УДК 541.63

А. А. ФОМИЧЕВ, Р. Г. КОСТЯНОВСКИЙ, И. А. ЗОН, И. М. ГЕЛЛА, К. С. ЗАХАРОВ, В. И. МАРКОВ

ИССЛЕДОВАНИЕ КОНФОРМАЦИЙ ЧЕТЫРЕХЧЛЕННЫХ ГЕТЕРОЦИКЛОВ МЕТОДОМ Я.М.Р. 1,2-ДИЗАМЕЩЕННЫЕ АЗЕТИДИНЫ И 2-МЕТИЛОКСЕТАН

(Представлено академиком В. Н. Кондратьевым 9 VIII 1971)

Конформации незамещенных четырехчленных циклов детально изучены методами длинноволновой и.-к. и микроволновой спектроскопии. Потенциальная функция неплоских колебаний этих молекул имеет два минимума, и в нижних колебательных состояниях цикл некомпланарен (¹⁻³). Исключением является молекула оксетана, где очень низкий барьер для илоского состояния (15 см⁻¹) лежит на 12 см⁻¹ ниже основного колебательного уровня и поэтому цикл считают эффективно плоским (³). Столь малую величину барьера в оксетане можно объяснить сильным угловым напряжением в цикле из-за меньшей, по сравнению с С—N и С—С, длиной связи С—О (³⁻⁵), а также уменьшением торсионного взаимодействия ири замене CH₂- или NH-группы на атом кислорода. При несимметричном за-

мещении одна из конформаций цикла станет более заселенной и поэтому при измерении методами с характеристическим временем много большим периода неплоских колебаний (например, методом я.м.р.) мы должны наблюдать эффективный угол излома цикла θ (рис. 1). Однако можно назвать только несколько работ по азетидинам и оксетанам, где спектрам я.м.р. сделаны лишь качественные оценки угла θ (⁶⁻⁸).

В этой работе методом п.м.р. мы определи-Рис. 1 ли эффективный угол излома цикла для N-хлор-2-фенил-, 2-фенил- и N-хлор-2-метилазетидинов и 2-метилоксетана: I. Y = Cl, R = Ph; II. Y = NH, R = Ph; III. Y = NCl, R = Me; IV. Y = O, R = Me.

Протоны цикла представляют сильно связанную систему ABCDE (рис. 2, 3). Анализ спектра III (рис. 2) удалось провести только в условиях спин-спиновой развязки от метильных протонов. Значения констант спин-спинового взаимодействия (к.с.с.в.) в I-III (табл. 1) определялись сначала грубо по соответствующим расщеплениям линий, а затем уточнялись сравнением ряда сцектров, рассчитанных на ЭВМ (⁹), с экспериментальными. К.с.с.в. через две и три связи (²J, ³J) для IV были заимствованы из (¹⁰), но мы впервые определили величины и знаки всех ⁴ J в 2-метилоксетане. Для этого спектры записывались при разрешении около 0,1 гц со скоростью 0,01 или 0,02 гц/сек (рис. 3). Знак ⁴Л по отношению к вицинальным к.с.с.в. определялся по результатам тиклинг-экспериментов (¹¹) после расчета ABCDEF₃-спектров на ЭВМ и отнесения экспериментальных линий на энергетической диаграмме (12). Например, серия спектров 1-4 (рис. 3) показывает, что константы $J_{\rm DF}$ и $J_{\rm EF}$ одного знака, а серия 5-7 (рис. 3), что константа Јав имеет отрицательный знак по отношению к вицинальным к.с.с.в. Знаки JAB и JAC в I и II установлены тиклингом на системе ABCDE. Знаки J в III специально не исследовались, а были выбраны по аналогии с I и II.

