УДК 549.651.2

г. д. ФЕОКТИСТОВ, З. Ф. УЩАПОВСКАЯ

ОБ УПОРЯДОЧЕННОСТИ ПЛАГИОКЛАЗОВ В ГРАППОВЫХ СИЛЛАХ ЮГА СИБИРСКОЙ ПЛАТФОРМЫ

(Представлено академиком В. С. Соболевым 26 I 1971)

Явления упорядоченности плагиоклазов исследовались в основном в последние два десятилетия (¹⁻⁶). В природных образцах были выявлены неупорядоченные, упорядоченные, а также и промежуточные структурнооптические типы плагиоклазов, причем по Келеру первые характерны для эффузивных пород, вторые — для интрузивных глубинных (²), третьи — для гипабиссальных пород (⁷). В интрузивных траппах юга Сибирской платформы нами (⁸,⁹) было установлено отклонение оптической ориентировки плагиоклазов от таковой для плагиоклазов глубинных пород. Результаты последующих оптических, химических и рентгеноструктурных исследований плагиоклазов из трапповых силлов юга Сибирской платформы являются предметом обсуждения в данной статье.

В пределах южной части Сибирской платформы известны по крайней мере четыре крупных трапновых силла, залегающих почти согласно с вмещающими осадочными породами чехла платформы и протягивающихся на значительные (до нескольких сотен километров) расстояния. Три силла

Таблица 1

№ ანр.	Глубина отбора образцов, м	Разновидность траппа	N'g	N'p	上 (010)				gé E
					Ng	N _m	N _p	An, %	Степен упоряд ченнос
Толстомысовский силл									
816 824 832 836 841 849 881 896	$\begin{array}{c} 7,0\\ 34,0\\ 59,5\\ 74,0\\ 90,0\\ 123,0\\ 169,0\\ 243,0 \end{array}$	Диабазовый микропорфирит Диабаз-пегматит То же Диабаз гранофировый То же Диабаз с офитовой и пой- килоофитовой структура- ми Диабаз троктолитовый » »	1,5691,5581,5601,5651,5661,5701,5741,574	$1,562 \\ 1,551 \\ 1,553 \\ 1,557 \\ 1,558 \\ 1,563 \\ 1,565 \\ 1,565 \\ 1,563 \\ 1,56$	$\begin{array}{c} 37,5\\ 30,0\\ 31,0\\ 35,0\\ 33,5\\ 38,0\\ 42,0\\ 37,0\\ \end{array}$	$\begin{array}{c} 61,0\\ 61,5\\ 61,0\\ 60,0\\ 62,0\\ 61,0\\ 61,0\\ 61,0\\ 61,0\\ \end{array}$	69,0 82,5 80,0 74,0 73,0 67,5 62,0 69,0	63 46 50 56 58 65 70 67	$ \begin{array}{c c} 0,0\\0,3\\0,2\\0,2\\0,5\\0,0\\0,0\\0,2\end{array} $
Абанский силл									
4 8	$\left \begin{array}{c} 1772\\1777\end{array}\right $	Диабазовый микропорфирит Диабаз с офитовой и пойки- лоофитовой структурами	$1,568 \\ 1,565$	$\substack{1,560\\1,556}$	34,5 32,5	$\left \begin{array}{c} 63,0\\62,0\end{array}\right $	70,5 74,5	63 57	$\begin{smallmatrix} 0,5\\0,5 \end{smallmatrix}$
14 15 19 23 28 29	1784 1785 1794 1800 1819 1820	Диабаз-пегматит То же » » » » » » » » » »	1,561 1,556 1,553 1,550 1,556 1,555	$\begin{array}{c} 1,553 \\ 1,548 \\ 1,545 \\ 1,542 \\ 1,548 \\ 1,548 \\ 1,548 \\ 1,548 \end{array}$	$\begin{array}{c} 29,0 \\ 26,0 \\ 21,0 \\ 16,0 \\ 24,0 \\ 24,5 \end{array}$	$\begin{array}{c} 64,0\\ 64,5\\ 69,0\\ 74,0\\ 66,5\\ 65,5\end{array}$	78,0 85,0 87,5 89,5 85,5 87,5	$51 \\ 44 \\ 37 \\ 30 \\ 42 \\ 40$	$ \begin{array}{c c} 0,7\\0,6\\0,7\\0,8\\0,6\\0,5\end{array} $

