

Alexander N. Skiba, A note on *c*-normal subgroups of finite groups, Algebra Discrete Math., 2005, выпуск 3, 85–95

https://www.mathnet.ru/eng/adm314

Использование Общероссийского математического портала Math-Net.Ru подразумевает, что вы прочитали и согласны с пользовательским соглашением https://www.mathnet.ru/rus/agreement

Параметры загрузки: IP: 37.17.74.99 28 мая 2025 г., 14:33:22

A note on *c*-normal subgroups of finite groups

Alexander N. Skiba

Communicated by L. A. Shemetkov

ABSTRACT. Let G be a finite group. We fix in every noncyclic Sylow subgroup P of G some its subgroup D satisfying 1 < |D| < |P| and study the structure of G under assumption that all subgroups H of P with |H| = |D| are c-normal in G.

Introduction

Throughout this paper, all groups are finite. Following [1], we say that a subgroup H of a group G is c-normal in G if there exists a normal in G subgroup T such that G = HT and $T \cap H \leq H_G$, where H_G is the largest normal subgroup of G contained in H. Several authors have investigated the structure of a group G under the assumption that certain maximal or minimal subgroups of Sylow subgroups of G are c-normal in G. Remind, in particular, that Wang [1] proved that G is supersoluble if either all maximal subgroups of the Sylow subgroups of G are c-normal in G or all minimal subgroups and all cyclic subgroups with order 4 are c-normal in G. Later on Li and Guo [2] obtained the analogous results by limiting the *c*-normality of maximal or minimal subgroups to the Fitting subgroups of a soluble groups. By using the theory of formation, Wei [3] extended further the results to a saturated formation containing the class of supersoluble groups. In the connection with these results the following natural question arises: Is the group G supersoluble if for any Sylow subgroup P of G at least one of the following conditions holds: (1) The maximal subgroups of P are c-normal in G; (2) The minimal

²⁰⁰⁰ Mathematics Subject Classification: 20D20.

Key words and phrases: finite group, supersoluble group, c-normal subgroup, maximal subgroup, Sylow subgroup.

subgroups of P and all its cyclic subgroups with order 4 are *c*-normal in G? In this paper we prove the following theorem which gives the positive answer to this question.

Theorem 0.1. Let G be a group and E be a normal subgroup of G with supersoluble quotient G/E. Suppose that every non-cyclic Sylow subgroup P of E has a subgroup D such that 1 < |D| < |P| and all subgroups E of P satisfying |H| = |D| and all its cyclic subgroups with order 4 (in the case |D| = 2) are c-normal in G. Then G is supersoluble.

As one of applications of this theorem we prove also the following generalisation of the results from [2].

Theorem 0.2. Let G be a group and E be a soluble normal subgroup of G with supersoluble quotient G/E. Suppose that every non-cyclic Sylow subgroup P of F(E) has a subgroup D such that 1 < |D| < |P| and all subgroups H of P satisfying |H| = |D| and all its cyclic subgroups with order 4 (in the case |D| = 2) are c-normal in G. Then G is supersoluble.

1. Preliminaries

In this paper we use \mathcal{U} to denote the class of all supersoluble groups, $Z^{\mathcal{U}}_{\infty}(G)$ to denote the \mathcal{U} -hypercenter of a group G that is the product of all such normal subgroups H of G whose G-chief factors have prime order.

Lemma 1.1. [5, II, Theorem 9.15]. $G/C_G(Z_{\infty}^{\mathcal{U}}(G)) \in \mathcal{U}$.

Lemma 1.2. Let G a group and $P = P_1 \times \ldots \times P_t$ be a p-subgroup of G where t > 1 and P_1, \ldots, P_t are minimal normal subgroups of G. Assume that P has a subgroup D such that 1 < |D| < |P| and every subroup H of P with |H| = |D| is normal in G. Then the order of every subgroup P_i is prime.

Proof. Assume that this is false and let G be a counterexample with minimal order. Then for some i we have $|P_i| > p$ and |D| > p, by minimality of P_i . Thus if for some j we have $|P_j| = p$, the hypothesis is still true for G/P_j and its subgroup P/P_j and so every G-chief factor of between P_j and P has prime order. But then all subgroups P_1, \ldots, P_t are simple, contradiction. Therefore $|P_k| > p$ for all $k = 1, \ldots, t$. Without loss of generality we may suppose that $D = P_1 \ldots P_k$ for some k < t. Let M be a maximal subgroup of P_1 and $H = MP_2 \ldots P_k Z$ where |Z| = p and $Z \leq P_{k+1}$. Then |H| = |D| and so by hypothesis, H is normal in G. But then $D \cap H = MP_2 \ldots P_k(D \cap Z) = MP_2 \ldots P_k$ is normal in G and

so $M = P_1 \cap MP_2 \dots P_k$ is normal in G. This contradicts the minimality of P_1 .

