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Abstract

Let σ = {σi|i ∈ I} be some partition of the set of all primes P, G a finite group and σ(G) =
{σi|σi ∩ π(G) 6= ∅}. A set H of subgroups of G is said to be a complete Hall σ-set of G if every
member 6= 1 of H is a Hall σi-subgroup of G for some σi ∈ σ and H contains exact one Hall
σi-subgroup of G for every σi ∈ σ(G). A subgroup H of G is said to be: σ-semipermutable in

G with respect to H if HHx

i
= Hx

i
H for all x ∈ G and all Hi ∈ H such that (|H |, |Hi|) = 1;

σ-semipermutable in G if H is σ-semipermutable in G with respect to some complete Hall σ-set
of G.

We study the structure of G being based on the assumption that some subgroups of G are
σ-semipermutable in G.

1 Introduction

Throughout this paper, all groups are finite and G always denotes a finite group. Moreover, P is the

set of all primes, p ∈ π ⊆ P and π′ = P \ π. If n is an integer, the symbol π(n) denotes the set of all

primes dividing n; as usual, π(G) = π(|G|), the set of all primes dividing the order of G.

In what follows, σ = {σi|i ∈ I ⊆ N} is some partition of P, that is, P = ∪i∈Iσi and σi ∩ σj = ∅

for all i 6= j. Let σ(G) = {σi|σi ∩ π(G) 6= ∅}.

In the mathematical practice, we often deal with the following two special partitions of P: σ =

{{2}, {3}, . . .} and σ = {π, π′} (in particular, σ = {{p}, {p}′}, where p is a prime).
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A set H of subgroups of G is a complete Hall σ-set of G [1, 2] if every member 6= 1 of H is a

Hall σi-subgroup of G for some σi ∈ σ and H contains exact one Hall σi-subgroup of G for every

σi ∈ σ(G).

Subgroups A and B of G are called permutable if AB = BA. In this case they also say that A

permutes with B.

Definition 1.1. Suppose that G possesses a complete Hall σ-set H = {H1, . . . ,Ht}. A subgroup

H of G is said to be: σ-semipermutable in G with respect to H if HHx
i = Hx

i H for all x ∈ G and

all i such that (|H|, |Hi|) = 1; σ-semipermutable in G if H is σ-semipermutable in G with respect to

some complete Hall σ-set of G.

Many known results deal with two special cases of the σ-semipermutability condition: when

σ = {{2}, {3}, . . .} and σ = {π, π′}.

Consider some typical examples.

Example 1.2. A subgroup H of G is said to be S-semipermutable in G if H permutes with all

Sylow subgroups P of G satisfying (|H|, |P |) = 1. Thus H is S-semipermutable in G if and only if

it is σ-semipermutable in G where σ = {{2}, {3}, . . .}.

The S-semipermutability condition can be found in many known results (see for example Section

3 in [3, VI], Chapter 3 in [4] and also the recent papers [5, 6, 7]).

Before continuing, let’s make the following remark.

Remarks 1.3. Let G = AB by a product of subgroups A and B and K ≤ B. Suppose that A

permutes with Kb for all b ∈ B. Then:

(i) For any x = ab, where a ∈ A and b ∈ B, we have AKx = Aa(Kb)a−1 = a(Kb)a−1A = KxA

and hence A permutes with all conjugates of K.

(ii) AxK = KAx for all x ∈ G. Indeed, (AxK)x
−1

= AKx−1

= Kx−1

A by Part (i), so (AKx−1

)x =

AxK = KAx.

Example 1.4. A subgroup H of G is said to be SS-quasinormal if G has a subgroup T such that

HT = G and H permutes with all Sylow subgroups of T . If P is a Sylow subgroups of T satisfying

(|H|, |P |) = 1, then P is a Sylow subgroups of G and so H is σ-semipermutable in G, where

σ = {{2}, {3}, . . .}, by Example 1.2 and Remark 1.3(i). Various applications of SS-quasinormal

subgroups can be found in [8, 9, 10] and in many other papers.

Example 1.5. In [11], Huppert proved that if a Sylow p-subgroup P of G of order |P | > p

has a complement T in G and T permutes with all maximal subgroups of P , then G is p-soluble.

In view of Remark 1.3 the condition ”T permutes with all maximal subgroups of P” is equivalent

to the condition ”all maximal subgroups of P are σ-semipermutable in G with respect to {P, T}”,

where σ = {{p}, {p}′}. The result of Huppert was developed in the papers [12, 13], where instead of

maximal subgroups were considered the subgroups of P of fixed order pk.

Further, the results in [11, 12, 13] were generalized in [14, 15], where instead of a Sylow p-subgroup

of G was considered a Hall subgroup of G (see Section 4 below).
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Finally, note that all the above-mentioned results deal with two special cases: a ”binary” case,

when σ = {π, π′}, and an ”n-ary” case, when σ = {{2}, {3}, . . .}.

In this paper, we consider the σ-semipermutability condition for arbitrary partition σ of P.