Оптические свойства и состав плагиоклазов

Примечание. Показатели преломления определены в иммерсии в белом свете с точностью ±0,002. Содержание An для плагиоклазов Толстомы совского силла приведено по данным химических анализов. залегают в отложениях карбона — верхнего кембрия, а четвертый — в отложениях нижнего кембрия. Трапповые силлы, залегающие в пределах Канско-Тасеевской впадины на глубине нескольких километров, выходят к дневной поверхности в юго-восточном обрамлении впадины вместе с осадочными породами, в которых они залегают. Мощность силлов 100—200 м, в местах раздувов (куполообразных вздутий) она увеличивается до 300 м.

Рис. 1. Днаграмма состав — степень упорядоченности но результатам замеров координат двойниковых осей (\perp (010)) илагноклазов из диабазов Толстомысовского (*a*) и Абанского (*б*) силлов. Положение кривых для упорядоченных и неупорядоченных плагиоклазов дано по (⁵)

Предполагается, что прорыв трапповой магмы к осадочному чехлу произошел в пределах глубокой части Капско-Тасеевской впадины, откуда она интрудировала по напластованию пород в южном, юговосточном и восточном паправлениях, о чем свидетельствует выклипивание в этих направлениях трапповых силлов.

Характерной чертой внутреннего строения трапповых силлов является разделение их по вертикальному разрезу на три зоны (⁸): верхнюю, слогранофировыми женную диабазами и диабазо-пегматитами; среднюю, представленную диабазами с офитовой и пойкилоофитовой структурами; нижнюю, в которой преобладающими являются троктолитовые диабазы. Это разделение обусловлено кристаллизационной дифференциапией.

Изменение состава плагиоклазов в вертикальном разрезе хорошо изученных Толстомысовского (⁸) и Абанского (¹⁰) силлов показано в табл. 1. В Абанском силле скважиной вскрыта только верхняя зона мощностью 60 м (мощность силла, по геофизическим данным, около 200 м). Данные табл. 1 свидетельствуют об одинаковом составе плагиоклаза в закаленных эндоконтактовых зонах и более значительном фракционировании расплава в Абанском силле, где в некоторых диабаз-пегматитах содержание анортита в плагиоклазе снижается до 30%.

Упорядоченность плагиоклазов изучалась оптическим и рентгеновским методами. На столике Федорова были определены координаты двойниковых осей в лейстах плагиоклаза, сдвойникованных по альбитовому, карлсбадскому и альбит-карлсбадскому законам (в табл. 1 приведены данные для альбитового закона, поскольку по двум другим получились такие же результаты). Определение состава и условной степени упорядоченности плагиоклазов производялось по диаграмме Марфунна (⁵). Плагиоклазы Толстомысовского силла были проанализированы химически. Содержание в них Ап дано в табл. 1 по результатам химических анализов. Расхождения с результатами оптических определений лежат в пределах точности метода измерения.

Исследования плагиоклазов рентгеновским порошковым методом выполнены З. Ф. Ущаповской. Съемки проводились в камере РКУ-114 на Fe K-излучении с последующим пересчетом на Cu K-излучение) при 30 кв и 16 ма с экспозицией 11 час. По рентгенограммам были рассчитаны угловые расстояния $2\theta(131) - 2\theta(151)$ и $2\theta(131) + 2\theta(220) - 4\theta(151)$, являющиеся наиболее чувствительными к изменению структурного состояния илагиоклазов (¹¹, ¹²).

