УДК 549.651.2

МИНЕРАЛОГИЯ

г. д. ФЕОКТИСТОВ, З. Ф. УЩАПОВСКАЯ

ОБ УПОРЯДОЧЕННОСТИ ПЛАГИОКЛАЗОВ В ГРАППОВЫХ СИЛЛАХ ЮГА СИБИРСКОЙ ПЛАТФОРМЫ

(Представлено академиком В. С. Соболевым 26 І 1971)

Явления упорядоченности плагиоклазов исследовались в основном в последние два десятилетия (1-6). В природных образдах были выявлены неупорядоченные, упорядоченные, а также и промежуточные структурнооптические типы плагиоклазов, причем по Келеру первые характерны для эффузивных пород, вторые — для интрузивных глубинных (2), третьи — для гипабиссальных пород (7). В интрузивных траппах юга Сибирской платформы нами (8, 9) было установлено отклонение оптической ориентировки плагиоклазов от таковой для плагиоклазов глубинных пород. Результаты последующих оптических, химических и рентгеноструктурных исследований плагиоклазов из трапповых силлов юга Сибирской платформы являются предметом обсуждения в данной статье.

В пределах южной части Сибирской платформы известны по крайней мере четыре крупных трапповых силла, залегающих почти согласно с вмещающими осадочными породами чехла платформы и протягивающихся на значительные (до нескольких сотен километров) расстояния. Три силла

Таблица 1 Оптические свойства и состав плагиоклазов

B,	Разновидность траппа	N'g	N_p	⊥ (010)				1.65
osz. Tuyónha orfopa oofpasyob, M				$N_{\mathcal{G}}$	N_{m}	N_p	An, %	Степень упорядо- ченности (s)
Толстомысовский силл								
816 7,0 824 34,0 832 59,5 836 74,0 841 90,0 849 123,0 881 169,0 896 243,0	Диабазовый микропорфирит Диабаз-пегматит То же Диабаз гранофировый То же Диабаз с офитовой и пой- килоофитовой структура- ми Диабаз троктолитовый »	1,558 1,560 1,565 1,566 1,570	1,562 1,551 1,553 1,557 1,558 1,563 1,563	30,0 31,0 35,0 33,5 38,0 42,0	61,0 61,5 61,0 60,0 62,0 61,0 61,0	69,0 82,5 80,0 74,0 73,0 67,5 62,0 69,0	63 46 50 56 58 65	0,0 0,3 0,3 0,2 0,5 0,0 0,0 0,2
Абанский силл								
$\begin{array}{c c} 4 & 1772 \\ 8 & 1777 \end{array}$	Диабазовый микропорфирит Диабаз с офитовой и пойки- лоофитовой структурами	1,568 1,565		$\begin{vmatrix} 34,5\\ 32,5 \end{vmatrix}$	$\begin{bmatrix} 63,0\\ 62,0 \end{bmatrix}$	70,5 $74,5$	63 5 7	$\begin{bmatrix} 0,5\\0,5 \end{bmatrix}$
14 1784 15 1785 19 1794 23 1800 28 1819 29 1820	Диабаз-пегматит То же » » » » » »	1,561 1,556 1,553 1,550 1,556 1,555		$\begin{array}{c} 29,0 \\ 26,0 \\ 21,0 \\ 16,0 \\ 24,0 \\ 24,5 \end{array}$	$\begin{array}{c} 64,0 \\ 64,5 \\ 69,0 \\ 74,0 \\ 66,5 \\ 65,5 \end{array}$	78,0 85,0 87,5 89,5 85,5 87,5	51 44 37 30 42 40	$ \begin{array}{c c} 0,7 \\ 0,6 \\ 0,7 \\ 0,8 \\ 0,6 \\ 0,5 \end{array} $

Примечание. Показатели преломления определены в иммерсии в белом свете с точностью $\pm 0,002$. Содержание An для плагиоклазов Толстомы совского силла приведено по данным химических анализов.

залегают в отложениях карбона — верхнего кембрия, а четвертый — в отложениях нижнего кембрия. Трапповые силлы, залегающие в пределах Канско-Тасеевской впадины на глубине нескольких километров, выходят к дневной поверхности в юго-восточном обрамлении впадины вместе с осадочными породами, в которых они залегают. Мощность силлов 100—200 м, в местах раздувов (куполообразных вздутий) она увеличивается до 300 м.

Рис. 1. Диаграмма состав — степень упорядоченности по результатам замеров координат двойниковых осей (\bot (040)) илагиоклазов из диабазов Толстомысовского (a) и Абанского (δ) силлов. Положение кривых для упорядоченных и неупорядоченных платиоклазов дано по (5)

Предполагается, что прорыв трапповой магмы к осадочному чехлу произошел в пределах глубокой части Капско-Тасеевской впадины, откуда она интрудировала по напластованию пород в южном, юговосточном и восточном паправлениях, о чем свидетельствует выклинивание в этих направлениях трапповых силлов.

Характерной внутреннего строения трапповых силлов является разделение их по вертикальному разрезу на три зоны (⁸): верхнюю, слогранофировыми женную диабазами и диабазо-пегматитами; среднюю, представленную диабазами с офитовой и пойкилоофитовой структурами; нижнюю, в которой преобладающими являются троктолитовые диабазы. Это разделение обусловлено кристаллизапонной дифференциапией.

Изменение состава плагноклазов в вертикальном разрезе хорошо изученных Толстомысовского (8) и Абанского (10) силлов показано в табл. 1. В Абанском силле скважиной вскрыта только верхняя зона мощностью 60 м (мощность силла, по геофизическим данным, около 200 м). Данные табл. 1 свидетельствуют об одинаковом составе плагиоклаза в закаленных эндоконтактовых зонах и более значительном фракционировании расплава в Абанском силле, где в некоторых диабаз-пегматитах содержание анортита в плагиоклазе снижается до 30%.