Рис. 2. Спектры протонов цикла I и III при 100 Мгц, А — часть спектра I записана при сильном облучении на частоте фенильных протонов

Угол исевдовращения φ мы определяли по значениям вицинальных к.с.с.в. между протонами при атомах С-З и С-4 (фрагмент BCDE). Рассмотрим, какие значения этих констант следует ожидать, если имеет место зависимость Карплуса (¹³).

$$J(\Psi) = \begin{cases} a_0 \cos^2 \Psi & 0 \leqslant \Psi \leqslant 90^\circ, \\ a_{180} \cos^2 \Psi & 90^\circ \leqslant \Psi \leqslant 480^\circ, \end{cases}$$
(1)

где a_0 и a_{180} постоянные коэффициенты, а Ψ — двугранный угол между взаимодействующими протонами. Кривая зависимости (1) показана на рис. 4. Для протонов фрагмента BCDE имеем:

$$J_{\rm CE} = a_0 \cos^2 \varphi; \ J_{\rm BE} = a_{150} \cos^2(\alpha + \varphi); \ J_{\rm ED} = a_0^{'} \cos^2 \varphi; \ J_{\rm CD} = a_{160}^{'} \cos^2(\alpha - \varphi), \quad (2)$$

где φ — угол поворота по связи С—С, а α — проекция угла Н—С—Н на плоскость, перпендикулярную к этой связи.

Таблица 1

Соеди-	AD	АЕ	BD	ВЕ	СЕ	СД	ВС	DE	Дал	ьние	θ°
нение *	цис	транс	цис	транс	цис	транс	гем	гем	АВ	АС	
I 11 111 ** 1 V ***	$8,5 \\ 8,0 \\ 8,3 \\ 7,43$	9,4 8,4 9,3 6,86	$ \begin{array}{r} 8,6 \\ 7,8 \\ 8,4 \\ 8,30 \end{array} $	10,3 9,4 10,8 7,77	7,7 8,5 7,6 8,93	$ \begin{array}{c} 2,4\\ 3,5\\ 2,7\\ 5,61 \end{array} $	-7,1 -6,6 -7,2 -5,79	-10,1-10,6-10,0-10,77	$\begin{array}{c} -1,1 \\ -0,4 \\ -0,8 \\ -0,40 \end{array}$	-1,3 -0,8 -1,3 -0,20	$21 \\ 15 \\ 20 \\ 5$

Константы спин-спинового взаимодействия протонов цикла (в гц) и эффективный угол излома цикла

** Для III J_{AF} = 6,0 гц.

*** Для IV
$$J_{AF} = 6,2; J_{EF} = -0,23; J_{DF} = -0,15$$
гц.

645

^{*} Соединение I получено по (¹²); II и 2-метилазетидин (V) синтезированы по (¹⁸); III из V хлорированием N-хлор-сукцинимидом в абс. эфире (т. кип. 32—33°, выход 40%); IV получено по (¹⁹).

Рис. 3. Спектр IV при 100 Мгц и тиклинг

С увеличением ф обе цис-константы уменьшаются так, что их отношение остается постоянным, а транс-константы будут отличаться друг от друга тем больше, чем больше угол (рис. 4). Для φ плоского цикла $(\phi = 0)$ транс-константы ВЕ и CD примерно равны, потому что в обоих случаях взаимолействуют протоны, лежащие по разные стороны цикла. Например, в исследованных нами (14) цис- и транс-N-хлор 2-метилазиридинах $J_{\text{транс}}$ между протонами плоского трехчленного цикла почти не различаются и равны 5,8 и 5,7 гц соответственно. Поэтому можно принять $a_{180} = a'_{180}$ и из отношения $J_{\scriptscriptstyle BE}/J_{\scriptscriptstyle CD}$ определить угол φ :

$$\operatorname{tg} \varphi = \frac{b-1}{b+1} \operatorname{tg} (\alpha - 90^\circ), \qquad (3)$$

где $b = \gamma J_{BE} / J_{CD}$. Из (3) можно вычислить и угол θ . Мы приняли, что все исследованные

