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(Представлено академиком А. Н. Колмогоровым. 4 XI 1971)

Рассмотрим потенциальное волновое движение тяжелой несжимаемой 
идеальной жидкости. Горизонтальный уровень жидкости примем за пло­
скость Oxz прямоугольной системы координат Oxzy. Ось Оу проведем 
вертикально вверх. Толщину жидкости в направлении, перпендикулярном 
плоскости Оху, т. е. в направлении оси z, считаем равной единице.

Предположим, что в отрицательную сторону оси абсцисс по поверхно­
сти жидкости движутся волны установившегося вида со скоростью и. При 
движении волн жидкость на бесконечной глубине покоится.

Сообщая всей жидкости скорость +с в направлении оси х, переходим 
от волнового движения жидкости к установившемуся движению самой 
жидкости. На свободной поверхности жидкости граничная линия тока об­
разует волны с неподвижными вершинами. Жидкость течет вдоль линии 
тока в направлении оси х со скоростью, которая отыскивается. Сроднее 
значение скорости жидкости на свободной поверхности на длине волны 
равно скорости и.

Исследователи, которые использовали подвижные оси координат или 
условие с = и, получали свойства, которые отсутствуют у реальных волн, 
а ряд свойств, присущих реальным волнам, их решения не дали (1_5).

Проекции вектора скорости q жидкости на оси координат определяются 
формулами

U = —5ф / ду, V = / дх, (1)

у) — функция тока установившегося движения жидкости; функция ф 
удовлетворяет уравнению Лапласа

Дф = 0. (2>

На бесконечности скорость жидкости
[ —5ф / dy],J=_^ = с, [дф / дх]у=-„> = 0. (3)

К свободной поверхности приложено давление

р = const. (4)

Граничное условие (4) эквивалентно уравнению
р = Const — pgy — *Apg2, (5>

где р — плотность жидкости, g — ускорение свободного падения.
При установившемся движении жидкости

Const = const + ‘/гРС2,

и уравнение (5) можно записать в виде

pgy + ‘Ар?2 = ‘Арс2. (6)

В качестве решения возьмем выражение
ф = —су + прессой kx + 1/2wP^3«3e2'iscos 2кх — 1/ztU^kiaie3hvcos Зкх —
— '/ziufik5a5e^cos ikx +1 /leUfJArVe^cos 5кх — 1lwu$k''a'etkvcos Qkx, (7) 

где к = 2л / к, А — длина волны;
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Выражение (7) удовлетворяет уравнениям (2) и (3).
Уравнение профиля волны (ф = 0) имеет вид

у = ae^cos кх ф- 1/2k3aie2kycos 2кх — 7juk''а'е''',,у(■.<.)> Зкх —
— i]2Ji'!’a6eikvcos ккх ф- 11 e3kyc,os Ъкх — 1 l^k1 а3 еаку cos Ъкх. (8)

Постоянство давления вдоль свободной поверхности, определяемой вы­
ражением (8), выполняется, если

e = g/k + и2к2$2 + u2klfi2a2 ф- 0,2и2*7гя 4 ф- 13,65н2й8р2в6. (9)

Условие постоянства давления на свободной поверхности бесконечно 
глубокой жидкости удовлетворили с точностью до й4, не прибегая к при­
ближенной замене одних величин другими.

Используя метод последовательных приближений, представим выра­
жение (8) в виде

у = 1/2&а2 + к3а*  + S5/s/c5a6 ф- 19,9Л7а8 ф- (я ф- 9М2«3ф- 
ф- 17,lAea7)cos кх ф- (1кка2 ф- "М3»4 + 3'7:.845а6 ф- 30,3Zc7<zs) cos 2кх ф- 

ф- (78/c2la3 + 2S7)28&V ф- 7*V)  cos 3kx ф- (*M 3a4 ф- 12М5а6 ф- 
+ 13,9A:7a8) cos kkx ф- (125/з84&4а5 ф- 2,9/c®«7) cos Ъкх ф- (27/8(Л5а6 ф- 

ф- 3,6/c7a8)cos Ъкх ф- 0,36/ce«7cos Ikx ф- 0,41/c7a8cos 8kx. (10)

Используя метод последовательных приближений и полагая |3 — а, 
а — а(1 -j~ *кк 2а2 ф- 7<”/192&4а4 ф- 17,17с6а6) и принимая аеку вместо й, пред­
ставим ф> в виде

ф = —су + uaehycos кх ф- Ykuka2e2ky{\ ф- cos 2кх) ф- 
+ 1/знА:3й4е4г"-/(1 ф- cos 4/сж) ф- 2/3иА:3а‘е4Ли ф- 

ф- 27/8ойА5й6е6^(1 ф- cos Ъкх) ф- 323/aouksaeeeky ф- 
ф- 0Лик‘аае'у'!!(] ф- cos 8кх) ф- 19,Ъик’’ааееку ф-... (11)

Используя (11), получим для количества движения на длину волны, 
выражение

Qx = \ Р (---- ^- — c^dydx=z— рила2 (1 — е-2кН) —

-Ни
— ри-2лк2а4(1 — e~ikH) — ри-35/^^ав (1 — е~6кн) — ри-39,8-лк6аа (l—e~skH). 

