On σ -semipermutable subgroups of finite groups^{*}

Wenbin Guo

Department of Mathematics, University of Science and Technology of China, Hefei 230026, P. R. China E-mail: wbguo@ustc.edu.cn

Alexander N. Skiba Department of Mathematics, Francisk Skorina Gomel State University, Gomel 246019, Belarus E-mail: alexander.skiba49@gmail.com

Abstract

Let $\sigma = \{\sigma_i | i \in I\}$ be some partition of the set of all primes \mathbb{P} , G a finite group and $\sigma(G) = \{\sigma_i | \sigma_i \cap \pi(G) \neq \emptyset\}$. A set \mathcal{H} of subgroups of G is said to be a *complete Hall* σ -set of G if every member $\neq 1$ of \mathcal{H} is a Hall σ_i -subgroup of G for some $\sigma_i \in \sigma$ and \mathcal{H} contains exact one Hall σ_i -subgroup of G for every $\sigma_i \in \sigma(G)$. A subgroup H of G is said to be: σ -semipermutable in G with respect to \mathcal{H} if $HH_i^x = H_i^x H$ for all $x \in G$ and all $H_i \in \mathcal{H}$ such that $(|H|, |H_i|) = 1$; σ -semipermutable in G if H is σ -semipermutable in G with respect to some complete Hall σ -set of G.

We study the structure of G being based on the assumption that some subgroups of G are σ -semipermutable in G.

1 Introduction

Throughout this paper, all groups are finite and G always denotes a finite group. Moreover, \mathbb{P} is the set of all primes, $p \in \pi \subseteq \mathbb{P}$ and $\pi' = \mathbb{P} \setminus \pi$. If n is an integer, the symbol $\pi(n)$ denotes the set of all primes dividing n; as usual, $\pi(G) = \pi(|G|)$, the set of all primes dividing the order of G.

In what follows, $\sigma = \{\sigma_i | i \in I \subseteq \mathbb{N}\}$ is some partition of \mathbb{P} , that is, $\mathbb{P} = \bigcup_{i \in I} \sigma_i$ and $\sigma_i \cap \sigma_j = \emptyset$ for all $i \neq j$. Let $\sigma(G) = \{\sigma_i | \sigma_i \cap \pi(G) \neq \emptyset\}$.

In the mathematical practice, we often deal with the following two special partitions of \mathbb{P} : $\sigma = \{\{2\}, \{3\}, \ldots\}$ and $\sigma = \{\pi, \pi'\}$ (in particular, $\sigma = \{\{p\}, \{p\}'\}$, where p is a prime).

^{*}Research is supported by a NNSF grant of China (Grant # 11371335) and Wu Wen-Tsun Key Laboratory of Mathematics of Chinese Academy of Sciences.

⁰Keywords: finite group, Hall subgroup, p-soluble group, p-supersoluble group, σ -semipermutable subgroup.

⁰Mathematics Subject Classification (2010): 20D10, 20D15, 20D30

A set \mathcal{H} of subgroups of G is a *complete Hall* σ -set of G [1, 2] if every member $\neq 1$ of \mathcal{H} is a Hall σ_i -subgroup of G for some $\sigma_i \in \sigma$ and \mathcal{H} contains exact one Hall σ_i -subgroup of G for every $\sigma_i \in \sigma(G)$.

Subgroups A and B of G are called *permutable* if AB = BA. In this case they also say that A *permutes* with B.

Definition 1.1. Suppose that G possesses a complete Hall σ -set $\mathcal{H} = \{H_1, \ldots, H_t\}$. A subgroup H of G is said to be: σ -semipermutable in G with respect to \mathcal{H} if $HH_i^x = H_i^x H$ for all $x \in G$ and all i such that $(|H|, |H_i|) = 1$; σ -semipermutable in G if H is σ -semipermutable in G with respect to some complete Hall σ -set of G.

Many known results deal with two special cases of the σ -semipermutability condition: when $\sigma = \{\{2\}, \{3\}, \ldots\}$ and $\sigma = \{\pi, \pi'\}$.

Consider some typical examples.

Example 1.2. A subgroup H of G is said to be *S*-semipermutable in G if H permutes with all Sylow subgroups P of G satisfying (|H|, |P|) = 1. Thus H is *S*-semipermutable in G if and only if it is σ -semipermutable in G where $\sigma = \{\{2\}, \{3\}, \ldots\}$.

The S-semipermutability condition can be found in many known results (see for example Section 3 in [3, VI], Chapter 3 in [4] and also the recent papers [5, 6, 7]).

Before continuing, let's make the following remark.

Remarks 1.3. Let G = AB by a product of subgroups A and B and $K \leq B$. Suppose that A permutes with K^b for all $b \in B$. Then:

(i) For any x = ab, where $a \in A$ and $b \in B$, we have $AK^x = Aa(K^b)a^{-1} = a(K^b)a^{-1}A = K^xA$ and hence A permutes with all conjugates of K.

(ii) $A^{x}K = KA^{x}$ for all $x \in G$. Indeed, $(A^{x}K)^{x^{-1}} = AK^{x^{-1}} = K^{x^{-1}}A$ by Part (i), so $(AK^{x^{-1}})^{x} = A^{x}K = KA^{x}$.

Example 1.4. A subgroup H of G is said to be SS-quasinormal if G has a subgroup T such that HT = G and H permutes with all Sylow subgroups of T. If P is a Sylow subgroups of T satisfying (|H|, |P|) = 1, then P is a Sylow subgroups of G and so H is σ -semipermutable in G, where $\sigma = \{\{2\}, \{3\}, \ldots\}$, by Example 1.2 and Remark 1.3(i). Various applications of SS-quasinormal subgroups can be found in [8, 9, 10] and in many other papers.

Example 1.5. In [11], Huppert proved that if a Sylow *p*-subgroup *P* of *G* of order |P| > p has a complement *T* in *G* and *T* permutes with all maximal subgroups of *P*, then *G* is *p*-soluble. In view of Remark 1.3 the condition "*T* permutes with all maximal subgroups of *P*" is equivalent to the condition "all maximal subgroups of *P* are σ -semipermutable in *G* with respect to $\{P, T\}$ ", where $\sigma = \{\{p\}, \{p\}'\}$. The result of Huppert was developed in the papers [12, 13], where instead of maximal subgroups were considered the subgroups of *P* of fixed order p^k .

