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1. Introduction

Throughout this paper, all groups are finite. We write R(G) to denote the largest
soluble normal subgroup of the group G.

Let § be a class of groups. If 1 € §, then we write G¥ to denote the inter-
section of all normal subgroups N of G with G/N € F. The class § is called
a formation if either § = @ or 1 € § and every homomorphic image of G/GS
belongs to § for every group G.

The most useful for applications of the formation theory (in particular, in the
theory of formal languages [7, 8, 9, 28, 14] and in the theory of lattices of group
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classes [10, 13, 15, 27, 33, 40]) are so-called saturated and solubly saturated
formations.

Recall that the formation § is said to be: saturated if G € §F whenever
G/®(G) € F; solubly saturated if G € § whenever G/®(R(G)) € §.

A non-empty set © of formations is called a complete lattice of formations
[33] if the intersection of every set of formations in © belongs to © and there is
a formation § in © such that 9t C § for each other formation 9t in ©. In what
follows, © denotes a complete lattice of formations.

It is clear that the sets of all formations F, of all saturated formations £
and of all solubly saturated formations C are examples of complete lattices of
formations. These three lattices are algebraic and modular (see [33, 35]). Let’s
also note, in passing, that the modularity of these lattices has found wide ap-
plications in questions of classification of formations [27, 33, 15, 40]. Further,
many other classes of algebraic and modular lattices of formations have been
found (see, in particular, [1, 28, 19, 30, 21, 37, 29, 38, 39] and the recent book
[40]). Nevertheless, it is necessary to note that the connections between different
lattices of formations are still a little studied.

This circumstance is the main motivation for results of this paper.

Our first result is the following observation.

Theorem 1.1. The lattice L is a complete sublattice of the lattice C.

Let’s recall that the product 91$) of the non-empty formations 9t and §) is
the class of all groups G such that G € 9. Such an operation on the set F is
associative (W. Gaschiitz). Moreover, the sets of all saturated formations and
of all hereditary (in the sense of A.I. Mal’cev [25]) solubly saturated formations
are subsemigroups of the semigroup of all formations F. A great number of
researches in the formation theory are connected with studying of factorizations
of elements of these two subsemigroups (see, in particular, [31, 36, 32, 42, 2, 34,
16, 17, 18, 19, 20, 22, 11, 3, 24, 5, 6, 41] and the recent book [26]).

Every representation of the formation § in the form § = §1...J:, where
S#3F1.--Fi—18it1-. .5 for all 4, is called an irreducible factorization of §.

In the book by A.N. Skiba [33] the description of all irreducible factorizations
of saturated formations § contained in a compact element of the lattice £ was
obtained. Further, in the work by W. Guo and K.P. Shum [20], all irreducible
factorizations of a formations § was described under condition that § is solubly
saturated and § is contained in some compact element of the lattice C. Since
every saturated formation is solubly saturated, these two results are the moti-
vation for the following question: Suppose that a solubly saturated formation §
is contained in a compact element of the lattice L. Does it true then that § is
contained in some compact element of the lattice C?

Our next result gives the positive answer to this question.

Theorem 1.2. Every solubly saturated formation contained in a compact element
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of the lattice L is also contained in some compact element of the lattice C.

Therefore, in view of this result, the above-mentioned result of A.N. Skiba in
[33] is a consequence of the main result in [20, Theorem 4.1].

All unexplained notations and terminologies are standard. The reader is
refereed to [27, 10, 15, 4] if necessary.

2. Preliminaries

Recall that 7(G) denotes the set of all prime divisors of the order of a group
G. For any collection of groups X we denote by Com(X) the class of all abelian
groups A such that A = H/K, for some composition factor H/K of a group
GeX.

Recall that CP(G) is the intersection of the centralizers of all the abelian
p-chief factors of G (C?(G) = G if G has no abelian p-chief factors).

The symbols &, &, &, and & denote the class of all groups, the class of all
p-groups, the class of all p’-groups and the class of all soluble groups, respectively.

Let P be the set of all primes. Then for any formation function

f : P — {group formations}, (1)

the symbol LF(f) denotes the collection of all groups G such that either G =1
or G # 1 and G/Oy ,(G) € f(p) for every p € n(G). If for a formation § we
have § = LF(f), then f is called a local satellite of §.

In the following lemma, the symbol &,F(p) denotes the set of all groups A
such that AF®) is a p-group.

Lemma 2.1. [10] For any non-empty saturated formation §, there is a unique
formation function F' such that § = LF(F) and F(p) = &,F(p) C § for all
primes p.

The formation function F' in Lemma 2.1 is called the canonical local satellite
of §.