Lemma 1.3. Let p be odd prime and P be a normal p-subgroup of a group G. Assume that $\Omega_1(P) \leq Z_{\mathcal{U}}(G) \cap Z(P)$. Then $P \subseteq Z_{\mathcal{U}}(G)$.

Proof. Let $P_0 = \Omega_1(P)$, x in G have order p^2 and $g \in G$. Then $(x^g)^p = (x^p)^g = (x^p)^i = (x^i)^p$ for some integer i and so by [8, Theorem 1 (iv)], $(x^g x^{-i})^p = 1$, i.e. $x^g = x^{ip}u$ for some $u \in P_0$. Thus in P/P_0 every subgroup of order p is normal in G/P_0 . Therefore $\Omega_1(G/P_0) \subseteq Z_{\mathcal{U}}(G/P_0) \cap Z(P/P_0)$ and so by induction $P/P_0 \subseteq Z_{\mathcal{U}}(G/P_0)$. Now it follows that $P \subseteq Z_{\mathcal{U}}(G)$.

Lemma 1.4. [1, Lemma 2.1]. Let G be a group and $H \leq K \leq G$. Then (i) If H normal in G, then H is c-normal in G.

(ii) If H is c-normal in G, the H c-normal in K.

(iii) Suppose that H is normal in G. Then K/H is c-normal in G if and only if K is c-normal in G.

(iv) Suppose that H is normal in G. Then for every c-normal in G subgroup T with (|H|, |T|) = 1 the subgroup HT/H is c-normal in G/H (see [4, Lemma 2.2]).

A saturated formation is a homomorph \mathcal{F} of groups such that each group G has a smallest normal subgroup (denoted by $G^{\mathcal{F}}$) whose quotient is still in \mathcal{F} .

Lemma 1.5. Let \mathcal{F} be a saturated formation containing all nilpotent groups and let G be a group with soluble \mathcal{F} -residual $P = G^{\mathcal{F}}$. Suppose that every maximal subgroup of G not containing P belongs to \mathcal{F} . Then Pis a p-group for some prime p, besides, if every cyclic subgroup of P with prime order and order 4 (if p = 2) is c-normal in G, then $|P/\Phi(P)| = p$.

Proof. By [5, VI, Theorem 24.2], P is a p-group for some prime p and the following hold: (1) $P/\Phi(P)$ is a G-chief factor of P; (2) P is a group of exponent p or exponent 4 (if p = 2 and P is non-abelian). Assume that every cyclic subgroup of P with prime order and order 4 is c-normal in G. Let $X/\Phi(P)$ be a subgroup of $P/\Phi(G)$ with prime order, $x \in X \setminus \Phi(P)$ and $L = \langle x \rangle$. Then |L| = p or |L| = 4 and so L is c-normal in G. Besides, $L\Phi(P)/\Phi(P) = X/\Phi(P)$. First assume that L is not normal in G. Then G has a normal subgroup T such that LT = G and |G:T| = p. In this case $L \not\subseteq T$. But on the other hand since G/T is a p-group, $L \leq P \leq T$, by the definition of P, a contradiction. Thus L is normal in G. But then $L\Phi(P)/\Phi(P) = X/\Phi(P)$ is normal in $G/\Phi(P)$. Therefore $|P/\Phi(P)| = p$.

Lemma 1.6. [5, II, Lemma 7.9]. Let P be a nilpotent normal subgroup of a group G. If $P \cap \Phi(G) = 1$, P is the direct product of some minimal normal subgroup of G.

Lemma 1.7. [4, III, Theorem 3.5]. Let A, B be normal subgroups of a group G and $A \leq \Phi(G)$. Suppose that $A \leq B$ and B/A is nilpotent. Then B is nilpotent.

Lemma 1.8. [8, I, p.34]. Let p be a prime. Then the class of all p-closed groups is a saturated formation.