Упорядоченность плагиоклазов изучалась оптическим и рентгеновским методами. На столике Федорова были определены координаты двойниковых осей в лейстах плагиоклаза, сдвойникованных по альбитовому, карлсбадскому и альбит-карлсбадскому законам (в табл. 1 приведены данные для альбитового закона, поскольку по двум другим получились такие же результаты). Определение состава и условной степени упорядоченности плагиоклазов производилось по диаграмме Марфунина (5). Плагиоклазы Толстомысовского силла были проанализированы химически. Содержание в них Ап дано в табл. 1 по результатам химических анализов. Расхождения с результатами оптических определений лежат в пределах точности метода измерения.

Исследования плагиоклазов рентгеновским порошковым методом выполнены 3. Ф. Ущаповской. Съемки проводились в камере РКУ-114 на Fe K-излучении с последующим пересчетом на Cu K-излучение) при 30 кв и 16 ма с экспозицией 11 час. По рентгенограммам были рассчитаны угловые расстояния $2\theta(131)-2\theta(1\overline{3}1)$ и $2\theta(131)+2\theta(220)-4\theta(1\overline{3}1)$, являющиеся наиболее чувствительными к изменению структурного состояния плагиоклазов (11, 12).

Результаты измерения плагиоклазов на столике Федорова представлены на рис. 1, где воспроизведена деталь диаграммы Марфунина (5), а резуль-

таты расчета рентгенограмм— на рис. 2, на котором воспроизведена диаграмма по (11), и на рис. 3, показывающем зависимость функции $\Gamma=20(131)+20(220)-40(131)$ от состава плагиоклаза (12). Диаграммы из указанных работ использованы

1.5 ПОРЯдпиенны 10 20 0,5 23019 Ħ 311 7 40 50 7 60 £ 20 40 5A 80 % 100 An Рис. 3

Рис. 2. Диаграмма состав — степень упорядоченности по результатам замеров угловых расстояний $2\theta(131) - 2\theta(131)$ в плагиоклазах из диабазов Толстомысовского (а) и Абанского (б) силлов. Положение кривых для упорядоченных и пеупорядоченных плагиоклазов дано по (11)

Рис. 3. Диаграмма состав — степень упорядоченности по результатам замеров угловых расстояний 2θ (131) + 2θ (220) — 4θ (131) = Γ в плагиоклазах из диабазов Толстомысовского (a) и Абанского (b) силлов. Положение кривых для упорядоченных и неупорядоченных плагиоклазов дано по (12)

нами потому, что на них кривые для упорядоченных и неупорядоченных плагиоклазов обоснованы наибольшим количеством хорошо проверенных данных.

Приведенные материалы показывают, что в пределах каждого силла наблюдается повышение степени упорядоченности плагиоклазов в более поздних по времени образования частях силла. Кристаллизация (затвердевание) расплава происходит в следующей последовательности: диабазовый микропорфирит эндоконтактов, троктолитовый диабаз, диабаз с офитовой и пойкилоофитовой структурами, гранофировый диабаз, диабаз-пегматит. Как показывают расчеты изменения во времени температурного поля внутри трапповых силлов (13), продолжительность формирования дифференциатов в этом ряду резко возрастает от диабазовых микропорфиритов к диабаз-пегматитам. Это является, вероятно, одной из причин различия степени упорядоченности плагиоклазов в вертикальном разрезе отдельных трапповых силлов.

Степень упорядоченности плагиоклазов из Абанского силла выше, чем у плагиоклазов из Толстомысовского силла (см. рис. 1—3). Это обус-

ловлено, очевидно, глубиной формирования силлов: Толстомысовский силл формировался на глубине около $0.5\,$ км, а Абанский — на глубине около $2\,$ км от земной поверхности.

Институт земной коры Сибирского отделения Академии наук СССР **Новосибирск** Поступило 20 I 1971

ИИТИРОВАННАЯ ЛИТЕРАТУРА

¹ J. R. Smith, H. S. Yoder, Am. Mineral., 41, № 7—8 (1956). ² A. H. Заварицкий, В. С. Соболевидр., Зап. Всесоюзн. минералогич. общ., 87, в. 5 (1958). ³ J. R. Smith, Am. Mineral., 43, № 11—12 (1958). ⁴ R. С. Еттов, R. N. Сгитр, К. В. Кеtner, Bull. Geol. Soc. Am., 71, № 9 (1960). ⁵ A. С. Марфунин, Полевые шпаты — фазовые взаимоотношения, оптические свойства, геологическое распределение, Изд. АН СССР, 1962. ⁶ D. L. Натilton, A. D. Edgar, Mineral. Mag., 37, № 285 (1969). ⁷ I. D. Muir, Mineral. Mag., 30, № 228 (1955). ⁸ Г. Д. Феоктистов, Тр. Вост.-Сиб. геол. инст. СО АН СССР, в. 7 (1961). ⁹ Г. Д. Феоктистов, Зап. Вост.-Сиб. отд. Всесоюзн. минералогич. общ., в. 3 (1962). ¹⁰ И. В. Велов, Тр. Вост.-Сиб. фил. СО АН СССР, сер. геол., в. 16 (1961). ¹¹ H. U. Ватьаиег, М. Согlettetal, Schweiz, Min. Petr. Mitt., 47/1, 744 (1967). ¹² I.V. Smith, Р. Gay, Mineral. Mag., 31, 744 (1958). ¹³ Г. Д. Феоктистов, Контактовый метаморфизм песчано-глинистых пород вблизи транновых силлов в южной части Сибирской платформы, «Наука», 1971.