For any function f of the form
f:PU{0} — {group formations} (2)

we put, following [35], CF(f) = (G is a group | G/R(G) € f(0) and G/C?(G) €
f(p) for all p € 7(Com(Q))). If for a formation § we have §F = CF(f), then f is
called a composition satellite of §.

In the papers [28, 35], the following useful facts are proved.
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Lemma 2.2.

(a) For any function f of the form (1), the class LF(f) is a saturated forma-
tion.

(b) For any function f of the form (2), the class CF(f) is a solubly saturated
formation.

(c) For any non-empty solubly saturated formation §, there is a unique func-
tion F of the form (2) such that § = CF(F), F(p) = 6,F(p) C § for all
primes p, and F(0) = F.

If § = LF(f) and f(p) C § for all p € P, then f is called an inner local
satellite of §.

The function F' in Lemma 2.2 is called the canonical composition satellite of
F. UF=CF(f)and f(p) C Florall p € P, then f is called an inner composition
satellite of §.

A formation function f of the form (1) or (2) is called ©-valued if all its
values belong to the lattice ©. We denote by ©' the set of all formations having
a local ©-valued satellite (see [27]); analogously we denote by ©¢ the set of all
formations having a composition O-valued satellite.

The symbol ©form(X) denotes the intersection of all formations in © con-
taining the collection X of groups. In the case, when © = F is the lattice of all
formations, we write form(X) instead of Oform(%X).

For any collection {§; | i € I} of formations in © we put

Vo(i | i€ l) =0 form (| 5:).
iel
In the case, when © = F, we write V(§; | ¢ € I) instead of Vo (F; | i € I).

The complete lattice of formations ©' is called inductive [33], if for any collec-
tion {§; | i € I} of formations §; in O and for any collection {f; | i € I}, where
fi is an inner local satellite of §;, we have Vg (§; |i € I) = LF(\/@ (filie I)),
where Vo (f; | ¢ € I) is a local satellite of the formation Ve (§; | ¢ € I) such that
f(p) =Ve(filp) | i € I) for all p € P.

Lemma 2.3. [33] The lattice L is inductive.

The complete lattice of formations ©¢ is called inductive [33], if for any
collection {F; | ¢ € I} of formations §; in ©° and for any collection {f; | i € I},
where f; is an inner composition satellite of §;, we have Vec(F; | i € I) =
CF(Ve(f; | i € I)), where Vo(f; | i € I) is a composition satellite of the
formation Ve (§; | ¢ € I) such that f(a) = Ve(fi(a) |i € I) for all a € P U {0}.

Lemma 2.4. [37] The lattice C is inductive.

A group class closed under taking homomorphic images is called a semifor-
mation [27].
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Lemma 2.5. [39] Let M be a semiformation and A € form 9.
(a) If Op(A) =1, then A € form(My), where My = (G/O,(G) | G € M).
(b) If R(A) =1, then A € form(My), where Mo = (G/R(G) | G € M).

Lemma 2.6. [35] Let X be a non-empty collection of groups and § = Cform(%X).
Let m = w(Com(X)). Then § = CF(f), where:
(a) f(p) =form(G/CP(G)| G € X) for allp € .

(b) f(p) =@ for allp e P\ 7.
£(0) = form(G/R(G) | G € X).

The satellite f in Lemma 2.6 is called the minimal composition satellite of §
[27].

Lemma 2.7. [28] Let X be a non-empty collection of groups and § = Lform(X).
Let m = w(X). Then § = CF(f), where:

(a) £(p) = form(G/Oy ,(G) | G € X) for all p € =
(b) f(p) =9 for allp e P\ 7.
(c) m=n(F).

The satellite f in Lemma 2.7 is called the minimal local satellite of F [27].

Lemma 2.8. Let Z,, be a group of prime order p, and G be a group with O,(G) =
1. Suppose that T' = Z, 1 G is the regular wreath product, where K is the base
group of T. Then K = CP(T') = O,(T).

Proof. Let 1 = Ky < K1 < ... < K; = K be a chief series of T below K. Let
C; = Cp(K;/K;—1) and D = C;n...NC;. Clearly, K < D. Consequently,
D =DNKG = K(DNG). Suppose K # D. Then D NG is a non-identity
group. But D NG is a stable group of automorphisms of K. By [12, Chapter V,
Corollary 3.3], DN G is a normal p-subgroup of G, a contradiction. Thus D =
K =CP(T) = 0,(T). ]

3. Proof of Theorem 1.1

Proof of Theorem 1.1. Let {F; | i € I} be a collection of saturated formations
and let F; be the canonical local satellite of §;. Let § =V, (F: | ¢ € 1) and $ =
Ve(Si |4 € I). It is clear that [, 8 is a saturated formation and this formation
is the greatest lower bound for {§; | i € I} in £. On the other hand, clearly, §
is the least upper bound for {§; | i« € I} in £ and $ is the least upper bound
for {§; | ¢ € I} in C. Therefore, in fact, we need only prove that § = §). The
inclusion $ C § is evident. Hence, we need only show that § C $.
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Let $; = CF(H;), where H; is a composition satellite such that

Hi(a) = T ifa=0,
’ Fi(a) ifa=pel.