Lemma 1.9. Let \mathcal{F} be a saturated formation containing \mathcal{U} and G be a group with a normal subgroup E such that $G/E \in \mathcal{F}$. If E is cyclic, then $G \in \mathcal{F}$.

Proof. It is enough to consider the case when E is a minimal normal subgroup of G. Clearly $E \not subseteq\Phi(G)$. Let M be a maximal subgroup of G such that G = [E]M and let $C = C_G(E)$. Then $M_G = C \cap M$ and so $G/M_G = [EM_G/M_G](M/M_G)$ is supersoluble, since $M/M_G \simeq G/C$ is an abelian group. Thus $G \simeq G/E \cap M_G \in \mathcal{F}$.

2. The proof of Theorem 0.1

Proof. Suppose that this is false and consider a counterexample for which |G||E| is minimal.

(1) The hypothesis is still true for every Hall subgroup of E and for G/E_{π} where E_{π} is any normal Hall subgroup of E (this directly follows from Lemma 1.4).

(2) E has a non-cyclic Sylow subgroup.

Suppose that all Sylow subgroups of E are cyclic and let P be a Sylow subgroup of E where p is the largest prime divisor of |E|. Then by [7, IV, Theorem 2.9], E is supersoluble and so P is normal in G, as it is a characteristic subgroup of E. Thus by (1) the hypothesis is still true for G respectively its normal subgroup P. But by Lemma 1.9, |P| < |E|, since G is not supersoluble, and so |P||G| < |E||G|, a contradiction.

Now we fix some non-cyclic Sylow q-subgroup Q of E and let D be a subgroup of Q such that 1 < |D| < |Q|, every subroup H of Q satisfying |H| = |D| is c-normal in G and if |D| = 2, then also every subgrou with order 4 is c-normal in G.

(3) Assume that |Q:D| = q and let N be a minimal normal subgroup of G contained Q. Then E/N is p-closed where p is the largest prime divisor of |E/N|. Besides, if $|Q:N| \neq 4$, then E/N is supersoluble.

If $|Q:N| \neq 4$, then by Lemma 1.4 the hypothesis is still true for E/N and so E/N is supersoluble, by the choice of G. Assume that |Q:N| = 4.

Then either Q/N is normal in G/N or Q/N is cyclic (in these cases the hypothesis is still true for E/N and so E/N is supersoluble) or G has a subgroup T with |G:T| = 2 and $N \leq T$. In the last case the hypotesis is true for T/N and its normal subgroup $E \cap T/N$, since a Sylow 2-subgroup of $E \cap T/N$ has order 2. Thus a Sylow p-subgroup of $E \cap T/N$ is normal in $E \cap T/N$ and hence E/N is p-closed.

(4) Assume that |Q:D| > q, |D| > q and all subgroups H of Q satisfying |H| = |D| are normal in G. Suppose also that some subgroup L of Q satisfying |L| = q is not normal in G. Then Q has at least two different maximal subgroups which are normal in G, besides, each non-cyclic maximal subgroup of Q is normal in G.

Let N be a minimal normal subgroup of G contained in Q. First assume that |N| = q. Then $N \neq L$ and so X = LN is a non-cyclic group. Let $X \leq H \leq K$ where |H| = |D| and where |K:H| = q. Then K is not cyclic and hence it has a maximal subgroup M different from H. Then K is normal in G as the product of normal subgroups H and M. Analogously one can show that every subgroup of Q containing H is normal in G. If |N| > q, N is not cyclic and as above one can show that every subgroup of P containing N is normal in G.

(5) If |Q:D| > p, then every subgroup H of Q satisfying |H| = |D| is normal in G.

Indeed, assume that some subgroup H of Q satisfying |H| = |D| is not normal in G. Then G has a normal subgroup T such that DT = Gand $T \cap H \leq H_G$. Let M be a normal maximal subgroup of G such that $T \leq M$. Then |G:M| = q and so $G/E \cap M$ is supersoluble. Hence the hypothesis is still true for G respectively its normal subgroup $E \cap M$, since |Q:D| > p. But $|G||E \cap M| < |G||E|$, contrary to the choice of Gand its normal subgroup E. Hence we have (4).

(6) E is soluble.