Further, the results in [11, 12, 13] were generalized in [14, 15], where instead of a Sylow *p*-subgroup of *G* was considered a Hall subgroup of *G* (see Section 4 below).

Finally, note that all the above-mentioned results deal with two special cases: a "binary" case, when $\sigma = \{\pi, \pi'\}$, and an "n-ary" case, when $\sigma = \{\{2\}, \{3\}, \ldots\}$.

In this paper, we consider the σ -semipermutability condition for arbitrary partition σ of \mathbb{P} .

In fact, our main results are the following two observations.

Theorem A. Let P be a Sylow p-subgroup of G. Suppose that G has a complete Hall σ -set $\mathcal{H} = \{H_1, \ldots, H_t\}$ such that H_1 is p-supersoluble of order divisible by p. Suppose also that there is a natural number k such that $p^k < |P|$ and every subgroup of P of order p^k and every cyclic subgroup of P of order 4 (if $p^k = 2$ and P is non-abelian) are σ -semipermutable in G with respect to \mathcal{H} . Then G is p-supersoluble.

Theorem B. Let $X \leq E$ be normal subgroups of G. Suppose that G has a complete Hall σ -set \mathcal{H} such that every member of \mathcal{H} is supersoluble. Suppose also that for every non-cyclic Sylow subgroup P of X there is a natural number k = k(P) such that $p^k < |P|$ and every subgroup of P of order p^k and every cyclic subgroup of P of order 4 (if $p^k = 2$ and P is non-abelian) are σ -semipermutable in G with respect to \mathcal{H} . If X = E or $X = F^*(E)$, then every chief factor of G below E is cyclic.

In this theorem $F^*(E)$ denotes the generalized Fitting subgroup of E, that is, the product of all normal quasinilpotent subgroups of E.

We prove Theorems A and B in Section 3. In Section 4 we discuss some applications of these two results.

All unexplained notation and terminology are standard. The reader is referred to [16], [17], [18] or [4] if necessary.

2 Base lemmas

Suppose that G has a complete Hall σ -set $\mathcal{H} = \{H_1, \ldots, H_t\}$. For any subgroup H of G we write $H \cap \mathcal{H}$ to denote the set $\{H \cap H_1, \ldots, H \cap H_t\}$. If $H \cap \mathcal{H}$ is a complete Hall σ -set of H, then we say that \mathcal{H} reduces into H.

Lemma 2.1. Suppose that G has a complete Hall σ -set $\mathcal{H} = \{H_1, \ldots, H_t\}$ such that a subgroup H of G is σ -semipermutable with respect to \mathcal{H} . Let R be a normal subgroup of G and $H \leq L \leq G$. Then:

(1) $\mathfrak{H}_0 = \{H_1R/R, \ldots, H_tR/R\}$ is a complete Hall σ -set of G/R. Moreover, if for every prime p dividing |H| and for a Sylow p-subgroup H_p of H we have $H_p \nleq R$, then HR/R is σ -semipermutable in G/N with respect to \mathfrak{H}_0 .

(2) If \mathcal{H} reduces into L, then H is σ -semipermutable in L with respect to $L \cap \mathcal{H}$. In particular, if L is normal in G, then H is σ -semipermutable in L with respect to $L \cap \mathcal{H}$.

- (3) If $L \leq H_i$, for some *i*, then \mathcal{H} reduces into *LR*.
- (4) If $H \leq H_i$, for some *i*, then *H* is σ -semipermutable in *HR*.
- (5) If H is a p-group, where $p \in \pi(H_i) \subseteq \sigma_i$ and R is a σ_i -group, then $|G: N_G(H \cap R)|$ is a

 σ_i -number.

Proof. Without loss of the generality we can assume that H_i is a σ_i -group for all $i = 1, \ldots, t$.

(1) It is clear that $\mathcal{H}_0 = \{H_1R/R, \ldots, H_tR/R\}$ is a complete Hall σ -set of G/R. Let $i \in \{1, \ldots, t\}$ such that $(|HR/R|, |H_iR/R|) = 1$. Let $p \in \pi(H)$ and H_p a Sylow *p*-subgroup of *H*. Assume that p divides $|H_i|$. Then H_i contains a Sylow *p*-subgroup of *G* since it is a Hall subgroup of *G* and so $H_p \leq R$, contrary to the hypothesis. Hence $(|H|, |H_i|) = 1$. By hypothesis, $HH_i^x = H_i^x H$ for all $x \in G$. Then

$$(HR/R)(H_iR/R)^{xR} = HH_i^x R/R$$
$$= H_i^x HR/R = (H_iR/R)^{xR}(HR/R),$$

so HR/R is σ -semipermutable in G/R with respect to \mathcal{H}_0 .

(2) Let $L_i = H_i \cap L$ for all i = 1, ..., t and $\mathcal{L} = \{L_1, ..., L_t\}$. By hypothesis, \mathcal{L} is a complete σ -Hall set of L. Let $i \in \{1, ..., t\}$ such that $(|H|, |L_i|) = 1$ and let $a \in L$. Then $(|H|, |H_i|) = 1$. Hence, by hypothesis, $HH_i^a = H_i^a H$ for all $a \in L$, so $L \cap HH_i^a = H(L \cap H_i^a) = H(L \cap H_i)^a = HL_i^a = L_i^a H$. This shows that H is σ -semipermutable in L with respect to $L \cap \mathcal{H}$.

(3) Since $H_i \cap R$ is a Hall σ_i -subgroup of R and $H_i \cap LR = L(H_i \cap R)$, we have $|LR : H_i \cap LR| = |R : H_i \cap R|$. Hence $H_i \cap LR$ is a Hall σ_i -subgroup of LR. It is clear also that $H_j \cap LR = H_j \cap R$ is a Hall σ_j -subgroup of LR for all $j \neq i$. Hence \mathcal{H} reduces into LR.

