УДК 532.54

ГИДРОМЕХАНИКА

э. л. БУРШТЕЙН, л. С. СОЛОВЬЕВ

ОБ УСТОЙЧИВОСТИ ВРАЩАЮЩЕЙСЯ ЖИДКОСТИ

(Представлено академиком А. Д. Сахаровым 17 VIII 1971)

Из всего многообразия возможных гидродинамических течений, удовлетворяющих заданным граничным условиям, в действительности реализуются лишь устойчивые течения, причем при больших числах Рейнольдса условия устойчивости могут быть найдены в приближении идеальной жидкости. Некоторые общие черты таких устойчивых конфигураций могут быть выявлены на примере рассматриваемых ниже течений.

1. Устойчивость цилиндрического течения. В современной теории гидродинамической устойчивости принято считать, что имеются два основных прототипа неустойчивости, которые достаточно полно представлены двумя простейшими типами течения: продольным течением Пуазейля и азимутальным течением Куэтта (¹). Однако рассмотрение течения, имеющего одновременно как продольную, так и азимутальную составляющие скорости, в рамках цилиндрической геометрии, приводит к качественно новым результатам.

Для исследования устойчивости течения при цилиндрической геометрии достаточно рассмотреть устойчивость относительно каждой отдельной винтовой гармоники смещения $\xi = \xi(r) \exp{(ikz - im\varphi - i\omega t)}$ в цилиндрических координатах r, φ , z. При этом уравнения малых колебаний идеальной несжимаемой жидкости сводятся к одному уравнению (2) для функции $f(r) = r\xi_r/y$, где $y = \alpha v_z - v_\varphi/r - \omega/m$, $\alpha = k/m$, $\beta = 1 + \alpha^2 r^2$, ρ — плотность,

$$\left(\frac{\rho r y^2}{\beta} f'\right) - \left\{\frac{\rho m^2 y^2}{r} - \frac{4\alpha^2 \rho v_{\varphi}^2}{\beta r} - \left(\frac{2\rho y v_{\varphi}}{\beta r} + \frac{\rho v_{\varphi}^2}{r^2}\right)\right\} f = 0. \tag{1}$$

Отсюда для функции $F=r\xi_r$ при $\rho={
m const}$ вытекает уравнение

$$\left(\frac{rF'}{\beta}\right)' - \left\{\frac{m^2}{r} - \frac{1}{y} \left[\frac{(rv_{\varphi})' - \alpha r^2 v_z'}{\beta r}\right]' - \frac{2\alpha v_{\varphi}}{\beta r y^2} (v_z + \alpha r v_{\varphi})'\right\} F = 0.$$
 (2)

Введение вихревого поля **j** = rot **v** при учете равенств $j_z = \frac{1}{r} (rv_{\varphi})'$, $j_{\varphi} = -v_z'$ позволяет переписать уравнение (2) в эквивалентной форме

$$\left(\frac{r}{\beta}F'\right)' - \left\{\frac{m^2}{r} - \frac{1}{y}\left(\frac{j_z + \alpha r j_{\varphi}}{\beta}\right)' + \frac{2\alpha v_{\varphi}}{\beta r y^2}(j_{\varphi} - \alpha r j_z)\right\}F = 0.$$
 (3)

Течение будет неустойчивым, если существует решение уравнений (1) — (3), обращающееся в нуль при r=0 и r=a, для которого собственное значение частоты ω имеет положительную мнимую часть. Как это следует из уравнения (3), для безвихревого равновесного течения $\mathbf{j}=\mathrm{rot}\,\mathbf{v}=0$ построение таких решений невозможно. Это согласуется с общими выводами работы (3) об устойчивости безвихревых течений.

В случае, когда существует такая система координат, движущаяся с постоянной скоростью вдоль оси z, в которой линии тока не перекрещиваются $(v_{\phi}/(rv_z)={\rm const})$, можно выбрать шаг винта возмущения $L{=}2\pi/\alpha{=}=2\pi rv_z/v_{\phi}$ совпадающим с шагом винта линий тока. При этом величина

у становится равной $\omega/m = \mathrm{const} \, \mathbf{u}$, как это следует из общей теории собственных значений (4), можно построить решение уравнения (2) с $\omega^2 < 0$, если не выполняется условие

$$v_{\varphi}^{2}\left[v_{z}v_{z}^{'}+\frac{v_{\varphi}}{r}(rv_{\varphi})'\right]>0,$$
 (4)

которое, таким образом, является необходимым условием устойчивости.