Результаты измерения плагиоклазов на столике Федорова представлены на рис. 1, где воспроизведена деталь диаграммы Марфунина (⁵), а результаты расчета рентгенограмм —

1.5

1,0

ПОрядпирници

на рис. 2, на котором воспроизведена диаграмма по (¹¹), и на рис. 3, показывающем зависимость функции $\Gamma = 2\theta(131) +$ $+ 2\theta(220) - 4\theta(131)$ от состава плагиоклаза (¹²). Диаграммы из указанных работ использованы

Рис. 2. Диаграмма состав — степень упорядоченности по результатам замеров угловых расстояний $2\theta(131) - 2\theta(131)$ в плагиоклазах из диабазов Толстомысовского (а) и Абанского (б) силлов. Положение кривых для упорядоченных и пеупорядоченных плагиоклазов дано по (¹¹)

Рис. 3. Диаграмма состав — степень упорядоченности по результатам замеров угловых расстояний $2\theta(131) + 2\theta(220) - 4\theta(131) = \Gamma$ в плагиоклазах из днабазов Толстомысовского (а) и Абанского (б) силлов. Положение кривых для упорядоченных и неупорядоченных плагиоклазов дано по (¹²)

нами потому, что на них кривые для упорядоченных и неупорядоченных плагиоклазов обоснованы наибольшим количеством хорошо проверенных данных.

Приведенные материалы показывают, что в пределах каждого силла наблюдается повышение степени упорядоченности плагиоклазов в более поздних по времени образования частях силла. Кристаллизация (затвердевание) расплава происходит в следующей последовательности: диабазовый микропорфирит эндоконтактов, троктолитовый диабаз, диабаз с офитовой и пойкилоофитовой структурами, гранофировый диабаз, диабаз-пегматит. Как показывают расчеты изменения во времени температурного поля внутри трапповых силлов (¹³), продолжительность формирования дифференциатов в этом ряду резко возрастает от диабазовых микропорфиритов к диабаз-пегматитам. Это является, вероятно, одной из причин различия степени упорядоченности плагиоклазов в вертикальном разрезе отдельных трапповых силлов.

Степень упорядоченности плагиоклазов из Абанского силла выше, чем у плагиоклазов из Толстомысовского силла (см. рис. 1—3). Это обус-

ловлено, очевидно, глубиной формирования силлов: Толстомысовский силл формировался на глубине около 0,5 км, а Абанский — на глубине около 2 км от земной поверхности.

Институт земной коры Сибирского отделения Академии наук СССР Новосибирск

Поступило 20 I 1971

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ J. R. Smith, H. S. Yoder, Am. Mineral., 41, № 7-8 (1956). ² А. Н. Заварицкий, В. С. Соболевидр., Зап. Всесоюзн. минералогич. общ., 87, в. 5 (1958). ⁵ J. R. Smith, Am. Mineral., 43, № 11-12 (1958). ⁴ R. C. Emmons, R. N. Crump, K. B. Ketner, Bull. Geol. Soc. Am., 71, № 9 (1960). ⁵ А. С. Марфунин, Полевые шпаты — фазовые взаимоотношения, оптические свойства, геологическое распределение, Изд. АН СССР, 1962. ⁶ D. L. Натilton, А. D. Edgar, Mineral. Mag., 37, № 285 (1969). ⁷ I. D. Muir, Mineral. Mag., 30, № 228 (1955). ⁶ Г. Д. Феоктистов, Тр. Вост.-Сиб. геол. инст. СО АН СССР, в. 7 (1961). ⁹ Г. Д. Феоктистов, Зап. Вост.-Сиб. отд. Всесоюзн. минералогич. общ., в. 3 (1962). ¹⁰ И. В. Белов, Тр. Вост.-Сиб. отд. Всесоюзн. минералогич. общ., в. 3 (1962). ¹⁴ И. В. Белов, Тр. Вост.-Сиб. мил. СО АН СССР, сер. геол., в. 16 (1961). ¹¹ H. U. Ватвачег, М. Согlett et al., Schweiz. Min. Petr. Mitt., 47/1, 744 (1967). ¹² I. V. Smith, Р. Gay, Mineral. Mag., 31, 744 (1958). ¹³ Г. Д. Феоктистов, Контактов вюжной части Сибирком цесчано-глинистых пород вблизи транновых силлов в южной части Сибирком, «Наука», 1971.