(4) This follows from Parts (2) and (3).

(5) For any $j \neq i$, $H_jH = HH_j$ is a subgroup of G and $HH_j \cap R = (H \cap R)(H_j \cap R) = H \cap R$, so $H_j \leq N_G(H \cap R)$. Hence $|G: N_G(H \cap R)|$ is a σ_i -number.

Lemma 2.2 (See Kegel [19]). Let A and B be subgroups of G such that $G \neq AB$ and $AB^x = B^x A$, for all $x \in G$. Then G has a proper normal subgroup N such that either $A \leq N$ or $B \leq N$.

Lemma 2.3. Let P be a Sylow p-subgroup of G and $\mathcal{H} = \{H_1, \ldots, H_t\}$ a complete Hall σ -set of G such that $p \in \pi(H_1)$. Suppose that for any $x \in G$, P^xH_i is a p-soluble subgroup of G for all $i = 2, \ldots, t$. Then G is p-soluble.

Proof. Assume that this is false and let G be a counterexample of minimal order. First note that the hypothesis holds for every normal subgroup R of G. Therefore every proper normal subgroup of G is p-soluble by the choice of G. Moreover, the choice of G and the hypothesis imply that $PH_i \neq G$ for all i = 2, ..., t. By Lemma 2.2, we have either $P^G \neq G$ or $(H_2)^G \neq G$. Hence G has a proper non-identity normal subgroup R. But then R is p-soluble. On the other hand, the hypothesis holds for G/R, so G/R is also p-soluble by the choice of G. This implies that G is p-soluble.

A group G is said to be strictly p-closed [20, p.5] whenever G_p , a Sylow p-subgroup of G, is normal in G with G/G_p abelian of exponent dividing p-1. A normal subgroup H of G is called hypercyclically embedded in G if every chief factor of G below H is cyclic.

Lemma 2.4 A normal p-subgroup P of G is hypercyclically embedded in G if and only if $G/C_G(P)$ is strictly p-closed.

Proof. If P is hypercyclically embedded in G, then for any chief factor H/K of G below P,

 $G/C_G(H/K)$ is abelian of exponent dividing p-1. Hence G/C, where C the intersection the centralizers of all such factors, is also an abelian group of exponent dividing p-1. On the other hand, $C/C_G(P)$ is a p-group by [21, Ch.5, Corollary 3.3]. Hence $G/C_G(P)$ is strictly p-closed.

Now assume that $G/C_G(P)$ is strictly *p*-closed and let H/K be any chief factor below *P*. Since $C_G(P) \leq C_G(H/K)$, $G/C_G(H/K)$ is strictly *p*-closed. But since $O_p(G/C_G(H/K)) = 1$ [16, Ch.A, Lemma 13.6], $G/C_G(H/K)$ is abelian of exponent dividing p-1. It follows from [20, Ch.1, Theorem 1.4] that |H/K| = p. Thus *P* is hypercyclically embedded in *G*.

Let P be a p-group. If P is not a non-abelian 2-group, then we use $\Omega(P)$ to denote the subgroup $\Omega_1(P)$. Otherwise, $\Omega(P) = \Omega_2(P)$.

Lemma 2.5 (See [22, Lemma 2.12]). Let P be a normal p-subgroup of G and $D = \Omega(C)$, where C is a Thompson critical subgroup of P. If either $P/\Phi(P)$ is hypercyclically embedded in $G/\Phi(P)$ or D is hypercyclically embedded in G, then P is also hypercyclically embedded in G.

Lemma 2.6. Let C be a Thompson critical subgroup of a p-group P. Then the group $D = \Omega(C)$ is of exponent p if p is odd prime or exponent 4 if P is non-abelian 2-group. Moreover, every non-trivial p'-automorphism of P induces a non-trivial automorphism of D.

Proof. The first assertion follows from [21, Ch.5, Theorem 3.11] and [22, Lemma 2.11]. The second one directly follows from [21, Ch. 5, Theorem 3.11].

Lemma 2.7. Let *E* be a normal subgroup of *G* and *P* a Sylow *p*-subgroup of *E* such that (p-1, |G|) = 1. If either *P* is cyclic or *G* is *p*-supersoluble, then *E* is *p*-nilpotent and $E/O_{p'}(E) \leq Z_{\infty}(G/O_{p'}(E))$.

Proof. First note that in view of [3, Ch.IV, Theorem 5.4] and the condition (p-1, |G|) = 1, E is p-nilpotent. Let H/K be any chief factor of G such that $O_{p'}(E) \leq K < H \leq E$. Then |H/K| = p, so $G/C_G(H/K)$ divides p-1. But by hypothesis, (p-1, |G|) = 1, so $C_G(H/K) = G$. Thus $E/O_{p'}(E) \leq Z_{\infty}(G/O_{p'}(E))$.

The following lemma is well-known (see, for example, [18, Lemma 2.1.6]).

Lemma 2.8. If G is p-supersoluble and $O_{p'}(G) = 1$, then p is the largest prime dividing |G|, G is supersoluble and $F(G) = O_p(G)$ is a Sylow p-subgroup of G.

Lemma 2.9 (See [23]). Let H, K and N be pairwise permutable subgroups of G and H is a Hall subgroup of G, then $N \cap HK = (N \cap H)(N \cap K)$.

The following fact is also well-known (see for example [4, Ch.1, Lemma 5.35(6)]).

Lemma 2.10 If H is a subnormal π -subgroup of G, then $H \leq O_{\pi}(G)$.

Lemma 2.11 (See [24, Theorem C]). Let E be a normal subgroup of G. If $F^*(E)$ is hypercyclically embedded in G, then E is hypercyclically embedded in G.

3 Proofs of Theorems A and B

Theorem A is a corollary of the following two general results.

Theorem 3.1. Let E be a p-soluble normal subgroup of G and P a Sylow p-subgroup of E. Suppose that G has a complete Hall σ -set $\mathcal{H} = \{H_1, \ldots, H_t\}$ such that H_1 is p-supersoluble of order divisible by p. Suppose also that there is a natural number k such that $p^k < |P|$ and every subgroup of P of order p^k and every cyclic subgroup of P of order 4 (if $p^k = 2$ and P is non-abelian) are σ -semipermutable in G with respect to \mathcal{H} . Then $E/O_{p'}(E)$ is hypercyclically embedded in $G/O_{p'}(E)$.