In fact, our main results are the following two observations.

Theorem A. Let P be a Sylow p-subgroup of G. Suppose that G has a complete Hall σ-set

H = {H1, . . . ,Ht} such that H1 is p-supersoluble of order divisible by p. Suppose also that there is a

natural number k such that pk < |P | and every subgroup of P of order pk and every cyclic subgroup

of P of order 4 (if pk = 2 and P is non-abelian) are σ-semipermutable in G with respect to H. Then

G is p-supersoluble.

Theorem B. Let X ≤ E be normal subgroups of G. Suppose that G has a complete Hall σ-set H

such that every member of H is supersoluble. Suppose also that for every non-cyclic Sylow subgroup

P of X there is a natural number k = k(P ) such that pk < |P | and every subgroup of P of order pk

and every cyclic subgroup of P of order 4 (if pk = 2 and P is non-abelian) are σ-semipermutable in

G with respect to H. If X = E or X = F ∗(E), then every chief factor of G below E is cyclic.

In this theorem F ∗(E) denotes the generalized Fitting subgroup of E, that is, the product of all

normal quasinilpotent subgroups of E.

We prove Theorems A and B in Section 3. In Section 4 we discuss some applications of these two

results.

All unexplained notation and terminology are standard. The reader is referred to [16], [17], [18]

or [4] if necessary.

2 Base lemmas

Suppose that G has a complete Hall σ-set H = {H1, . . . ,Ht}. For any subgroup H of G we write

H ∩H to denote the set {H ∩H1, . . . ,H ∩Ht}. If H ∩H is a complete Hall σ-set of H, then we say

that H reduces into H.

Lemma 2.1. Suppose that G has a complete Hall σ-set H = {H1, . . . ,Ht} such that a subgroup

H of G is σ-semipermutable with respect to H. Let R be a normal subgroup of G and H ≤ L ≤ G.

Then:

(1) H0 = {H1R/R, . . . ,HtR/R} is a complete Hall σ-set of G/R. Moreover, if for every prime p

dividing |H| and for a Sylow p-subgroup Hp of H we have Hp � R, then HR/R is σ-semipermutable

in G/N with respect to H0.

(2) If H reduces into L, then H is σ-semipermutable in L with respect to L ∩H. In particular,

if L is normal in G, then H is σ-semipermutable in L with respect to L ∩H.

(3) If L ≤ Hi, for some i, then H reduces into LR.

(4) If H ≤ Hi, for some i,, then H is σ-semipermutable in HR.

(5) If H is a p-group, where p ∈ π(Hi) ⊆ σi and R is a σi-group, then |G : NG(H ∩ R)| is a

3



σi-number.

Proof. Without loss of the generality we can assume that Hi is a σi-group for all i = 1, . . . , t.

(1) It is clear that H0 = {H1R/R, . . . ,HtR/R} is a complete Hall σ-set of G/R. Let i ∈ {1, . . . , t}

such that (|HR/R|, |HiR/R|) = 1. Let p ∈ π(H) and Hp a Sylow p-subgroup of H. Assume that

p divides |Hi|. Then Hi contains a Sylow p-subgroup of G since it is a Hall subgroup of G and so

Hp ≤ R, contrary to the hypothesis. Hence (|H|, |Hi|) = 1. By hypothesis, HHx
i = Hx

i H for all

x ∈ G. Then

(HR/R)(HiR/R)xR = HHx
i R/R

= Hx
i HR/R = (HiR/R)xR(HR/R),

so HR/R is σ-semipermutable in G/R with respect to H0.

(2) Let Li = Hi ∩ L for all i = 1, . . . , t and L = {L1, . . . , Lt}. By hypothesis, L is a complete σ-

Hall set of L. Let i ∈ {1, . . . , t} such that (|H|, |Li|) = 1 and let a ∈ L. Then (|H|, |Hi|) = 1. Hence,

by hypothesis, HHa
i = Ha

i H for all a ∈ L, so L ∩HHa
i = H(L ∩Ha

i ) = H(L ∩Hi)
a = HLa

i = La
iH.

This shows that H is σ-semipermutable in L with respect to L ∩H.

(3) Since Hi ∩R is a Hall σi-subgroup of R and Hi ∩LR = L(Hi ∩R), we have |LR : Hi ∩LR| =

|R : Hi ∩R|. Hence Hi ∩ LR is a Hall σi-subgroup of LR. It is clear also that Hj ∩ LR = Hj ∩R is

a Hall σj-subgroup of LR for all j 6= i. Hence H reduces into LR.

(4) This follows from Parts (2) and (3).

(5) For any j 6= i, HjH = HHj is a subgroup of G and HHj ∩ R = (H ∩ R)(Hj ∩R) = H ∩ R,

so Hj ≤ NG(H ∩R). Hence |G : NG(H ∩R)| is a σi-number.

Lemma 2.2 (See Kegel [19]). Let A and B be subgroups of G such that G 6= AB and ABx =

BxA, for all x ∈ G. Then G has a proper normal subgroup N such that either A ≤ N or B ≤ N .

