УДК 539.292

ФИЗИКА

Е. В. ЦВЕЙМАН, академик АН КазССР М. И. КОРСУНСКИЙ, В. В. ЗАШКВАРА, В. С. РЕДЬКИН

СПЕКТРЫ ЭЛЕКТРОНОВ ОЖЕ НЕКОТОРЫХ РЕДКОЗЕМЕЛЬНЫХ МЕТАЛЛОВ

Спектры электронов Оже редкоземельных металлов до настоящего времени не исследовались. Поэтому в нашей работе получены спектры Ожеэлектронов редкоземельных металлов Pr. Nd. Gd, Dy, Yb, а также La п Hf в области энергий до 530 эв.

В качестве образцов всех металлов, кроме Hf, использовались ленты проката толщиной 0.3—0,5 мм. Образец Hf изготавливался из порошка прессованием с последующим спеканием ири температуре 1500° С в вакууме 2·10⁻⁶ тор в течение нескольких часов.

Возбуждение электронов Оже осуществлялось электрозным пучком (ток 1-2 ма, энергия 1,6 кэв), направленным перпендикулярно к по-

Рис. 1. Спектры электронов Оже: 1— La, 2— Pr, 3— Nd, 4— Gd, 5— Dy, 6— Yb, 7— Hf

паправленным перпендикулярно к поверхности образца. Регистрация вторичных электронов производилась с помощью электростатического энергоанализатора типа цилиндрического зеркала ('), кольцевая щель которого находилась под углом 38°50′ по отношению к нормали образца. Разрешение спектрометра по энергии составляло 0,3%.

В процессе съемки спектров образцы всех металлов, кроме Yb, прогревались до температур, близких к их температурам плавления в вакууме 2. · 10⁻⁶ тор, что приводило к очистке поверхпостей от загрязнений, контролируемой по Оже-пикам углерода, кислорода н хлора. Следовательно. поверхностные загрязнения не могли оказывать существенного влияния на Оже-спектры самих металлов. Поскольку Yb интенсивно испаряется задолго до точки плавления, его удавалось прогреть не выше, чем до 500° С. И как результат этого пик с энергией ~260 эв в его спектре (см. рис. 1, 6) указывает на присутствие остаточного углеродного загрязнения.

Полученные спектры электронов Оже исследуемых металлов представлены на рис. 1. По оси ординат отложены значе-

ния тока вторичных электронов, а по оси абсцисс — их энергия. Следует обратить внимание на то, что пики электронов Оже, расположенные на спадающем фоне неупругого рассеяния электронов, очень широки и имеют характерную асимметрию, выраженную в менее крутом спаде низкоэнергетического склона каждого пика, что, как известно, обусловлено неупругим рассеянием Оже-электронов при выходе из металла (²). Кроме того некоторые пики могут расширяться наложением близко расположенных менес интенсивных переходов Оже.

Исходя из известных данных об энергии уровней элементов (³) в предположении об однотипности структур Оже-спектров редкоземельных металлов была произведена интерпретация паблюдаемых пиков Оже-электронов. Тот факт, что структуры спектров не менялись при снижении энергии первичного пучка электронов до 600 эв — энергии меньшей, чем требуется для возбуждения уровня $M_{\rm V}$ в дапной групие элементов, позволил установить, что наблюдаемые спектры обусловлены NNN-переходами Костера — Кронига и NNO- и NOO-переходами Оже. Отсюда следует также, что переходы с возбуждением более глубоких уровней менее вероятны.

Для идентификации отдельных пиков были проведены эксперименты с дальнейшим снижением энергии первичного пучка электронов до величины более низкой, чем потенциал понизации $N_{\rm III}$ уровня каждого элемента. При этом в спектре Nd, например, пока энергия первичного пучка была выше потенциала ионизации уровня $N_{\rm II}$ (244 эв), сохранялись все пики, хотя интенсивность их значительно снижалась. Это может быть связано как с уменьшением выхода Оже-электронов, так и с невозможностью существования переходов с участием уровня $N_{\rm I}$, которые ранее могли давать вклад в эти пики. Когда энергия первичного пучка стала ниже потенциала ионизации $N_{\rm II}$ -уровня, впервые исчез пик с энергией 126 эв, это позволило интерпретировать его как переход $N_{\rm II}N_{\rm IV,V}N_{\rm VI,VII}$ (124 эв). Точно так же пик с энергией 108,5 эв был идентифицирован как переход $N_{\rm III}N_{\rm IV,V}N_{\rm VI,VII}$ (105 эв). Идентификация остальных пиков не представляла труда, поскольку можно было установить однозначное соответствие между энергиями оставшихся возможных переходов и наблюдаемых пиков.