В соответствии с известными результатами отсюда вытекает, что в пределе исчезающей вязкости течение Пуазейля $(v_{\varphi}=0)$ находится в безразличном равновесии, а течение Куэтта $(v_z=0)$ становится неустойчивым, если не соблюдается условие Рэлея $v_{\varphi}(rv_{\varphi})'>0$. Из уравнения (4) видно также, что добавление малого вращения приводит к неустойчивости течения Пуазейля при $v_zv_z'<0$ и область устойчивости появляется вновь только при достаточно быстром вращении, когда выражение в квадратных скобках в (4) становится положительным. Необходимая движущаяся система координат, в которой $v_{\varphi}/(rv_z) = \text{const}$, существует, например, в случае, когда v_z и v_{φ}/r имеют параболическое распределение:

$$v_z = v_0(1-r^2/a^2), \quad v_{\Phi}/r = v_0(1-r^2/R^2).$$

При этом условие (4) выполняется в интервале 0 < r < a, если $v_0^2 a^2 > v_0^2 (1-2a^2/R_2)^{-1}R^2/a^2$. Необходимая для устойчивости скорость вращения минимальна, когда R=2a, и в этом случае должно быть $v_0 a > 2\sqrt{2}v_0$.

Условия устойчивости (4) легко обобщить на случай сжимаемой жидкости, когда уравнение для функции f(r) представляется в виде (2)

$$\left(\frac{\rho r y^2 c^2 f'}{\beta c^2 - r^2 y^2}\right)' - \left\{\frac{m^2 \rho y^2}{r} - \frac{4\alpha^2 \rho v_{\varphi}^2}{\beta r} - \left(\frac{\beta \rho c^2 q}{\beta c^2 - r^2 y^2}\right)' + \frac{\beta \rho r q^2}{\beta c^2 - r^2 y^2}\right\} f = 0.$$
 (5)

Здесь $c = \sqrt{\gamma p / \rho}$ — скорость звука, γ — показатель адиабаты, $q = 2yv_{\varphi}/(\beta r) + v_{\varphi}^2/r^2$.

Вытекающее из (5) необходимое условие устойчивости при тех же предположениях, которые были сделаны при выводе (4), имеет вид

$$v_{\varphi}^{2}\left\{2\left[v_{z}v_{z}^{'}+\frac{v_{\varphi}}{r}(rv_{\varphi})'\right]+v^{2}\left(\frac{\gamma-1}{\gamma p}\frac{\rho v_{\varphi}^{2}}{r}-\frac{T'}{T}\right)\right\}>0. \tag{6}$$

Как показывает выражение (6), при постоянстве температуры T сжимаемость жидкости является стабилизирующим фактором.

2. Об устойчивости цилиндрических разрывов. Неустойчивость вихревого течения проявляется также в неустойчивости тангенциальных разрывов скорости. Проинтегрируем уравнение (1) в окрестности цилиндрической поверхности радиуса $r=r_0$, на которой возможны разрывы плотности ρ и компонент векторов \mathbf{v} и \mathbf{j} . Тогда получим

$$\left\langle \rho y^2 \frac{r f'}{f} \right\rangle + \left\langle 2\rho y \frac{v_{\varphi}}{r} + \rho \frac{\beta v_{\varphi}^2}{r^2} \right\rangle = 0,$$
 (7)

где угловыми скобками обозначены разности $\langle A \rangle = A_e - A_i$ соответствующих величин при стремлении $r \to r_0$ с внешней и внутренней стороны. Уравнение (7), записанное через функцию F = yf, имеет вид

$$\left\langle \rho y^2 \frac{rF'}{F} \right\rangle + \left\langle \rho y \left(j_z + \alpha r j_{\varphi} \right) + \frac{\rho \beta v_{\varphi}^2}{r^2} \right\rangle = 0.$$
 (8)

При подстановке в (7) или (8) решений уравнений (1)—(3), удовлетворяющих граничным условиям обращения в нуль при r=0 внутри и при r=a вне цилиндра $r=r_0$, получим дисперсионное уравнение для определения собственных значений ω . Для однородных потоков $v_z=$ const, $v_{\varphi}/r=$ const внутри и вне цилиндра $r=r_0$ решения уравнения (1) выражаются через бесселевы функции (2)

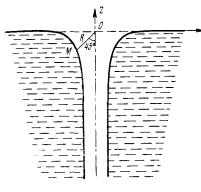
$$f(r) = \varepsilon Z_m(\varkappa r) - \alpha \varkappa r Z_m'(\varkappa r),$$

где $\varepsilon = 2\alpha v_{\phi}/ry$, $\varkappa^2 = \alpha^2 m^2 - \varepsilon^2$ и задача об устойчивости цилиндрических разрывов решается до конца (5). Однако при этом частота ω входит в выражения для функций $f_{i,c}$, и мы приходим к трансцендентному дисперсионному уравнению. В случае безвихревого течения решения уравнения (3) не зависят от частоты ω и условие устойчивости разрыва можно записать в явном виде

$$\left\langle \rho y_0 \frac{rF'}{F} \right\rangle^2 - \left\langle \frac{\rho rF'}{F} \right\rangle \left\langle \rho y_0^2 \frac{rF'}{F} + \rho \beta \frac{v_{\varphi}^2}{r^2} \right\rangle \geqslant 0, \tag{9}$$