Lemma 2.3. Let P be a Sylow p-subgroup of G and H = {H1, . . . ,Ht} a complete Hall σ-set

of G such that p ∈ π(H1). Suppose that for any x ∈ G, P xHi is a p-soluble subgroup of G for all

i = 2, . . . , t. Then G is p-soluble.

Proof. Assume that this is false and let G be a counterexample of minimal order . First note that

the hypothesis holds for every normal subgroup R of G. Therefore every proper normal subgroup of

G is p-soluble by the choice of G. Moreover, the choice of G and the hypothesis imply that PHi 6= G

for all i = 2, . . . , t. By Lemma 2.2, we have either PG 6= G or (H2)
G 6= G. Hence G has a proper

non-identity normal subgroup R. But then R is p-soluble. On the other hand, the hypothesis holds

for G/R, so G/R is also p-soluble by the choice of G. This implies that G is p-soluble.

A group G is said to be strictly p-closed [20, p.5] whenever Gp, a Sylow p-subgroup of G, is

normal in G with G/Gp abelian of exponent dividing p − 1. A normal subgroup H of G is called

hypercyclically embedded in G if every chief factor of G below H is cyclic.

Lemma 2.4 A normal p-subgroup P of G is hypercyclically embedded in G if and only if

G/CG(P ) is strictly p-closed.

Proof. If P is hypercyclically embedded in G, then for any chief factor H/K of G below P ,
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G/CG(H/K) is abelian of exponent dividing p − 1. Hence G/C, where C the intersection the

centralizers of all such factors, is also an abelian group of exponent dividing p − 1. On the other

hand, C/CG(P ) is a p-group by [21, Ch.5, Corollary 3.3]. Hence G/CG(P ) is strictly p-closed.

Now assume that G/CG(P ) is strictly p-closed and let H/K be any chief factor below P . Since

CG(P ) ≤ CG(H/K), G/CG(H/K) is strictly p-closed. But since Op(G/CG(H/K)) = 1 [16, Ch.A,

Lemma 13.6], G/CG(H/K) is abelian of exponent dividing p−1. It follows from [20, Ch.1, Theorem

1.4] that |H/K| = p. Thus P is hypercyclically embedded in G.

Let P be a p-group. If P is not a non-abelian 2-group, then we use Ω(P ) to denote the subgroup

Ω1(P ). Otherwise, Ω(P ) = Ω2(P ).

Lemma 2.5 (See [22, Lemma 2.12]). Let P be a normal p-subgroup of G and D = Ω(C), where

C is a Thompson critical subgroup of P . If either P/Φ(P ) is hypercyclically embedded in G/Φ(P )

or D is hypercyclically embedded in G, then P is also hypercyclically embedded in G.

Lemma 2.6. Let C be a Thompson critical subgroup of a p-group P . Then the group D = Ω(C)

is of exponent p if p is odd prime or exponent 4 if P is non-abelian 2-group. Moreover, every non-

trivial p′-automorphism of P induces a non-trivial automorphism of D.

Proof. The first assertion follows from [21, Ch.5, Theorem 3.11] and [22, Lemma 2.11]. The

second one directly follows from [21, Ch. 5, Theorem 3.11].

Lemma 2.7. Let E be a normal subgroup of G and P a Sylow p-subgroup of E such that

(p − 1, |G|) = 1. If either P is cyclic or G is p-supersoluble, then E is p-nilpotent and E/Op′(E) ≤

Z∞(G/Op′(E)).

Proof. First note that in view of [3, Ch.IV, Theorem 5.4] and the condition (p − 1, |G|) = 1,

E is p-nilpotent. Let H/K be any chief factor of G such that Op′(E) ≤ K < H ≤ E. Then

|H/K| = p, so G/CG(H/K) divides p − 1. But by hypothesis, (p − 1, |G|) = 1, so CG(H/K) = G.

Thus E/Op′(E) ≤ Z∞(G/Op′(E)).

The following lemma is well-known (see, for example, [18, Lemma 2.1.6]).

Lemma 2.8. If G is p-supersoluble and Op′(G) = 1, then p is the largest prime dividing |G|, G

is supersoluble and F (G) = Op(G) is a Sylow p-subgroup of G.

Lemma 2.9 (See [23]). Let H, K and N be pairwise permutable subgroups of G and H is a

Hall subgroup of G, then N ∩HK = (N ∩H)(N ∩K).

The following fact is also well-known (see for example [4, Ch.1, Lemma 5.35(6)]).

Lemma 2.10 If H is a subnormal π-subgroup of G, then H ≤ Oπ(G).

Lemma 2.11 (See [24, Theorem C]). Let E be a normal subgroup of G. If F ∗(E) is hypercycli-

cally embedded in G, then E is hypercyclically embedded in G.