Theorem 3.2. Let P be a Sylow p-subgroup of G. Suppose that G has a complete Hall σ -set $\mathcal{H} = \{H_1, \ldots, H_t\}$ such that H_1 is p-supersoluble of order divisible by p. Suppose also that there is a natural number k such that $p^k < |P|$ and every subgroup of P of order p^k and every cyclic subgroup of P of order 4 (if $p^k = 2$ and P is non-abelian) are σ -semipermutable in G with respect to \mathcal{H} . Then G is p-soluble.

Proof of Theorem 3.1. Assume that this theorem is false and let G be a counterexample with |G| + |E| minimal. Let $|P| = p^n$. Then:

(1) $O_{p'}(N) = 1$ for every subnormal subgroup N of E. Hence $O_p(G) \neq 1$.

Suppose that for some subnormal subgroup N of G contained in E we have $O_{p'}(N) \neq 1$. Then $O_{p'}(N)$ is subnormal in G and so $O_{p'}(N) \leq O_{p'}(G)$ by Lemma 2.10. On the other hand, by Lemma 2.1(1), the hypothesis holds for $(G/(E \cap O_{p'}(G)), E/(E \cap O_{p'}(G))) = (G/O_{p'}(E), E/O_{p'}(E))$. Hence $E/O_{p'}(E)$ is hypercyclically embedded in $G/O_{p'}(E)$ by the choice of G, a contradiction. Thus we have (1).

(2) Let $U = O_p(E)$. Then U is not hypercyclically embedded in G.

Assume that U is hypercyclically embedded in G. Since E is p-soluble by hypothesis and $O_{p'}(E) =$ 1 by Claim (1), $U \neq 1$ and $C_E(U) \leq U$ by the Hall-Higman lemma [3, Ch.VI, Lemma 6.5]. But since U is hypercyclically embedded in G, $G/C_G(U)$ is strictly p-closed by Lemma 2.4 and so $G/C_G(U)$ is supersoluble by [20, Ch.1, Theorem 1.9]. Now in view of the G-isomorphism $EC_G(U)/C_G(U) \simeq$ $E/E \cap C_G(U)$, we conclude that E is hypercyclically embedded in G, a contradiction.

(3) k > 1.

Assume that k = 1. We show that in this case U is hypercyclically embedded in G. Assume that this is false. Let U/R be a chief factor of G. Then by the choice of G we have R is hypercyclically embedded in G, so for any normal subgroup V of G such that V < U we have $V \leq R$ and U/R is not cyclic. Let B be a Thompson critical subgroup of U and $\Omega = \Omega(B)$. We claim that $\Omega = U$. Indeed, if $\Omega < U$, then $\Omega \leq R$ and so Ω is hypercyclically embedded in G. Hence U is hypercyclically embedded in by Lemma 2.5, a contradiction. Thus $\Omega = U$. Since $U \leq H_1$ and H_1 is p-supersoluble by hypothesis, there is a subgroup $L/R \leq U/R$ of order p such that L/R is normal in H_1/R . Let $x \in L \setminus R$ and $H = \langle x \rangle$. Since $\Omega = U$ and $L \leq U$, |H| is either prime or 4. Then, by hypothesis, H is σ -semipermutable in G with respect to \mathcal{H} . Hence HR/R is σ -semipermutable in G/R with respect to $\{H_1R/R, \ldots, H_tR/R\}$ by Lemma 2.1(1). Then, by Lemma 2.1(5), $|G/R : N_{G/R}(HR/R)| = |G/R :$ $N_{G/R}(L/R)|$ is a $\pi(H_1)$ -number. It follows that L/R is normal in G/R, and so U/R = L/R is cyclic, a contradiction. This shows that U is hypercyclically embedded in G, contrary to Claim (2). Hence we have (3). (4) $|N| \leq p^k$ for any minimal normal subgroup N of G contained in P.

Indeed, suppose that $|N| > p^k$. Then there exists a non-identity proper subgroup H of N such that H is normal in H_1 and H is σ -semipermutable in G with respect to \mathcal{H} . But then H is normal in G by Lemma 2.1(5), which contradicts the minimality of N.

(5) If P is a non-abelian 2-group, then k > 2.

Assume that k = 2. We shall show that in this case every subgroup H of P of order 2 is σ -semipermutable in G with respect to \mathcal{H} . This means that k = 1 is possible, which will contradicts Claim (3).

First show that for any subgroup $V = A \times B \leq P$ where |A| = 2 = |B|, if both V and A are σ -semipermutable in G with respect to \mathcal{H} , then B is σ -semipermutable in G with respect to \mathcal{H} . Indeed, let i > 1 and $x \in G$. Then AH_i^x and VH_i^x are subgroups of G and $|VH_i^x : AH_i^x| = 2$. Hence VH_i^x is 2-nilpotent, so $H_i^x B = H_i^x B$ since H_i^x is normal in $H_i^x V$. Similarly, if $V = \langle a \rangle$ is a cyclic subgroup of order 4, then $\langle a^2 \rangle$ is σ -semipermutable in G with respect to \mathcal{H} .

Since P is a non-abelian 2-group, P has a cyclic subgroup $H = \langle a \rangle$ of order 4. Then H is σ semipermutable in G with respect to \mathcal{H} by hypothesis, so $A = \langle a^2 \rangle$ is also is σ -semipermutable in
G with respect to \mathcal{H} . Then every subgroup B of Z(P) of order 2 is σ -semipermutable in G with
respect to \mathcal{H} , and so every subgroup of P of order 2 is σ -semipermutable in G with respect to \mathcal{H} .

(6) If N is a minimal normal subgroup of G contained in P, then $(E/N)/O_{p'}(E/N)$ is hypercyclically embedded in $(G/N)/O_{p'}(E/N)$.

It is enough to show that the hypothesis holds for G/N. Since E/N is p-soluble, we can assume that |P/N| > p.