By (1) we have only to consider the case N = G. Besides, we may assume that G is not p-closed for each prime divisor p of its order. First assume that G is p-nilpotent for some prime divisor p of |G| and let T be a normal p-complement of G. Since |T| < |G| and by (1), the hypothesis is still true for T, T is supersoluble and hence G is soluble. Next suppose that G is not p-nilpotent where p is the smallest prime divisor of |G| and let P be a Sylow p-subgroup of G. Then P is not cyclic [9, 10.1.9] and so by hypothesis, P has a subgroup D such that 1 < |D| < |P|, every subroup H satisfying |H| = |D| is c-normal in G and if |D| = 2, then also every subgroup with order 4 is c-normal in G. Besides, since G is not p-nilpotent, it has a p-closed Schmidt subgroup (see [4, IV, Theorem 5.4]). Thus by Lemma 1.5, |D| > p. Let |P : D| = p. Suppose that for some maximal subgroup H of P we have $H_G = 1$ and let T be a normal complement of H in G. Then the order of a Sylow *p*-subgroup of T is equal to p and so the hypothesis is still true for T. Therefore T is supersoluble, by the choice of G and hence G soluble. Hence for some maximal subgroup H of P we have $H_G \neq 1$. Let N be a minimal normal subgroup of G contained in P. If $|P:N| \neq 4$, then G/N is supersoluble by (3) and so G is soluble. Assume that |P:N| = 4. Then either P/Nis normal in G/N or is cyclic (in these cases the hypothesis is still true for G/N and so G/N is supersoluble and hence G is soluble) or G has a subgroup T with |G:T| = 2 and $N \leq T$. In the last case the hypotesis is true T/N, since a Sylow 2-subgroup of T/N has order 2. Thus T/Nis supersoluble and hence G is soluble. Finally, assume that |P:D| > p. Then by (5) every subgroup H of P satisfying |H| = |D| is normal in G. Suppose that for some minimal normal subgroup N of G contained in Pwe have |N| = p. If |H/N| > p, the hypothesis is true for G/N and so G is supersoluble, since |N| = p. But this contradicts the choice of G and hence N is a maximal subgroup of H. From above we have known that some minimal subgroup L of P is not normal in G and so by (4), P has at least two different maximal subgroups which are normal in G. If for some minimal normal subgroup N of G contained in P we have |N| > p, then by (4) every maximal subgroup M of P containing N normal in G. Thus P is normal in G subgroup as the product of normal subgroups. It follows that G is soluble.

(7) E is p-closed where p is the largest prime divisor of |E|.

By (1) and the choice of G we have only to consider the case E = G. Moreover, since by Lemma 1.4 the hypothesis is still true for all Hall subgroups of G, we may suppose that G is biprimary, i.e. $|G| = p^a q^b$ for some prime q and some $a, b \in \mathbb{N}$. Assume that G is not p-closed. Then a Sylow q-subgroup Q of G is non-cyclic. Hence by hypothesis, Q has a subgroup D such that 1 < |D| < |Q|, every subroup H satisfying |H| =|D| is c-normal in G and if |D| = 2, then also every cyclic subgroup with order 4 is c-normal in G Since G is not p-nilpotent, it has a minimal non*p*-nilpotent subgroup S, say, and by [7, IV, Theorem 5.4], S is a Schmidt group. Hence by Lemma 1.5, |D| > p. First assume that |Q:D| = q. Then by (2), G/N is p-closed for every minimal normal subgroup N of G contained in Q. Thus by Lemma 1.8, $N \not\subseteq \Phi(G)$ and N is the only minimal normal subgroup of G contained in Q. By [4, III, Lemma 3.3] for some maximal subgroup V of P we have $N \not\subseteq V$. Let $L = V_G$ and T be a normal subgroup of G such that VT = G and $T \cap V \leq L$. First assume that L = 1. Then $|T| = qp^a$ and so the hypothesis is still true for T. Therefore T is p-closed, since p is the largest prime divisor of |T|. Hence G is closed, a contradiction. Thus $L \neq 1$ and so $N \leq L \leq V$, a contradiction.

Therefore we may assume that |Q : D| > q. Then by (5) every subgroup H of Q satisfying |H| = |D| is normal in G. If some minimal subgroup L of Q satisfying |L| = q is not normal in G, then by (4), Qhas at least two different maximal subgroups, M and E, say, which are normal in G. Since |Q : D| > q, the hypothesis is true for MP and EPwhere P is a Sylow p-subgroup of G. But then $Q = ME \leq N_G(P)$ and so G is p-closed, a contradiction. Thus all minimal subgroups of Q are normal in G. Let N be a minimal normal subgroup of G contained in Qand let $N \leq H$ where |H| = |D|. We show that G/N is p-closed. If |N| < |D| it can be shown as above. Thus let |N| = |D|. Then since |D| > p, N is non-cyclic and so the minimal subgroups of N are normal non-identity subgroups of G. This contradiction completes the proof of (7).