3 Proofs of Theorems A and B

Theorem A is a corollary of the following two general results.
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Theorem 3.1. Let E be a p-soluble normal subgroup of G and P a Sylow p-subgroup of

E. Suppose that G has a complete Hall σ-set H = {H1, . . . ,Ht} such that H1 is p-supersoluble of

order divisible by p. Suppose also that there is a natural number k such that pk < |P | and every

subgroup of P of order pk and every cyclic subgroup of P of order 4 (if pk = 2 and P is non-

abelian) are σ-semipermutable in G with respect to H. Then E/Op′(E) is hypercyclically embedded

in G/Op′(E).

Theorem 3.2. Let P be a Sylow p-subgroup of G. Suppose that G has a complete Hall σ-set

H = {H1, . . . ,Ht} such that H1 is p-supersoluble of order divisible by p. Suppose also that there is a

natural number k such that pk < |P | and every subgroup of P of order pk and every cyclic subgroup

of P of order 4 (if pk = 2 and P is non-abelian) are σ-semipermutable in G with respect to H. Then

G is p-soluble.

Proof of Theorem 3.1. Assume that this theorem is false and let G be a counterexample with

|G|+ |E| minimal. Let |P | = pn. Then:

(1) Op′(N) = 1 for every subnormal subgroup N of E. Hence Op(G) 6= 1.

Suppose that for some subnormal subgroup N of G contained in E we have Op′(N) 6= 1. Then

Op′(N) is subnormal in G and so Op′(N) ≤ Op′(G) by Lemma 2.10. On the other hand, by Lemma

2.1(1), the hypothesis holds for (G/(E ∩Op′(G)), E/(E ∩Op′(G))) = (G/Op′(E), E/Op′(E)). Hence

E/Op′(E) is hypercyclically embedded in G/Op′(E) by the choice of G, a contradiction. Thus we

have (1).

(2) Let U = Op(E). Then U is not hypercyclically embedded in G.

Assume that U is hypercyclically embedded in G. Since E is p-soluble by hypothesis and Op′(E) =

1 by Claim (1), U 6= 1 and CE(U) ≤ U by the Hall-Higman lemma [3, Ch.VI, Lemma 6.5]. But since

U is hypercyclically embedded in G, G/CG(U) is strictly p-closed by Lemma 2.4 and so G/CG(U)

is supersoluble by [20, Ch.1, Theorem 1.9]. Now in view of the G-isomorphism ECG(U)/CG(U) ≃

E/E ∩ CG(U), we conclude that E is hypercyclically embedded in G, a contradiction.

(3) k > 1.

Assume that k = 1. We show that in this case U is hypercyclically embedded in G. Assume that

this is false. Let U/R be a chief factor of G. Then by the choice of G we have R is hypercyclically

embedded in G, so for any normal subgroup V of G such that V < U we have V ≤ R and U/R is

not cyclic. Let B be a Thompson critical subgroup of U and Ω = Ω(B). We claim that Ω = U .

Indeed, if Ω < U , then Ω ≤ R and so Ω is hypercyclically embedded in G. Hence U is hypercyclically

embedded in by Lemma 2.5, a contradiction. Thus Ω = U . Since U ≤ H1 and H1 is p-supersoluble

by hypothesis, there is a subgroup L/R ≤ U/R of order p such that L/R is normal in H1/R. Let

x ∈ L \R and H = 〈x〉. Since Ω = U and L ≤ U , |H| is either prime or 4. Then, by hypothesis, H is

σ-semipermutable in G with respect to H. Hence HR/R is σ-semipermutable in G/R with respect to

{H1R/R, . . . ,HtR/R} by Lemma 2.1(1). Then, by Lemma 2.1(5), |G/R : NG/R(HR/R)| = |G/R :

NG/R(L/R)| is a π(H1)-number. It follows that L/R is normal in G/R, and so U/R = L/R is cyclic,

a contradiction. This shows that U is hypercyclically embedded in G, contrary to Claim (2). Hence

we have (3).
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(4) |N | ≤ pk for any minimal normal subgroup N of G contained in P .

Indeed, suppose that |N | > pk. Then there exists a non-identity proper subgroup H of N such

that H is normal in H1 and H is σ-semipermutable in G with respect to H. But then H is normal

in G by Lemma 2.1(5), which contradicts the minimality of N .

(5) If P is a non-abelian 2-group, then k > 2.

Assume that k = 2. We shall show that in this case every subgroup H of P of order 2 is σ-

semipermutable in G with respect to H. This means that k = 1 is possible, which will contradicts

Claim (3).

First show that for any subgroup V = A × B ≤ P where |A| = 2 = |B|, if both V and A are

σ-semipermutable in G with respect to H, then B is σ-semipermutable in G with respect to H.

Indeed, let i > 1 and x ∈ G. Then AHx
i and V Hx

i are subgroups of G and |V Hx
i : AHx

i | = 2. Hence

V Hx
i is 2-nilpotent, so Hx

i B = Hx
i B since Hx

i is normal in Hx
i V . Similarly, if V = 〈a〉 is a cyclic

subgroup of order 4, then 〈a2〉 is σ-semipermutable in G with respect to H.