If either p > 2 and $|N| < p^k$ or p = 2 and $|N| < 2^{k-1}$, then it is clear by Lemma 2.1(1). Now let either p > 2 and $|N| = p^k$ or p = 2 and $|N| \in \{2^k, 2^{k-1}\}$.

In view of Claim (3), k > 1. Suppose that $|N| = p^k$. Then N is non-cyclic and so every subgroup of G containing N is not cyclic. Let $N \leq K \leq P$, where |K:N| = p. Since K is non-cyclic, it has a maximal subgroup $L \neq N$. Consider LN/N. Since L is σ -semipermutable in G with respect to \mathcal{H} , LN/N is also σ -semipermutable in G/N with respect to $\{H_1R/R, \ldots, H_tR/R\}$ by Lemma 2.1(1). Therefore, if P/N is abelian, the hypothesis is true for (G/N, P/N). Next suppose that P/N is a non-abelian 2-group.

Then P is non-abelian and so k > 2 by Claim (5). Since |P/N| > 2, $n-k \ge 2$. We may, therefore, let $N \le K \le V \le P$ such that |V : N| = 4, V/N is cyclic and |V : K| = 2. Since V/N is not elementary, $N \nleq \Phi(V)$. Hence for some maximal subgroup K_1 of V we have $V = K_1N$. Suppose that K_1 is cyclic. Then $|K_1 \cap N| = 2$ and $2 = |V : K_1| = |K_1N : K_1| = |N : K_1 \cap N|$. This implies that |N| = 4. But then k = 2, a contradiction. Hence K_1 is not cyclic. Let S and R be two different maximal subgroups of K_1 . Then $K_1 = SR$. If $SN \le K$ and $RN \le K$, then $K_1 = SR \le K$, which contradicts the choice of K_1 . Now since N/N < K/N < V/N where K/N is a maximal subgroup of V/N, we have that $V/N = K_1N/N = SRN/N = (SN/N)(RN/N)$. But since V/N is cyclic, eight V/N = SN/N or V/N = RN/N. Without loss of generality, we may assume that NS = V. Since S is a maximal subgroup of K_1 and K_1 is a maximal subgroup of V, $|S| = |N| = p^k$. Then S is σ semipermutable in G with respect to \mathcal{H} . Hence by Lemma 2.1(1), V/N is σ -semipermutable in G/Nwith respect to $\{H_1R/R, \ldots, H_tR/R\}$. This shows that that the hypothesis is true for (G/N, P/N).

Now suppose that $2^{k-1} = |N|$. If |N| > 2, then N is not cyclic and as above one can show that every subgroup \overline{H} of P/N with order 2 and every cyclic subgroup of P/N of order 4 (if P/N is a non-abelian 2-group) is σ -semipermutable in G/N with respect to $\{H_1R/R, \ldots, H_tR/R\}$. Finally, if |N| = 2 and P/N is non-abelian, then P is non-abelian and k = 2, which contradicts Claim (5). Thus (6) holds.

(7) $\Phi(U) = 1.$

Assume that for some minimal normal subgroup N of G we have $N \leq \Phi(U)$. Then, by Claim (6), every chief factor of G/N between $O_{p'}(E/N)$ and E/N is cyclic. Note that if $V/N = O_{p'}(E/N) \neq 1$ and W is a p-complement in V, then by the Frattini argument, $G = VN_G(W) = NWN_G(W) =$ $N_G(W)$ since $N \leq \Phi(O_p(E)) \leq \Phi(G)$. Hence W = 1 by Claim (1). Therefore every chief factor of G between E and N is cyclic. Now applying Lemma 2.5, we deduce that E is hypercyclically embedded in G, a contradiction. Hence we have (7).

Final contradiction. In view of Claims (2) and (7), U is an elementary group and for some minimal normal subgroup N of G contained in U we have |N| > p. Let S be a complement of N in U. Since $N \leq H_1$ and $|N| \leq p^k$ by (4), there are a maximal subgroup V of N and a subgroup W of S such that V is normal in H_1 and $|VW| = p^k$. Then VW is σ -semipermutable in G with respect to \mathcal{H} by hypothesis, so $V = VW \cap N$ is normal in G by Lemma 2.1(5). Thus V = 1, and so |N| = p. This final contradiction completes the proof of the result.

Proof of Theorem 3.2. Assume that this theorem is false and let G be a counterexample of minimal order. Without loss of generality we can assume that $P \leq H_1$ and H_i is a σ_i -group for all $i = 1, \ldots, t$. Let $|P| = p^n$ and V be a normal subgroup of G such that G/V is a simple group.

(1) $O_{p'}(N) = 1$ for any subnormal subgroup N of G (See Claim (1) in the proof of Theorem 3.1).

(2) $P \nleq N$ for any proper normal subgroup N of G (In view of Lemma 2.1(4), this follows from the choice of G).

(3) If the hypothesis holds for V, then G/V is non-abelian, $O_p(V)$ is a Sylow p-subgroup of V and $O_p(V)$ is hypercyclically embedded in G.

The choice of G implies that V is p-soluble. Hence V is p-supersoluble by Theorem A. Since $O_{p'}(V) = 1$ by Claim (1), V is supersoluble and $O_p(V)$ is a Sylow p-subgroup of V by Lemma 2.8. It is clear that $O_p(V)$ is normal in G, so $O_p(V)$ is hypercyclically embedded in G by Theorem 3.1.

(4) k > 1.

Assume that k = 1. Then:

(a) For a Sylow *p*-subgroup V_p of *V* we have $V_p \nleq Z_{\infty}(G)$.