(8) E = Q is non-cyclic q-group.

Indeed, let p be the largest prime divisor of |E| and P be a Sylow p-subgroup of E. Then by (7), P is normal in N and so P is normal in G, as a characteristic subgroup of E. Besides, by (1), the hypothesis is true for G/P and so G/P is supersoluble, by the choice of G. Thus P = E = Q, otherwise |G||P| < |G||E|. From Lemma 1.9 it follows also that E is not cyclic.

(9) $O_{q'}(G) = 1.$

Indeed, assume that $O_{q'}(G) = 1 \neq 1$. Then $|G/O_{q'}(G)| < |G|$ and so since by Lemma 4(iv) the hypothesis is true for $|G/O_{q'}(G)|$, $G/O_{q'}(G)$ is supersoluble, by the choice of G. But then $G \simeq G/(Q \cap O_{q'}(G))$ is supersoluble, a contradiction.

(10) |D| > q.

Assume that |D| = q. Then since G/Q = G/E is supersoluble, $G^{\mathcal{U}} \leq Q$ and so the hypothesis is still true for G and its normal subgroup $G^{\mathcal{U}}$. Hence $G^{\mathcal{U}} = Q$. Let M be an arbitrary maximal subgroup of G not containing P. Then $G/Q = MQ/Q \simeq M/M \cap Q$ is supersoluble and so for M and its normal subgroup $M \cap Q$ the hypothesis is still true. Hence M is supersoluble, by the choice of G. Now using Lemma 1.5 we see that $Q/\Phi(Q)$ is a chief factor of G and $|Q/\Phi(Q)| = q$. But then, by Lemma 1.5, $G/\Phi(Q)$ is supersoluble and so $Q \leq \Phi(Q)$, a contradiction. Thus we have (10).

(11) G/N is supersoluble for each minimal normal subgroup N of G contained in Q.

We have only to show that the hypothesis is still true for G/N. By (8) it is clear that the hypothesis is true for G/N if either Q: D| = q or |N| = q > 2. Therefore we may suppose that |Q:D| > q and that either |N| = 2 or N is not cyclic. By (4) every subgroup H of P satisfying |H| = |D| is normal in G. If N is non-cyclic we conclude from (4) that each maximal subgroup of Q containing N is normal in G and we again see that the hypothesis is true for G/N. So let |N| = 2. In this case the hypothesis is true for G/N if Q is a Sylow q-subgroup of G, so let Qbe a proper subgroup of Sylow q-subgroup of G. Then G has a normal maximal subgroup M such that $Q \leq M$. Since the hypothesis is still true for M, M is supersoluble and so a Sylow p-subgroup M_p is normal in Gwhere p is the largest prime divisor of |M|. But this $M_p \leq O_{q'}(G)$ and so $O_{q'}(G) \neq 1$, contrary to (9).

(12) Final contradiction.

Let N be a minimal normal subgroup of G contained in Q. Then by (9), N is the only minimal normal subgroup of G contained in Q and $N \not\subseteq Phi(G)$. Let M be a maximal subgroup of G such that $N \not\subseteq M$ and let $C = C_G(N)$. Then G = [R]M and $Q \subseteq C$, by [5, I, Corollary 4.1.1]. Hence $Q \cap M$ is normal in G. But $Q = Q \cap NM = N(Q \cap M)$ and so Q = N. Since Q is not cyclic, it has such a subgroup D that 1 < |D| < |P| and every subgroup H satisfying |D| = |H| is c-normal in G. But it is impossible because P is a minimal normal subgroup of G. This contradiction completes the proof of this theorem.

3. Some corollaries of Theorem 0.1

In this section we consider some applications of Theorem 0.1.

As an immediate consequence of Theorem 0.1, we have:

Corollary 1. Let G be a group. Suppose that for any non-cyclic Sylow subgroup P of G at least one of the following conditions holds:

(1) The minimal subgroups of P and all its cyclic subgroups with order 4 are normal in G;

(2) The maximal subgroups of P are normal in G. Then G is supersoluble.