Since P is a non-abelian 2-group, P has a cyclic subgroup H = 〈a〉 of order 4. Then H is σ-

semipermutable in G with respect to H by hypothesis, so A = 〈a2〉 is also is σ-semipermutable in

G with respect to H. Then every subgroup B of Z(P ) of order 2 is σ-semipermutable in G with

respect to H, and so every subgroup of P of order 2 is σ-semipermutable in G with respect to H.

(6) If N is a minimal normal subgroup of G contained in P , then (E/N)/Op′(E/N) is hyper-

cyclically embedded in (G/N)/Op′ (E/N).

It is enough to show that the hypothesis holds for G/N . Since E/N is p-soluble, we can assume

that |P/N | > p.

If either p > 2 and |N | < pk or p = 2 and |N | < 2k−1, then it is clear by Lemma 2.1(1). Now let

either p > 2 and |N | = pk or p = 2 and |N | ∈ {2k, 2k−1}.

In view of Claim (3), k > 1. Suppose that |N | = pk. Then N is non-cyclic and so every subgroup

of G containing N is not cyclic. Let N ≤ K ≤ P , where |K : N | = p. Since K is non-cyclic, it has a

maximal subgroup L 6= N . Consider LN/N . Since L is σ-semipermutable in G with respect to H,

LN/N is also σ-semipermutable in G/N with respect to {H1R/R, . . . ,HtR/R} by Lemma 2.1(1).

Therefore, if P/N is abelian, the hypothesis is true for (G/N,P/N). Next suppose that P/N is a

non-abelian 2-group.

Then P is non-abelian and so k > 2 by Claim (5). Since |P/N | > 2, n−k ≥ 2. We may, therefore,

let N ≤ K ≤ V ≤ P such that |V : N | = 4, V/N is cyclic and |V : K| = 2. Since V/N is not

elementary, N � Φ(V ). Hence for some maximal subgroup K1 of V we have V = K1N . Suppose

that K1 is cyclic. Then |K1 ∩N | = 2 and 2 = |V : K1| = |K1N : K1| = |N : K1 ∩N |. This implies

that |N | = 4. But then k = 2, a contradiction. Hence K1 is not cyclic. Let S and R be two different

maximal subgroups of K1. Then K1 = SR. If SN ≤ K and RN ≤ K, then K1 = SR ≤ K, which

contradicts the choice of K1. Now since N/N < K/N < V/N where K/N is a maximal subgroup of

V/N , we have that V/N = K1N/N = SRN/N = (SN/N)(RN/N). But since V/N is cyclic, eight

V/N = SN/N or V/N = RN/N . Without loss of generality, we may assume that NS = V . Since
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S is a maximal subgroup of K1 and K1 is a maximal subgroup of V , |S| = |N | = pk. Then S is σ-

semipermutable in G with respect to H. Hence by Lemma 2.1(1), V/N is σ-semipermutable in G/N

with respect to {H1R/R, . . . ,HtR/R}. This shows that that the hypothesis is true for (G/N,P/N).

Now suppose that 2k−1 = |N |. If |N | > 2, then N is not cyclic and as above one can show that

every subgroup H̄ of P/N with order 2 and every cyclic subgroup of P/N of order 4 (if P/N is a

non-abelian 2-group) is σ-semipermutable in G/N with respect to {H1R/R, . . . ,HtR/R}. Finally,

if |N | = 2 and P/N is non-abelian, then P is non-abelian and k = 2, which contradicts Claim (5).

Thus (6) holds.

(7) Φ(U) = 1.

Assume that for some minimal normal subgroup N of G we have N ≤ Φ(U). Then, by Claim (6),

every chief factor of G/N between Op′(E/N) and E/N is cyclic. Note that if V/N = Op′(E/N) 6= 1

and W is a p-complement in V , then by the Frattini argument, G = V NG(W ) = NWNG(W ) =

NG(W ) since N ≤ Φ(Op(E)) ≤ Φ(G). Hence W = 1 by Claim (1). Therefore every chief factor of G

between E and N is cyclic. Now applying Lemma 2.5, we deduce that E is hypercyclically embedded

in G, a contradiction. Hence we have (7).

Final contradiction. In view of Claims (2) and (7), U is an elementary group and for some

minimal normal subgroup N of G contained in U we have |N | > p. Let S be a complement of N in

U . Since N ≤ H1 and |N | ≤ pk by (4), there are a maximal subgroup V of N and a subgroup W of

S such that V is normal in H1 and |V W | = pk. Then VW is σ-semipermutable in G with respect to

H by hypothesis, so V = VW ∩N is normal in G by Lemma 2.1(5). Thus V = 1, and so |N | = p.

This final contradiction completes the proof of the result.

Proof of Theorem 3.2. Assume that this theorem is false and let G be a counterexample of

minimal order. Without loss of generality we can assume that P ≤ H1 and Hi is a σi-group for all

i = 1, . . . , t. Let |P | = pn and V be a normal subgroup of G such that G/V is a simple group.