Indeed, assume that $V_p \leq Z_{\infty}(G)$. By [3, Ch. IV, Theorem 5.4], G has a p-closed Schmidt subgroup A and $A = A_p \rtimes A_q$, where the Sylow subgroup A_p of A is of exponent p or exponent 4 (if p = 2 and A_2 is non-abelian), and if $\Phi = \Phi(A_p)$, then A_p/Φ is a non-central chief factor of A. Without loss of generality, we may assume that $A_p \leq P$. Then $V_p \cap A \leq Z_{\infty}(A) \cap A_p \leq \Phi$ and so there exists a subgroup H of A_p such that $H \nleq V$ and H is a cyclic group of order p or of order 4 (if p = 2 and A_2 is non-abelian). By hypothesis, H is σ -semipermutable in G, so HV/V is σ -semipermutable subgroup of G/V by Lemma 2.1(1). Note that $G \neq HH_2$ (In fact, if |H| = p, it is clear since |P| > p. If $HH_2 = G$ and H is a cyclic group of order 4, then G is p-soluble, contrary to the choice of G). Hence G/V is not simple by Lemma 2.2, a contradiction. Hence we have (a).

(b) If $|V_p| = p$, then V is not p-soluble, and so $H_1V = G$.

Indeed, if V is p-soluble, then V_p is normal in G by Claim (1). Hence V_p and $C_G(V_p)$ are normal in G. Claim (a) implies that $P \leq C_G(V_p) < G$, which contradicts Claim (2). Therefore V is not p-soluble. But since the hypothesis holds for H_1V by Lemma 2.1(2)(3), the choice of G implies that $H_1V = G$.

(c) $|V_p| \neq p$. Hence the hypothesis holds for V by Lemma 2.1(2) and $|P| > p^2$.

Assume that $|V_p| = p$. If $V_p = V \cap P \leq \Phi(P)$, then V is p-nilpotent by the Tate theorem [3, Ch. IV, Theorem 4.7], contrary to (1). Hence V_p has a complement W in P. Let L be a subgroup of order p in W. Assume that L < W. Then the hypothesis holds for VW by Lemma 2.1(2)(3), so VW is p-soluble, contrary to Claim (b). Therefore |W| = p, so $|P| = p^2$ and $P = V_pW$ is not cyclic.

Let $E = (H_2 \cdots H_t)^G$. Then in view of Claim (b), we can assume, without of loss of generality, that $E \leq V$. We show that there is a subgroup W_0 of P order p such that $W_0 \nleq V$ and $W_0 \nleq C_G(E)$. Indeed, suppose that $W \leq C_G(E)$. Note that $C_G(E) \neq G$ by Claim (1). Hence $V_p \nleq C_G(E)$ by Claim (2). It follows Claim (1) that $C_G(E) \cap V = 1$. Consequently $G = C_G(E) \times V$. Let $W = \langle a \rangle$, $V_p = \langle b \rangle$ and $W_0 = \langle ab \rangle$. Then $W_0 \cap C_G(E) = 1 = W \cap V$.

Now let i > 1. Then $W_0H_i^x = H_i^xW_0$ for all $x \in G$ by hypothesis. Let $L = H_i^{W_0} \cap W_0^{H_i}$. Then L is a subnormal subgroup of G by [25, Theorem 7.2.5]. Suppose that $L \neq 1$ and let L_0 be a minimal subnormal subgroup of G contained in L. Then $S = L_0 \cap W_0$ is a Sylow p-subgroup of L_0 since $L \leq W_0H_i$. Moreover, in view of Claim (1) and Lemma 2.10, $S \neq 1$, and so $W_0 = S$. If L_0 is abelian, then $S = W_0 \leq O_p(G)$, where $O_p(G) < P$ by Claim (2). Hence $W_0 = O_p(G) \leq V$. Consequently $W_0 \leq C_G(V) \leq C_G(E)$. This contradiction shows that L_0 is non-abelian. But then $L_0 = L_0^G$ is a minimal normal subgroup of G by Claim (2) since $|P| = p^2$, which again implies that $W_0 \leq C_G(E)$. This contradiction shows that L = 1. Therefore for every $x \in G$ and every i > 1 we have $(H_i^x)^{W_0} \cap W_0^{H_i^x} = 1$, and so

$$[W_0, H_i^x] \le [(H_i^x)^{W_0}, W_0^{H_i^x}] = 1.$$

Therefore $W_0 \leq C_G(E)$, a contradiction. Hence we have (c).

Final contradiction for (4). Let $C = C_G(V_p)$. By Claims (3) and (c), V_p is normal in G and it is hypercyclically embedded in G. Hence G/C is strictly *p*-closed by Lemma 2.4. If $V_p \not\leq Z(G)$, then there is a normal maximal subgroup M of G such that $C \leq M$. But since $|P| > p^2$, the hypothesis holds for M, so M is *p*-soluble and so G does. This contradiction shows that $V_p \leq Z(G)$, which contradicts Claim (a). Hence we have (4). (5) $|N| \le p^k$ for any minimal normal subgroup N of G contained in P (See Claim (4) in the proof of Theorem 3.1).

(6) k = n - 1.

Assume that k < n-1. Then $VP \neq G$. Indeed, if VP = G, then |G:V| = p and the hypothesis holds for V. Hence V is p-soluble by the choice of G and so G is p-soluble, a contradiction. By Lemma 2.1(4) the hypothesis holds for VP, so VP is p-soluble by the choice of G since $VP \neq G$. Therefore V is p-soluble, so $O_p(V) \neq 1$ by Claim (1). Let N be a minimal normal subgroup of G contained in $O_p(V)$. It is clear that $N \neq P$. Since k < n-1, |P:N| > p by Claim (5). Now repeating some arguments in Claim (6) of the proof of Theorem A one can show that the hypothesis holds for G/N, so G/N is p-soluble by the choice of G. But then G is p-soluble, a contradiction. Hence we have (6).

(7) If $O_p(G) \neq 1$, then P is not cyclic.

Suppose that P is cyclic. Let L be a minimal normal subgroup of G contained in $O_p(G) \leq P$. Assume that $C_G(L) = G$. Then $L \leq Z(G)$. Let $N = N_G(P)$. If $P \leq Z(N)$, then G is p-nilpotent by Burnside's theorem [3, Ch. IV, Theorem 2.6], a contradiction. Hence $N \neq C_G(P)$. Let $x \in N \setminus C_G(P)$ with (|x|, |P|) = 1 and $K = P \rtimes \langle x \rangle$. By [3, Ch. III, Theorem 13.4], $P = [K, P] \times (P \cap Z(K))$. Since $L \leq P \cap Z(K)$ and P is cyclic, it follows that $P = P \cap Z(K)$ and so $x \in C_K(P)$. This contradiction shows that $C_G(L) \neq G$.