угод С. ный примый, но все неспедованные угол H—C—H равен 110° (³), молекулы имеют сходное строение, а именно: угол H—C—H равен 110° (³), цикл считался согнутым по диагонали квадратом, а плоскость, в которой лежат три соседних скелетных атома цикла, является биссектральной для угла H—C—H при центральном атоме. Тогда φ и θ связаны соотношением $\sqrt{2}$ tg (θ / 2) = tg φ , и, учитывая (3),

tg
$$\frac{\theta}{2} = \frac{\sqrt{2}}{2} \frac{b-1}{b+1}$$
 tg ($\alpha - 90^{\circ}$). (4)

Наши результаты (табл. 1) хорошо согласуются с данными других методов. Так, угол θ , определенный методом рентгеноструктурного анализа, в кристаллах азетидин-2-карбоновой кислоты равен 11° (¹⁵), а в четвертичных азетидин-3-олах 14° (⁴) — нами найдено для 2-фенилазетидина 15°. Контрольный расчет по формуле (4) для анемонина, где известны из литературы (¹⁶) как к.с.с.в. протонов CH₂—CH₂-фрагмента, так и результаты рентгеноструктурного анализа кристаллов ($\theta = 28^{\circ}$), дал хорошее согласие ($\theta_{выч} = 23^{\circ}$). По расчету подтверждены вполне ясные общие тенденции, например то что в сходных соединениях оксетановый цикл более илоский, чем азетидиновый, и что замена водорода на хлор увеличивает угол излома азетидинового цикла.

Авторы благодарны за помощь В. И. Шейченко, В. Т. Алексаняну и сотрудникам лаборатории я.м.р. Института химпческой физики АН СССР. Институт химической физики Поступило

Институт химической физики Академии наук СССР

Москва

ЦИТИРОВАННАЯ ЛИТЕРАТУРА ¹ Т. Ueda, T. Shimanouchi, J. Chem. Phys., 49, 470 (1968). ² L. A. Garriera, R. C. Lord, J. Chem. Phys., 51, 2735 (1969). ³ S. I. Chan, J. Zinn, W. D. Gwinn, J. Chem. Phys., 34, 1319 (1961). ⁴ E. L. McGandy, H. M. Berman et al., J. Am. Chem. Soc., 91, 6173 (1969). ⁵ R. C. Lord, B. P. Stoicheff, Canad. J. Phys., 40, 725 (1962). ⁶ H. Booth, in: Progress in NMR Spectroscopy, 5, Oxford, 1970, p. 149. ⁷ E. Doomes, M. H. Cromwell, J. Org. Chem., 34, 310 (1969). ⁸ Ю. Ю. Cамитов, A. B. Богатцкий, Г. А. Филип, ДАН, 192, 138 (1970). ⁹ A. A. Фомичев, ЖСХ, 9, 700 (1968). ¹⁰ J. Jokisaari, Zs. Naturforsch., 26a, 136 (1971). ¹¹ R. Freeman, W. A. Anderson, J. Chem. Phys., 37, 2053 (1962). ¹² Ю. А. Устынюк, H. M. Cepreeвидр., ЖСХ, 12, 988 (1971). ¹³ S. Sternhell, Quart. Rev., 23, 236 (1969). ¹⁴ А. А. Фомичев, Р. Г. Костяновский, ДАН, 199, 1110 (1971). ¹⁵ H. M. Berman, E. L. McGandy et al., J. Am. Chem. Soc., 91, 6177 (1969). ¹⁶ I. Fleming, D. H. Williams, Tetrahedron, 23, 2747 (1967). ¹⁷ Р. Г. Костяновский, И. М. Гелла, Х. Хафизов, Изв. АН СССР, сер. хим., 893 (1971). ¹⁸ W. R. Vaughan, R. S. Klonovski et al., J. Org. Chem., 26, 138 (1961). ¹⁹ H. И. Шуйкин, М. Барток, Б. Козма, Изв. АН СССР, сер. хим., 1966, 878.

Рис. 4. Определение эффективного угла излома цикла по зависимости Карплуса для протонов цикла при С-3 и С-4

9 VIII 1971