где $y_0 = av_z - v_{\varphi}/r$. Неравенство (9) позволяет рассмотреть, например, устойчивость потока с $v_{zi} = \text{const}$, $v_{\varphi i} = 0$; $v_{ze} = \text{const}$, $rv_{\varphi e} = \text{const}$. Заметим, что в предельных случаях $\rho_i \to 0$ или $\rho_e \to 0$ неустойчивость разрыва продольного потока ($v_{\varphi} = 0$) исчезает. При наличии же вращения жидкости во внешней области при $\rho_i \to 0$ получаем из условия устойчиво-

·*r* сти (9)



Piic. 1

$$v_{\varphi e}^2 F_e' / F_e \leqslant 0. \tag{10}$$

Поскольку отношение $F_e'/F_e < 0$ (например, при условии $F_e(r) \to 0$ при $r \to \infty$, $F_e = rK_{m'}(kr)$), рассматриваемое течение оказывается устойчивым, причем устойчивость улучшается при увеличении скорости вращения.

Указанная устойчивость тангенциальных разрывов продольной скорости в случае, когда плотность одной из жидкостей стремится к нулю, объясняет то, что теория струй идеальной несжимае-

мой безвихревой жидкости хорошо описывает наблюдаемые течения лишь при условии малого отношения плотностей по обе стороны от разрыва (°). Иллюстрацией устойчивости вращающейся жидкости снаружи от области с малой плотностью является, например, образование соответствующего вращающегося течения с воронкой при стоке воды в ванной.

В проведенном выше рассмотрении устойчивости идеальной жидкости разрывы стабильны лишь при равном нулю отношении плотностей. В случае малого, но конечного отношения плотностей необходимо, разумеется, принимать во внимание стабилизирующее действие вязкости.

3. Об одном точном решении уравнений Навье — Стокса для вращающейся жидкости со свободной границей в поле силы тяжести. Для установившегося аксиально-симметричного течения несжимаемой жидкости в поле силы тяжести можно получить точное решение уравнений Навье — Стокса

$$\rho(\mathbf{v}\nabla)\mathbf{v} = -\nabla(p + \rho gz) + \rho \mathbf{v}\nabla^2 \mathbf{v}, \quad \text{div } \mathbf{v} = 0, \tag{11}$$

если предположить, что $\mathbf{v} = \mathbf{v}(r)$. В таком течении

$$v_r = a/r, \quad v_{\varphi} = b/r, \quad v_z = c/r^4.$$
 (12)

Функция тока ψ , определяемая равенствами $rv_r = -\partial \psi / \partial z$, $rv_z = \partial \psi / \partial r$, и пропорциональная ей функция $p-p_0$ соответственно равны

$$\psi = -az - c/(2r^2), \quad p - p_0 = -\rho (gz + (a^2 + b^2)/(2r^2)), \quad (13)$$

причем a=-4v. Форма свободной поверхности жидкости $p=p_0$ изображена на рис. 1. В качестве размера, характеризующего ширину воронки, примем расстояние R от точки O до точки M. При этом квадрат скорости вращения жидкости оказывается равным

$$v_{\varphi}^{2} = \frac{gR^{3}}{\sqrt{2}r^{2}} \left(1 - \frac{16\sqrt{2}v^{2}}{gR^{3}} \right). \tag{14}$$

При достаточно малом коэффициенте вязкости ν выражение (14) описывает вращающееся течение, а при фиксированном $\nu^2 = gR^3 / (16\sqrt{2})$ — течение без вращения. Согласно проведенному выше анализу устойчивости разрывов, можно ожидать, что вращающийся поток (14) представляет устойчивое образование.

Радиотехнический институт Академии наук СССР Москва Поступило 13 VIII 1970

ШИТИРОВАННАЯ ЛИТЕРАТУРА

¹ Линь Цзя-цзяо, Теория гидродинамической устойчивости, М., 1958. ² Л.С. Соловьев, В сборн. Вопросы теории плазмы, М., 1963, стр. 245. ³ Э. Л. Буртейн, Л. С. Соловьев, ДАН, **203**, № 6 (1972). ⁴ Дж. Сансоне, Обыкновенные дифференциальные уравнения, М., 1953, стр. 198. ⁵ Л. С. Соловьев, Ю. Н. Явлинский, ДАН, 197, 309 (1971). ⁶ Г. Биркгоф, Гидродинамика, М., 1954.