Since P is cyclic, |L| = p. Hence $G/C_G(L)$ is a cyclic group of order dividing p-1. But then $P \leq C_G(L)$, so $C_G(L)$ is p-soluble by the choice of G. Hence G is p-soluble. This contradiction shows that we have (7).

(8) $G \neq PH_i$ for any i > 1.

Without lose of generality, assume that $G = PH_2$. Let V_1, \ldots, V_r be the set of all maximal subgroups of P and $D_i = V_i^G$. Then $D_i = V_i^{PH_2} = V_i^{H_2} \le V_i H_2 = H_2 V_i$ by Claim (6).

Suppose that for some i, say i = 1, we have $D_1P < G$. Then D_1P is p-soluble by the choice of G. Hence $O_p(G) \neq 1$. By Claim (7), P is not cyclic. Moreover, for any i > 1, we have that $G = P^G = D_1D_i$. Hence for all such i > 1, we have that $D_iP = G$ and so $D_i = V_iH_2$. It is also clear that $V_2 \cap \cdots \cap V_r = \Phi(P)$. Let $E = V_2H_2 \cap \cdots \cap V_rH_2$. Then

$$P \cap E = (P \cap V_2H_2) \cap \cdots \cap (P \cap V_rH_2) == V_2(P \cap H_2) \cap \cdots \cap V_r(P \cap H_2) = V_2 \cap \cdots \cap V_r = \Phi(P).$$

Hence E is p-nilpotent by the Tate theorem [3, Ch. IV, Theorem 4.7]. It follows that $1 < H_2 \leq O_{p'}(G)$, contrary to Claim (1). Hence we have (8).

(9) $P^G = G$, so $P \nleq H_i^G < G$ for all i > 1.

First note that $P^G = G$ by Claim (2) and $PH_i \neq G$ by Claim (8). If P is not cyclic, then $PH_i^x = H_i^x P$ for all $x \in G$. Hence $H_i^G < G$ by Lemma 2.2. Now assume that P is cyclic and V be a maximal subgroup of P. Lemma 2.2 implies that either $V^G < G$ or $H_i^G < G$. But if $V^G < G$, then $P \nleq V^G$ and so $V^G \cap P \leq \Phi(P)$. Thus V^G is p-nilpotent by the Tate theorem [3, IV, 4.7], which implies that $V^G = V$, contrary to Claim (7). Hence $H_i^G < G$.

Final contradiction. Claim (8) implies that $PH_i \neq G$ for all i = 2, ..., t. Hence in view of Claim (9), $H_2^G < G$. Assume that P = KL, where K and L are different maximal subgroups of P. Then the hypothesis and claim (6) imply that $PH_i = KLH_i = H_iKL = H_iP$ for all i. On the other hand, the hypothesis holds for PH_i , so PH_i is p-soluble by the choice of G. Now Lemma 2.3 implies that G is p-soluble. This contradiction shows that P is cyclic. But $P \neq H_2^G$ by Claim (9), so $H_2^G \cap P \leq \Phi(P)$. Therefore H_2^G is p-nilpotent by the Tate theorem [3, Ch.IV, 4.7]. It follows from Claim (1) that H_2^G is a p-subgroup. This final contradiction completes the proof.

Proof of Theorem B. Assume that this theorem is false and let G be a counterexample with |G| + |E| minimal.

First suppose X = E. Let p be the smallest prime dividing |E| and P a Sylow p-subgroup of E. Then E is p-nilpotent. Indeed, if |P| = p, it follows directly from Lemma 2.7. If |P| > p, then E is p-supersoluble by Theorems 3.1 and 3.2, so E is p-nilpotent again by Lemma 2.7. Let $V = O_{p'}(E)$. Since V is characteristic in E, it is normal in G and the hypothesis holds for (G, V) and (G/V, E/V) by Lemma 2.1(1)(4).

The choice of G and Theorem 3.1 implies that $P \neq E$. Hence $V \neq 1$, so E/V is hypercyclically embedded in G/V by the choice of (G, E). It is also clear that V is hypercyclically embedded in G. Hence E is hypercyclically embedded in G by the Jordan-Hölder theorem for the chief series, a contradiction. Therefore in the case, when X = E, the theorem is true. Finally, if $X = F^*(E)$, then the assertion follows from Lemma 2.11. The result is proved.

4 Applications

Theorems A, B, Theorems 3.1 and 3.2 cover many known results. Hear we list some of them.

Corollary 4.1 (Gaschütz and N. Ito [3, Ch. IV, Theorem 5.7]). If every minimal subgroup of G is normal in G, then G is soluble and G' has a normal Sylow 2-subgroup with nilpotent factor group.

Proof. This follows from the fact that G is p-supersoluble for all odd prime p dividing |G| by Theorem A.

Corollary 4.2 (Buckley [26]). If every minimal subgroup of a group G of odd order is normal in G, then G supersoluble.

In view of Example 1.5 we get from Theorem 3.2 the following results.

Corollary 4.3 (Huppert [11]). Suppose that for a Sylow *p*-subgroup P of G we have |P| > p. Assume that G has a *p*-complement E such that E permutes with all maximal subgroups of P. Then G is *p*-soluble.

Corollary 4.4 (Sergienko [12], Borovikov [13]) Suppose that for a Sylow *p*-subgroup *P* of *G* we have |P| > p. Assume that *G* has a *p*-complement *E* and there is a natural number *k* such that $p^k < |P|$ and every subgroup of *P* of order p^k permutes with *E*. Suppose also that in the case when p = 2 the Sylow 2-subgroups of *G* are abelian. Then *G* is *p*-supersoluble.

Corollary 4.5 (Guo, Shum and Skiba [14]). Suppose that G = AT, where A is a Hall π -subgroup

of G and T a nilpotent supplement of A in G. Suppose that A permutes with all subgroups of T. Then G is p-supersoluble for each prime $p \notin \pi$ such that $|T_p| > p$ for the Sylow p-subgroup T_p of T.