First we show that §; = $); for all 4.

Suppose $); € Fi. Let G be a group of minimal order in $; \ §;. Then
G is a monolithic group and R = G¥ is the monolith of G. If R is non-
abelian, then R(G) = 1. Therefore, G = G/1 = G/R(G) € H;(0) = §;. This
contradicts the choice of G. Hence, R is an abelian p-group, where p € w(R).
Since §; is saturated, it follows that R € ®(G). Therefore, by [10, Chapter
A, Theorem 15.2], R = Cg(R) = O,(G). Hence, R = CP(G) = Op ,(G).
Consequently, G/O, ,(G) = G/CP(G) € H;(p) = F;(p). Hence, G € §;, a
contradiction. Therefore, $; C §;.

Now we show that §; C ;. Assume this is false and let G be a group of
minimal order in §; \ $; with R = G". Let p € w(R). If R is non-abelian,
then Op ,(G) = 1. Hence, G = G/1 = G/Op ,(G) € Fi(p) = H;(p) C £, a
contradiction. Consequently, R is an abelian p-group. Let T = R x (G/Cq(R)).
Since G € §;, using [10, Chapter IV, Proposition 1.5], we have T' € F,;. If
|T| < |G|, then T' € $);, by the choice of G. It follows that G/Cs(R) 2 T/R =
T/Cq(R) = T/Cr(R) = T/CP(T) € H;(p). Hence, G € $;, a contradiction.
Therefore, |T| = |G|, so R = Cq(R) = Op(G) = CP(G) = Op ,(G). Therefore,
G/C?(G) = G/Op ,(G) € Fi(p) = H;(p). Hence, G € $;, a contradiction.
Consequently, §; C $;. Thus, §; = $; for all i € 1.

Since by Lemma 2.3 the lattice £ is inductive, we have § = V. (F; | i €
I) = LF(V(F; | i € I)). Since by Lemma 2.4 the lattice C is inductive, we have
H=Ve(§i|iel)=CF(V(H; |i€l).

Now assume that § Z $. Let G be a group of minimal order in § \ $ with
R=G%. Let p € n(R).

If R is non-abelian, then O, ,(G) = 1. Hence, since the canonical local
satellite F; is inner,

G = G/1 =G0y ,(G) € (V(F;|iel))(p)
=V (Fi(p)|iel) CV(§i|iel) CVe(Siliel)
=9.

This contradicts the choice of G. Hence, R is an abelian p-group. Let T =
R x (G/Cg(R)). Since G € §, using [10, Chapter IV, Proposition 1.5], we have
TeF. If|T| < |G| then T € $, by the choice of G. Consequently,

G/Cq(R)=T/R=T/Cq(R)=T/Cr(R) =T/C*(T) € (V(H; | i€ I))(p).

Hence, G € 9, a contradiction. Thus, |T| = |G|, so R = Cg(R) = O,(G) =
C?(G) = Op ,(G). Therefore, since §; = 9; for all i € I,

G/CP(G) = G/Op ,(G) € (V(Fi | i€ 1))(p) = V(Fi(p) | i € I)
=V(Hi(p) |ieI)=(V(Hi|iel))p).
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Hence, G € $. Consequently, § C $. Thus, § = $, and the theorem is proved.m

4. Proof of Theorem 1.2

The formation § is called a one-generated ©-formation if § is the intersection of
all formations in © such which contain a fixed group G.

Lemma 4.1.

(a) Ewery compact elements in © is a one-generated O-formation.
(b) Every one-generated C-formation is a compact elements in C.

Proof. (a) It is clear that for any formation R € ©, there is a set {G; |€ I}
of groups G; € R such that R = Vg (Oform(G;) | i € I). Therefore, if R is a
compact element in ©, then there exist iq,...,i; € I such that

R C Bform(G;, ) Ve ... Ve Bform(G;, ) = Oform(Gy, x ... x G;,) C R,

Hence R = Oform(G;, X ... x G;,) is a one-generated ©-formation, as desired.
(b) This assertion is proved in [35]. |

Proof of Theorem 1.2. Let § be a solubly saturated formation contained in the
compact element § of the lattice of £. Then, by Lemma 4.1, there is a group
G such that $ = Lform(G). Let 7 = n(G) = {p1,...,p:} and 8 = Cform(G*),
where

G* = G X (Zp, UG/ 0p, (G))) X .. X (Zp, UG/ Op, (G)))-

In view of Lemma 4.1, in order to prove the result, it is enough to show that
§C R

Let f and k be the minimal composition satellites of § and K respectively,
and let A be the minimal local satellite of $).