Corollary 2. (Buckley [8]) Let G be a group of odd order. If all subgroups of G of prime order are normal in G, then G is supersoluble.

Corollary 3. (Srinivasan [9]). If the maximal subgroups of the Sylow subgroups of G are normal in G, then G is supersoluble.

Corollary 4. Let G be a group. Suppose that for any non-cyclic Sylow subgroup P of G at least one of the following conditions holds:

(1) The minimal subgroups of P and all its cyclic subgroups with order 4 are c-normal in G;

(2) The maximal subgroups of P are c-normal in G. Then G is supersoluble. **Corollary 5.** (Wang [1]). If all subgroups of G of prime order or order 4 are c-normal in G, then G is supersoluble.

Corollary 6. (Wang [1]). If the maximal subgroups of the Sylow subgroups of G are c-normal in G, then G is supersoluble.

Now using Theorem 0.1 we prove Theorem 0.2.

Proof. Assume that this is false and let G be a counterexample with minimal |G||E|. Let F = F(E) and p be the largest prime divisor of |F|. Let P be the Sylow p-subgroup of F, $P_0 = \Omega_1(P)$ and $C = C_G(P_0)$. Clearly C is normal in G.

(1) The hypothesis is true for E and for every normal subgroup of G having coprime order with |E| (this directly follows from Lemma 1.4).

(2) p > 2.

Indeed, suppose that p = 2. Assume that $E \neq G$. Then E is supersoluble, by (1) and the choice of G. Hence a Sylow p-subgroup E_p of E is normal in E where p is the largest prime divisor of E. Hence $E_p = P = E$. But in this case G is supersoluble, by Theorem 0.1, a contradiction. Therefore E = G is a soluble group and hence $C_G(F) \leq F$ is a 2-group, by [5, II, Theorem 7.12]. Let Q be a subgroup of G with prime order q where $q \neq 2$ and let X = FQ. Then the hypothesis is still true for X and so it is supersoluble, by the choice of G. But then Q is normal in X and so $Q \leq C_G(F)$, a contradiction. Hence we have (2).

(3) $P_0 \not\subseteq Z^{\mathcal{U}}_{\infty}(G) \cap Z(P).$

Suppose that $P_0 \leq Z_{\infty}^{\mathcal{U}}(G) \cap Z(P)$. We show that the hypothesis is true for G/P_0 and its normal subgroup C_E/P_0 where $C_E = C \cap E$. . By Lemma 1.1, G/C is supersoluble and hence G/C_E is supersoluble, since G/E is supersoluble, by hypothesis. Clearly $F = F(C_E)$ and so since $P_0 \leq Z(C_E), F(C_E/P_0) = F/P_0$. Now making use Lemma 1.3 we see that the hypothesis is still true for G/P_0 and so this quotient is supersoluble, by the choice of G. Since $P_0 \leq Z_{\infty}^{\mathcal{U}}(G)$, it follows that G is supersoluble, by Lemma 1.9, a contradiction. Thus we have (3).

By (3), P is not cyclic and so by hypothesis P has a subgroup D such that 1 < |D| < |P| and every subgroup H of P with |H| = |D| is c-normal in G.

(4) |D| > p.

Suppose tat |D| = p. By (3), P has a subgroup H with prime order which is not normal in G. Let T be a normal complement of H in G. Then the hypothesis is true for G and its subgroup $V = T \cap E$. Indeed, evidently G/T is supersoluble and $F(V) \leq F(E)$. On the other hand, since |G : T| = p, every Sylow p-subgroup of F where $q \neq p$ is contained in T. Thus the hypothesis is still true for G and its subgroup V, by Lemma 1.4. But since T is a proper subgroup of G and evidently ET = G, |T| < |E|, which contradicts the choice of G and its normal subgroup E. This contradiction completes the proof of (4).

(5) If L is a minimal normal subgroup of G and $L \leq P$, |L| > p.

Assume that |L| = p. Let $C_0 = C_G(L)$. Then the hypothesis is true for G/L and its subgroup C_0/L . Indeed, since $L \leq Z(C_0)$, we have $F(C_0/L) = F/L$. On the other hand, if H/L is a subgroup of G/L such that |H| = |D|, we have 1 < |H/L| < |P/L|, by (4). Besides, H/L is *c*-normal in G/L we have only to use Lemma1.4(iv).