(1) Op′(N) = 1 for any subnormal subgroup N of G (See Claim (1) in the proof of Theorem 3.1).

(2) P � N for any proper normal subgroup N of G (In view of Lemma 2.1(4), this follows from

the choice of G).

(3) If the hypothesis holds for V , then G/V is non-abelian, Op(V ) is a Sylow p-subgroup of V

and Op(V ) is hypercyclically embedded in G.

The choice of G implies that V is p-soluble. Hence V is p-supersoluble by Theorem A. Since

Op′(V ) = 1 by Claim (1), V is supersoluble and Op(V ) is a Sylow p-subgroup of V by Lemma 2.8.

It is clear that Op(V ) is normal in G, so Op(V ) is hypercyclically embedded in G by Theorem 3.1.

(4) k > 1.

Assume that k = 1. Then:

(a) For a Sylow p-subgroup Vp of V we have Vp � Z∞(G).

Indeed, assume that Vp ≤ Z∞(G). By [3, Ch. IV, Theorem 5.4], G has a p-closed Schmidt

subgroup A and A = Ap ⋊ Aq, where the Sylow subgroup Ap of A is of exponent p or exponent
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4 (if p = 2 and A2 is non-abelian), and if Φ = Φ(Ap), then Ap/Φ is a non-central chief factor of

A. Without loss of generality, we may assume that Ap ≤ P . Then Vp ∩ A ≤ Z∞(A) ∩ Ap ≤ Φ

and so there exists a subgroup H of Ap such that H � V and H is a cyclic group of order p or of

order 4 (if p = 2 and A2 is non-abelian). By hypothesis, H is σ-semipermutable in G, so HV/V is

σ-semipermutable subgroup of G/V by Lemma 2.1(1). Note that G 6= HH2 (In fact, if |H| = p, it

is clear since |P | > p. If HH2 = G and H is a cyclic group of order 4, then G is p-soluble, contrary

to the choice of G). Hence G/V is not simple by Lemma 2.2, a contradiction. Hence we have (a).

(b) If |Vp| = p, then V is not p-soluble, and so H1V = G.

Indeed, if V is p-soluble, then Vp is normal in G by Claim (1). Hence Vp and CG(Vp) are normal

in G. Claim (a) implies that P ≤ CG(Vp) < G, which contradicts Claim (2). Therefore V is not

p-soluble. But since the hypothesis holds for H1V by Lemma 2.1(2)(3), the choice of G implies that

H1V = G.

(c) |Vp| 6= p. Hence the hypothesis holds for V by Lemma 2.1(2) and |P | > p2.

Assume that |Vp| = p. If Vp = V ∩ P ≤ Φ(P ), then V is p-nilpotent by the Tate theorem [3,

Ch. IV, Theorem 4.7], contrary to (1). Hence Vp has a complement W in P . Let L be a subgroup

of order p in W . Assume that L < W . Then the hypothesis holds for VW by Lemma 2.1(2)(3), so

VW is p-soluble, contrary to Claim (b). Therefore |W | = p, so |P | = p2 and P = VpW is not cyclic.

Let E = (H2 · · ·Ht)
G. Then in view of Claim (b), we can assume, without of loss of generality,

that E ≤ V . We show that there is a subgroup W0 of P order p such that W0 � V and W0 � CG(E).

Indeed, suppose that W ≤ CG(E). Note that CG(E) 6= G by Claim (1). Hence Vp � CG(E) by

Claim (2). It follows Claim (1) that CG(E) ∩ V = 1. Consequently G = CG(E) × V . Let W = 〈a〉,

Vp = 〈b〉 and W0 = 〈ab〉. Then W0 ∩CG(E) = 1 = W ∩ V .

Now let i > 1. Then W0H
x
i = Hx

i W0 for all x ∈ G by hypothesis. Let L = HW0

i ∩ WHi

0
.

Then L is a subnormal subgroup of G by [25, Theorem 7.2.5]. Suppose that L 6= 1 and let L0 be

a minimal subnormal subgroup of G contained in L. Then S = L0 ∩W0 is a Sylow p-subgroup of

L0 since L ≤ W0Hi. Moreover, in view of Claim (1) and Lemma 2.10, S 6= 1, and so W0 = S. If

L0 is abelian, then S = W0 ≤ Op(G), where Op(G) < P by Claim (2). Hence W0 = Op(G) � V .

Consequently W0 ≤ CG(V ) ≤ CG(E). This contradiction shows that L0 is non-abelian. But then

L0 = LG
0

is a minimal normal subgroup of G by Claim (2) since |P | = p2, which again implies that

W0 ≤ CG(E). This contradiction shows that L = 1. Therefore for every x ∈ G and every i > 1 we

have (Hx
i )

W0 ∩W
Hx

i

0
= 1, and so

[W0,H
x
i ] ≤ [(Hx

i )
W0 ,W

Hx

i

0
] = 1.

