальности» несравнимость исчезает, так как из теоремы 3 и теоремы 1 статьи (²) получается следующее

Следствие 5. Всякое перечислимое множество, универсальное относительно слабой табличной сводимости, является П-универсальным.

Автор выражает глубокую благодарность А. А. Маркову за внимание и советы при написании данной статьи.

Московский государственный университет им. М. В. Ломоносова

Поступило 18 XI 1971

цитированная литература

¹ Г. С. Цейтин, Тр. Матем. инст. им. В. А. Стеклова АН СССР, 93, 102 (1970).
² М. И. Канович, ДАН, 194, № 3, 500 (1970).
³ А. А. Марков, Тр. Матем. инст. им. В. А. Стеклова АН СССР, 42 (1954).
⁴ А. А. Марков, Изв. АН СССР, сер. матем., 31, 161 (1967).
⁵ С. К. Клини, Введение в метаматематику, М., 1957.
⁶ Н. А. Шанин, Тр. Матем. инст. им. В. А. Стеклова АН СССР, 52, 226 (1958).
⁷ Б. А. Кушнер, Г. С. Цейтин, Зап. научн. семинаров Ленингр. отд. Матем. инст. им. В. А. Стеклова АН СССР, 8, 107 (1968).
⁸ Е. L. Роst, Bull. Ам. Math. Soc., 50, 284 (1944).
⁹ R. М. Friedberg, H. Rogers jr., Zs. Math. Logik u. Grundlagen d. Math., 5, 117 (1959).