(6) $\Phi(G) \cap P = 1$.

Suppose that $\Phi(G) \cap P \neq 1$ and let L be a minimal normal subgroup of G contaned in $\Phi(G) \cap P$. Then by (5), L is non-cyclic and so every subgroup of G, containing L is non-cyclic. Clearly $|L| \leq |D|$. We show that the hypothesis is true for G/L and its normal subgroup E/L. First of all note that by Lemma 1.8, F(E/L) = F/L. By Lemma 1.4(iv) we may assume that |P : L| > p. Let |L| = |D| and let $L \leq K, M \leq K$ where $M \neq L$ and L, M are maximal subgroups of K. We have only to show that K is c-normal in G. It is evident if M is normal in G. Let $L = K_G$ and T be a normal subgroup of G such that MT = Gand $T \cap M \leq M_G \neq M$. Let S be a normal subgroup of G such that |G:S| = p and $T \leq S$. Then evidently KS = G and $S \cap K \leq K_G = L$, since $L \leq \Phi(G) \leq S$. Therefore K is c-normal in G. Thus the hypothesis is still true for G/L and hence G/L is supersoluble, by the choice of G. Since the class supersoluble groups is a saturated formation, it follows that G is supersoluble, a contradiction.

(7) P is the direct product of some minimal normal subgroups of G (this directly follows from (6) and Lemma 1.6).

(8) Final contradiction.

If every subgroup H of G with |H| = |D| is normal in G, then by (7) and Lemma 1.3, $P \leq Z_{\infty}^{\mathcal{U}}(G)$, which contradicts (3). Thus for some of such subgroups H we have $H \neq H_G$ and so G has a normal maximal subgroup T such that PT = G. In this case a chief factor $P/P \cap T$ of Ghas prime order and so by (7) for some minimal normal subgroup L of Gcontained in P we have |P| = p, which contradicts (5).

The following corollaries are consequences of Theorem 0.2.

Corollary 7. Let G a group and E a soluble normal subgroup of G with supersoluble quotient G/E. Suppose that for any non-cyclic Sylow subgroup P of F(E) at least one of the following conditions holds:

(1) The minimal subgroups of P and all its cyclic subgroups with order 4 are c-normal in G;

(2) The maximal subgroups of P are c-normal in G. Then G is supersoluble.

Corollary 8. (Li and Guo [2]). Let G a group and E a soluble normal subgroup of G with supersoluble quotient G/E. If all maximal subgroups of the Sylow subgroups of F(E) are c-normal in G, then G is supersoluble.

Corollary 9. (Li and Guo [2]). Let G a group and E a soluble normal subgroup of G with supersoluble quotient G/E. If all subgroups of F(E) of prime order or order 4 are c-normal in G, then G is supersoluble.

References

- Wang Y., c-normality of groups and its properties, J. Algebra, 180, 1996, pp.954-965.
- [2] Li D., Guo X., The influence of c-normality of subgroups on the structure of finite groups, II. Comm. Algebra, 26, 1998, pp.1913-1922.
- Wei H. On c-normal maximal and minimal subgroups of Sylow subgroups of finite groupf, Comm. Algebra, 29, 2001, pp.2193-2200.
- [4] Huppert B., Endliche Gruppen I, Springer-Verlag. Heidelberg/New York, 1967.
- [5] Shemetkov L.A., Formation of finite groups, Nauka, Main Editorial Board for Physical and Mathematical Literature, Moscow, 1978.
- [6] Doerk K. and Hawkes T., *Finite soluble grousp*, Walter de gruyter, Berlin/New York, 1992.
- [7] Robinson D.J.S., A Course in the Thery of Groups, Springer-Verlag, New York/Heidelberg/Berlin, 1982.
- [8] Buckley J. Finite groups whose minimal subgroups are normal Math. Z., 116, 1970, pp.15-17.
- Srinivasan S. Two sufficient conditions for supersolubility of finite groups, Israel J. Math., 35, 1980, pp.210-214.
- [10] Robinson D.J.S., A Course in the Thery of Groups, Springer-Verlag, New York/Heidelberg/Berlin, 1982.

CONTACT INFORMATION

A. N. Skiba Gomel State University of F.Skorina, Belarus, 246019, Gomel, Sovetskaya Str., 104 *E-Mail:* skiba@gsu.unibel.by

Received by the editors: 14.06.2005 and final form in 15.09.2005.