To prove the inclusion § C 8 it is enough to show f < k, i.e., f(0) C k(0)
and f(p) C k(p) for all p € P.

First we shall prove that f(0) C k(0). By Lemma 2.6, f(0) = form(A | A €
§ and R(A) =1) and k(0) = form(G*/R(G")).

Therefore, in view of Lemma 2.5, in order to prove the inclusion f(0) C k(0),
it is enough to show that for any group A € § with R(A) = 1 we have A €
formG™.

Let Soc(A) = Ny x ... x Ni, where N; is a minimal normal subgroup of A
(i =1,...,k). Since R(A) =1, N; is non-abelian for all i = 1,...,¢. If t =1
and p is a prime dividing |N7|, then O, ,(A) = 1 and so we have, at once, by
Lemma 2.7, A= A/Op ,(A) € h(p) = form(G/Op ,(G)) C formG C formG*.

Now assume that ¢ > 1. Let M; be the largest normal subgroup of A contain-
ing N1 X...x N;—1 X Nj11 X ...%x N, but not containing N;. Then N;M;/M; is
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a unique minimal normal subgroup of G/M;, N;M;/M; is G-isomorphic to N;,
and A/M; € § since A/M; € §. Hence, Cx(N;M;/M;) = M;, and so for any
prime p dividing |N;M;/M;| we have

A/M; = (A/M;)/Op n(A/M;) € h(p) = form(G/Op ,(G)) C formG C formG™.

Therefore, A = A/1 = A/MyN...N My € formG*. It follows that A € k(0).
Thus, £(0) C k(0).

Now we prove that f(p) C k(p) for all p € P. If f(p) = &, then the inclusion
is obvious. Let f(p) # @. But in this case we have p € 7. Indeed, from f(p) # @
we have Z,, € § C $ = LformG. Hence p € m by Lemma 2.7. Hence, p = p; for
some i € {1,...,t}.

By Lemma 2.6, f(p) = form(A/C?(A) | A € §). Therefore, in order to prove
the inclusion f(p) C k(p), it is enough to show that for any group A € § we
have A = A/CP(A) € k(p).

First note that A € formG. Indeed, since O, ,(A) < CP(A), A = A/CP(A)
is a homomorphic image of A/O, ,(A). On the other hand, since A € §F C 9,
A/Op »(A) € h(p) = form(G/O, ,(G)). Hence, A € h(p) = form(G /O, ,(G)) C
formG.

Since T = Z,(G/0,(G)) = Kx(G/O,(G)) € &, where K is the base group of
the regular wreath product T', we have G/O,(G) =2 T/K = T/CP(T) € k(p) x by
Lemma 2.8. Note also that in view of [10, Chapter A, Lemma 13.6], O, (A) = 1.
Therefore from A € formG we get A € form(G/O,(G)) by Lemma 2.5. Hence,
A € k(p). Consequently, f(p) C k(p).

Thus, f(a) C k(a) for all @ € P U {0}. Hence, § C K. This proves the
theorem. |

5. Some Open Questions

Every formation is O-multiply saturated, by definition. For n > 0, a formation §
is called n-multiply saturated if § = LF(f) and all non-empty values of f are (n—
1)-multiply saturated formations [27]. If a formation § is n-multiply saturated
for all natural n, then § is called totally saturated. n-Multiply solubly saturated
formations and totally solubly saturated formations are defined analogously [35].

Now, we mention the following open questions in the theory of lattices of
group classes.

Question 5.1. Is any complete lattice of formations algebraic?

Question 5.2. Let © be a complete lattice of formations. Does true then that
every one-generated ©-formation is a compact element in ©7

Question 5.3. Does it true that the lattice £,, of all n-multiply saturated forma-
tions is a complete sublattice of the lattice C,, of all n-multiply solubly saturated
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formations?

Question 5.4. Does it true that the lattice Lo, of all totally saturated forma-
tions is a complete sublattice of the lattice Co, of all totally solubly saturated
formations?

Question 5.5. Suppose that an n-multiply solubly saturated formation § is con-
tained in a compact element of the lattice £,,. Does it true then that § is con-
tained in some compact element of the lattice C,?

Question 5.6. Suppose that a totally solubly saturated formation § is contained
in a compact element of the lattice L£,,. Does it true then that § is contained in
some compact element of the lattice Co?
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