Therefore W0 ≤ CG(E), a contradiction. Hence we have (c).

Final contradiction for (4). Let C = CG(Vp). By Claims (3) and (c), Vp is normal in G and it is

hypercyclically embedded in G. Hence G/C is strictly p-closed by Lemma 2.4. If Vp � Z(G), then

there is a normal maximal subgroup M of G such that C ≤ M . But since |P | > p2, the hypothesis

holds for M , so M is p-soluble and so G does. This contradiction shows that Vp ≤ Z(G), which

contradicts Claim (a). Hence we have (4).
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(5) |N | ≤ pk for any minimal normal subgroup N of G contained in P (See Claim (4) in the proof

of Theorem 3.1).

(6) k = n− 1.

Assume that k < n− 1. Then V P 6= G. Indeed, if V P = G, then |G : V | = p and the hypothesis

holds for V . Hence V is p-soluble by the choice of G and so G is p-soluble, a contradiction. By

Lemma 2.1(4) the hypothesis holds for V P , so V P is p-soluble by the choice of G since V P 6= G.

Therefore V is p-soluble, so Op(V ) 6= 1 by Claim (1). Let N be a minimal normal subgroup of G

contained in Op(V ). It is clear that N 6= P . Since k < n − 1, |P : N | > p by Claim (5). Now

repeating some arguments in Claim (6) of the proof of Theorem A one can show that the hypothesis

holds for G/N , so G/N is p-soluble by the choice of G. But then G is p-soluble, a contradiction.

Hence we have (6).

(7) If Op(G) 6= 1, then P is not cyclic.

Suppose that P is cyclic. Let L be a minimal normal subgroup of G contained in Op(G) ≤ P .

Assume that CG(L) = G. Then L ≤ Z(G). Let N = NG(P ). If P ≤ Z(N), then G is p-nilpotent by

Burnside’s theorem [3, Ch. IV, Theorem 2.6], a contradiction. Hence N 6= CG(P ). Let x ∈ N\CG(P )

with (|x|, |P |) = 1 and K = P ⋊ 〈x〉. By [3, Ch. III, Theorem 13.4], P = [K,P ]× (P ∩Z(K)). Since

L ≤ P ∩Z(K) and P is cyclic, it follows that P = P ∩Z(K) and so x ∈ CK(P ). This contradiction

shows that CG(L) 6= G.

Since P is cyclic, |L| = p. Hence G/CG(L) is a cyclic group of order dividing p − 1. But then

P ≤ CG(L), so CG(L) is p-soluble by the choice of G. Hence G is p-soluble. This contradiction shows

that we have (7).

(8) G 6= PHi for any i > 1.

Without lose of generality, assume that G = PH2. Let V1, . . . , Vr be the set of all maximal

subgroups of P and Di = Vi
G. Then Di = Vi

PH2 = Vi
H2 ≤ ViH2 = H2Vi by Claim (6).

Suppose that for some i, say i = 1, we have D1P < G. Then D1P is p-soluble by the choice

of G. Hence Op(G) 6= 1. By Claim (7), P is not cyclic. Moreover, for any i > 1, we have that

G = PG = D1Di. Hence for all such i > 1, we have that DiP = G and so Di = ViH2. It is also clear

that V2 ∩ · · · ∩ Vr = Φ(P ). Let E = V2H2 ∩ · · · ∩ VrH2. Then

P ∩ E = (P ∩ V2H2) ∩ · · · ∩ (P ∩ VrH2) == V2(P ∩H2) ∩ · · · ∩ Vr(P ∩H2) = V2 ∩ · · · ∩ Vr = Φ(P ).

Hence E is p-nilpotent by the Tate theorem [3, Ch. IV, Thoerem 4.7]. It follows that 1 < H2 ≤

Op′(G), contrary to Claim (1). Hence we have (8).

(9) PG = G, so P � HG
i < G for all i > 1.

First note that PG = G by Claim (2) and PHi 6= G by Claim (8). If P is not cyclic, then

PHx
i = Hx

i P for all x ∈ G. Hence HG
i < G by Lemma 2.2. Now assume that P is cyclic and V be a

maximal subgroup of P . Lemma 2.2 implies that either V G < G or HG
i < G. But if V G < G, then

P � V G and so V G ∩ P ≤ Φ(P ). Thus V G is p-nilpotent by the Tate theorem [3, IV, 4.7], which

implies that V G = V , contrary to Claim (7). Hence HG
i < G.
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Final contradiction. Claim (8) implies that PHi 6= G for all i = 2, . . . , t. Hence in view of

Claim (9), HG
2

< G. Assume that P = KL, where K and L are different maximal subgroups of

P . Then the hypothesis and claim (6) imply that PHi = KLHi = HiKL = HiP for all i. On the

other hand, the hypothesis holds for PHi, so PHi is p-soluble by the choice of G. Now Lemma 2.3

implies that G is p-soluble. This contradiction shows that P is cyclic. But P � HG
2

by Claim (9), so

HG
2
∩ P ≤ Φ(P ). Therefore HG

2
is p-nilpotent by the Tate theorem [3, Ch.IV, 4.7]. It follows from

Claim (1) that HG
2

is a p-subgroup. This final contradiction completes the proof.