Proof. Let *E* be the Hall π' -subgroup of *T*. Then every subgroup *H* of *E* permutes with A^x for all $x \in G$ by Remark 1.3. Hence *H* is σ -semipermutable in *G* with respect to $\{A, E\}$, so *G* is *p*-supersoluble by Theorem A.

Corollary 4.6 (Guo, Shum and Skiba [15]). Suppose that G = AT, where A is a Hall π -subgroup of G and T a minimal nilpotent supplement of A in G. Suppose that A permutes with all maximal subgroups of any Hall subgroup of T. Then G is p-supersoluble for each prime $p \notin \pi$ such that $|T_p| > p$ for the Sylow p-subgroup T_p of T.

In view of Example 1.4 we get from Theorem A the following

Corollary 4.7 (Wei, Guo [10]). Let p be the smallest prime dividing |G| and P be a Sylow p-subgroup of G. If there a subgroup D of P with 1 < |D| < |P| such that every subgroup H of P with order |D| or order 2|D| (if |D| = 2) is SS-quasinormal in G, then G is p-nilpotent.

From Example 1.4 and Theorem B we get the following three results.

Corollary 4.8 (Li, Shen and Liu [8]). Let \mathcal{F} be a saturated formation containing all supersoluble groups and E a normal subgroup of G such that $G/E \in \mathcal{F}$. Suppose that for every maximal subgroup of every non-cyclic Sylow subgroup of E is SS-quasinormal in G. Then $G \in \mathcal{F}$.

Corollary 4.9 (Li, Shen and Kong [9]). Let E a normal subgroup of G such that G/E is supersoluble. Suppose that for every maximal subgroup of every Sylow subgroup of $F^*(E)$ is SS-quasinormal in G. Then G is supersoluble.

Corollary 4.10 (Li, Shen and Kong [9]). Let \mathcal{F} be a saturated formation containing all supersoluble groups and E a normal subgroup of G such that $G/E \in \mathcal{F}$. Suppose that for every maximal subgroup of every Sylow subgroup of $F^*(E)$ is SS-quasinormal in G. Then $G \in \mathcal{F}$.

References

- A. N. Skiba, A generalization of a Hall theorem, J. Algebra and its Application, 15(4) (2015), 21–36.
- [2] W. Guo, A. N. Skiba, Groups with maximal subgroups of Sylow subgroups σ -permutably embedded, DOI: 10.1515/jgth-2016-0031.
- [3] B. Huppert, Endliche Gruppen I, Springer-Verlag, Berlin, Heidelberg, New York, 1967.
- [4] W. Guo, Structure Theory for Canonical Classes of Finite Groups, Springer, 2015.
- [5] Y. Li, X. Li and Y. Wang, On s-semipermutable subgroups of finite groups, Acta Mathematica Sinica, English Ser., 26 (11) (2010), 2215–2222.
- [6] I. M. Isaacs, Semipermutable π -subgroups, Arch. Math. (Basel), **102** (2014), 1–6.

- [7] Ya. Bercovich, I. M. Isaacs, p-supersolvability and actions on p-groups stabilizing certain subgroups, J. Algebra, 414 (2014), 82-94.
- [8] S. Li, Z. Shen, J. Liu, X. Liu, The influence of SS-quasinormality of some subgroups on the structure of finite group, J. Algebra, **319** (2008), 4275–4287.
- [9] S. Li, Z. Shen, X. Kong, On SS-quasinormal subgroups of finite groups, Comm. Algebra, 36 (2008), 4436–4447.
- [10] X. Wei, X. Guo, On SS-quasinormal subgroups and the structure of finite groups, Science China. Mathematics, 54 (3) (2011), 449–456.
- [11] B. Huppert, Zur Sylow struktur Auflösbarer Gruppen, Arch. Math., **12** (1961), 161–169.
- [12] V. I. Sergienko, A criterion for sulubility of finite groups, Mat. Zam. 9 (1971), 375-383 (Russian, English translation in Math. Notes, 9 (1971), 216–220.
- [13] M. T. Borovikov, Groups with permutable subgroups of mutually simple orders, Problems Alg., 5 (1990), 80–82.
- [14] W. Guo, K. P. Shum, A. N. Skiba, Schur-Zassenhaus theorem for X-permutable subgroups, Algebra Colloquium, 15 (2008), 185–192.
- [15] W. Guo, K. P. Shum, A. N. Skiba, Finite groups with some given systems of X_m -semipermutable subgroups, Math. Nachr. **283** (2010), 1603–1612.
- [16] K. Doerk, T. Hawkes, *Finite Soluble Groups*, Berlin–New York: Walter de Gruyter, 1992.
- [17] A. Ballester-Bolinches, L. M. Ezquerro, *Classes of Finite Groups*, Springer, Dordrecht, 2006.
- [18] A. Ballester-Bolinches, R. Esteban-Romero, M. Asaad, Products of Finite Groups, Walter de Gruyter, Berlin, New York, 2010.
- [19] O. H. Kegel, Produkte nilpotenter Gruppen, Arch. Math., **12** (1961), 90–93.
- [20] M. Weinstein ed., Between Nilpotent and Solvable, Polygonal Publishing House, 1982.
- [21] D. Gorenstein, *Finite Groups*, Harper & Row Publishers, New York, Evanston, London, 1968.
- [22] X. Chen, W. Guo, and A.N. Skiba, Some conditions under which a finite group belongs a Baer local formation, *Comm. Algebra*, 42 (2014), 4188–4205.
- [23] B. N. Knyagina, V. S. Monakhov. On π' -properties of finite groups having a Hall π -subgroup, Siberian Math. J., **522** (2011), 398–309.
- [24] A. N. Skiba, A characterization of hypercyclically embedded subgroups of finite groups, J. Pure and Applied Algebra, 215 (2011), 257-261.

- [25] J. C. Lennox, S. E. Stonehewer, Subnormal Subgroups of Groups, Clarendon Press, Oxford, 1987.
- [26] J. Buckley, Finite groups whose minimal subgroups are normal, Math. Z., 116 (1970), 15–17.