Сравнение измеренных энергий пиков, увеличенных па работу выхода (⁴), с рассчитанными для исследуемых элементов дано в табл. 1. При

Таблица 1

Элемент	Эксперимент	$N_{\rm IV}, {\rm V}^{\rm O}{\rm I} N_{\rm V}{\rm I}, {\rm V}{\rm II}$	Эксперимент	^N IV, V ^O II, III ^O II, III	Эксперимент	$N_{1V,V}O_{T, \Pi I}N_{VI,V\Pi}$	Эксперимент	$N_{\Pi I}N_{I}V,V^{N}VI,VII$	Эксперимент	$N_{\rm IV}, V^N V I, V I I^N V I, V I$	Эксперимент	$N_{\rm H}N_{\rm H}V, V^NV_{\rm H}$, VII
La Pr Nd Gd Dy Yb Hf	61,6 76,5 77 105,9 88 140 140	65 74 78 105 87 125 138 130 131 140 141	72,5 70 73 93 103 140 140 140	$\begin{array}{c} 69\\ 68\\ 74\\ 99\\ 102\\ 138\\ 151\\ 138\\ 145\\ 148\\ 145\\ 152\\ 155\\ 162\\ \end{array}$	81,3 88 92,8 121,2 121 155,8 169,9 162 168,5 1 2,9	$\begin{array}{c} 83\\ 89\\ 94\\ 120\\ 124\\ 155\\ 168\\ 157\\ 158\\ 164\\ 165\\ 167\\ 168\\ 167\\ 168\\ 174\\ 175\end{array}$	95 105,2 108,5 129,3 137,3 143,8 155,8 140 149,9	92 102 105 130 135 140 153 137 138 147 148	116, 4 118, 8 139 146, 8 169, 9 182 178, 5 189, 8	110 114 141 146 1.2 185 176 177 178 183 187 183	109,6 123 126	106 121 124 147 174 193 206 194 195 204 205

Сравнение измеренных энергий пиков с теоретическими

этом, если какой-либо пик на основании согласия с расчетными энергиями может быть обусловлен более чем одним переходом, энергия его записывалась в табл. 1 несколько раз.

Эпергии переходов для всех металлов, кроме La, рассчитывались по формуле

$$E_{v, x, y}(z) = E_{v}(z) - E_{x}(z) - E_{y}(z), \qquad (1)$$

829

где $E_{v,x,y}(z)$ — энергия Оже-перехода для элемента с атомным номером z_{r} , $E_{v}(z)$ — энергия уровня, содержащего в первоначальном состоянии вакансию, $E_{x}(z)$ — энергия уровня, с которого эта вакансия заполняется, $E_{y}(z)$ — энергия уровня, с которого в результате процесса Оже электрон эжектируется в область положительных энергий.

Для La идентификация могла быть выполнена лишь в том случае, если энергии всех переходов, содержащих уровень $N_{\rm VI, VII}$, рассчитывать по формуле

$$E_{v, x, y}(z) = E_{v}(z) - E_{x}(z) - E_{y}(z+1), \qquad (2)$$

поскольку у ненонизированного атома La этот уровень не заселен.

Структуры полученных нами спектров La и Hf согласуются с результатами работы (⁵), в которой три наиболее интенсивных пика с энергиями 168 эв, 172 эв и 180 эв (наши значения 168,5 эв, 172,9 эв и 178,5 эв) идентифицируются как $N_{\rm v}N_{\rm vI}N_{\rm vI}$ (176 эв)-, $N_{\rm v}N_{\rm vI}N_{\rm vII}$ (177 эв)-, $N_{\rm v}N_{\rm vII}N_{\rm vII}$ (178 эв)-переходы соответственно. Однако к указанному триплету близок по энергии лишь последний из этих пиков. Два другие значительно лучше соответствуют переходам $N_{\rm IV}O_{\rm II,III}N_{\rm vI,vII}$, что и отражено в табл. 1.

На основании полученных данных можно сделать вывод, что даже при высоких энергиях первичного пучка электронов, достаточных для возбуждения внутренних электронных оболочек, структуры спектров в основном определяются переходами между внешними оболочками. Структуры переходов редкоземельных металлов идентичны. Энергии соответствующих переходов имеют тенденцию к росту с увеличением атомного номера от La к Hf, которая нарушается лишь у Dy для перехода $N_{\rm IV,V}O_{\rm I}N_{\rm VI,VII}$ и у Pr для перехода $N_{\rm IV,V}O_{\rm II,III}O_{\rm II,III}$.

Институт ядерной физики Академии наук КазССР Алма-Ата Поступило 11 XI 1971

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ В. В. Зашквара, М. И. Корсунский и др., Приборы и техн. эксп., № 5, 44 (1970). ² W. M. Mularie, W. T. Peria, Surface Sci., 26, 125 (1971). ³ K. Siegbahn, C. Nordling et al., Atomic, Molecular and Solid State Structure Studied by Means of Electron Spectroscopy, Upssala, 1967. ⁴ Физико-химические свойства элементов. Справочник под ред. чл.-корр. АН УССР Г. В. Самсонова, Киев, 1965. ⁵ T. W. Haas, J. T. Grant, G. J. Dooley, Phys. Rev. B, 1, 1449 (1970).