Proof of Theorem B. Assume that this theorem is false and let G be a counterexample with

|G|+ |E| minimal.

First suppose X = E. Let p be the smallest prime dividing |E| and P a Sylow p-subgroup of E.

Then E is p-nilpotent. Indeed, if |P | = p, it follows directly from Lemma 2.7. If |P | > p, then E is

p-supersoluble by Theorems 3.1 and 3.2, so E is p-nilpotent again by Lemma 2.7. Let V = Op′(E).

Since V is characteristic in E, it is normal in G and the hypothesis holds for (G,V ) and (G/V,E/V )

by Lemma 2.1(1)(4).

The choice of G and Theorem 3.1 implies that P 6= E. Hence V 6= 1, so E/V is hypercyclically

embedded in G/V by the choice of (G,E). It is also clear that V is hypercyclically embedded in

G. Hence E is hypercyclically embedded in G by the Jordan-Hölder theorem for the chief series, a

contradiction. Therefore in the case, when X = E, the theorem is true. Finally, if X = F ∗(E), then

the assertion follows from Lemma 2.11. The result is proved.

4 Applications

Theorems A, B, Theorems 3.1 and 3.2 cover many known results. Hear we list some of them.

Corollary 4.1 (Gaschütz and N. Ito [3, Ch. IV, Theorem 5.7]). If every minimal subgroup of G

is normal in G, then G is soluble and G′ has a normal Sylow 2-subgroup with nilpotent factor group.

Proof. This follows from the fact that G is p-supersoluble for all odd prime p dividing |G| by

Theorem A.

Corollary 4.2 (Buckley [26]). If every minimal subgroup of a group G of odd order is normal

in G, then G supersoluble.

In view of Example 1.5 we get from Theorem 3.2 the following results.

Corollary 4.3 (Huppert [11]). Suppose that for a Sylow p-subgroup P of G we have |P | > p.

Assume that G has a p-complement E such that E permutes with all maximal subgroups of P . Then

G is p-soluble.

Corollary 4.4 (Sergienko [12], Borovikov [13]) Suppose that for a Sylow p-subgroup P of G

we have |P | > p. Assume that G has a p-complement E and there is a natural number k such that

pk < |P | and every subgroup of P of order pk permutes with E. Suppose also that in the case when

p = 2 the Sylow 2-subgroups of G are abelian. Then G is p-supersoluble.

Corollary 4.5 (Guo, Shum and Skiba [14]). Suppose that G = AT , where A is a Hall π-subgroup
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of G and T a nilpotent supplement of A in G. Suppose that A permutes with all subgroups of T .

Then G is p-supersoluble for each prime p 6∈ π such that |Tp| > p for the Sylow p-subgroup Tp of T .

Proof. Let E be the Hall π′-subgroup of T . Then every subgroup H of E permutes with Ax

for all x ∈ G by Remark 1.3. Hence H is σ-semipermutable in G with respect to {A,E}, so G is

p-supersoluble by Theorem A.

Corollary 4.6 (Guo, Shum and Skiba [15]). Suppose that G = AT , where A is a Hall π-subgroup

of G and T a minimal nilpotent supplement of A in G. Suppose that A permutes with all maximal

subgroups of any Hall subgroup of T . Then G is p-supersoluble for each prime p 6∈ π such that

|Tp| > p for the Sylow p-subgroup Tp of T .

In view of Example 1.4 we get from Theorem A the following

Corollary 4.7 (Wei, Guo [10]). Let p be the smallest prime dividing |G| and P be a Sylow

p-subgroup of G. If there a subgroup D of P with 1 < |D| < |P | such that every subgroup H of P

with order |D| or order 2|D| (if |D| = 2) is SS-quasinormal in G, then G is p-nilpotent.

From Example 1.4 and Theorem B we get the following three results.

Corollary 4.8 (Li, Shen and Liu [8]). Let F be a saturated formation containing all supersoluble

groups and E a normal subgroup of G such that G/E ∈ F. Suppose that for every maximal subgroup

of every non-cyclic Sylow subgroup of E is SS-quasinormal in G. Then G ∈ F.

Corollary 4.9 (Li, Shen and Kong [9]). Let E a normal subgroup of G such that G/E is

supersoluble. Suppose that for every maximal subgroup of every Sylow subgroup of F ∗(E) is SS-

quasinormal in G. Then G is supersoluble.

Corollary 4.10 (Li, Shen and Kong [9]). Let F be a saturated formation containing all super-

soluble groups and E a normal subgroup of G such that G/E ∈ F. Suppose that for every maximal

subgroup of every Sylow subgroup of F ∗(E) is SS-quasinormal in G. Then G ∈ F.
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