(12).
Поступательное течение частиц жидкости при волнах является пере­

менным. Среднее значение поступательного течения частиц жидкости 
равно

^2а2е_2и 4ик^е~ккн ф- 2Ъ,2Ъикааае~ёкн ф- 1Ъ0икааае~акн. (13)

Первый член выражения (13) был получен Стоксом инженерным спо­
собом (*, 4).

В табл. 1 показано, на сколько скорость q, рассчитанная по формуле 
(13) для поверхности жидкости Н = 0 и различной крутизны волн 
6 = h I к, h = 2а, больше скорости, рассчитанной по формуле Стокса.

Наблюдаемое значение скорости поступательного течения частиц воды 
при ветровых волнах превосходит значение скорости поступательного те­
чения, рассчитанное по формуле Стокса. Это приводило к тому, что посту­
пательное течение жидкости при ветровых волнах разделялось на ветровое- 
течение и волновое поступательное течение жидкости. Решение, получен­
ное в данной работе, показывает, что при ветровых волнах имеется только 
волновое течение частиц жидкости. Следовательно, для ветрового течения 
жидкости не остается места. Причиной возникновения ветрового течения 
жидкости считали тангенциальные силы.
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Таблица 1

5 л282 Ь‘8» 26л6&6 leOn’S8

0.115 0,13 0,068 0,058 0,046 2,34
0.1 0,1 0,04 0,026 0,016 1,82
0,08 0,064 0,016 0,0068 0,0027 1,4
0,05 0.025 0,0025 0,0004 0,00006 1,12
0.01 0.001 4-Ю-6 3-Ю-8 2-lCr10 1,004

Примем, что энергия волнового движения частиц жидкости переме­
щается со скоростью 72». Тогда

мл2б2(1 +4л2д2 + 26,25л4б4 + 160л666) = ’/2и (14)

при 6 = 0,129.
Если учесть более высокие, чем б8, степени, то получим 6 ~0,115—0,12. 

Следовательно, волны установившегося вида крутизной 0,115 сущест­
вовать пе могут, так как скорость поступательного течения частиц жидко­
сти при этих волнах больше УгЩ а это должно приводить к изменению 
вида волн при их распространении.

Поступательное течение частиц жидкости при волнах переменно. Соот­
ветствующее волновое давление также является переменным, его среднее 
-значение на глубине Н = оо равно

-^2- = р (1 + 2kW + 35/#л4 + 39,8 к*а*), (15

о — ик.
Используя выражение (10), имеем

х
\ pgy dx = (1 + 2fe2a2 + 35/4fc4a4 + 39,8/ceae). (16)
0

Из сравнения (16) и (15) получаем

»2 = gM, (17)

Скорость волны с увеличением амплитуды (энергии) волны не увели­
чивается (16). С увеличением амплитуды (энергии) увеличивается ско­
рость с. Поскольку волновое давление является переменным, оно будет про­

изводить работу

(18)

Волновому давлению соответствует возвышение жидкости

у = cos 2кх) -(—(1 cos 4fcr)

Рассмотрим первый член правой части

4- (1 + cos 2кх} dx = .

о
Возвышение, соответствующее волновому давлению, изменяется с двой­

ной частотой по отношению к частоте изменения свободной поверхности. 
При учете более высоких степеней 6 появляются члены 1 + cos ^кх, 
1 cos &кх,... В действительности, возвышение поверхности жидкости от­
сутствует и, следовательно, нет соответствующего переноса жидкости по 
вертикали. Учитывая это, запишем выражение (18) в виде

J Р — 4 со3 г/ dy = pv —— , (19)
О

где v = 5 / т = 1 м2/сек.



Переноса жидкости по вертикали нет и поэтому введена единичная 
площадь; работу давления отнесли к единице времени.

При решении предполагается, что потери энергии волны, определяемые 
выражением (19), восполняются.

При шторме в ложе океана возбуждаются «штормовые» микросей- 
смы (’). Вблизи ложа океана волновое движение частиц жидкости отсут­
ствует. Следовательно, за счет действия вязкости передачу энергии от мор­
ских волн «штормовым» микросейсмам объяснить нельзя.

Ложе океана является своеобразными весами: при отсутствии морских 
волн вес жидкости над ложем океана имеет одно значение; когда по по­
верхности океана распространяются волны, то ложе океана получает от 
них энергию, что равносильно увеличению веса жидкости. Значит, волны 
обладают весом, и уже из этого следует, что волны обладают свойствами 
частиц. Масса покоя у волны отсутствует. При распространении волн вес 
жидкости увеличивается, а объем жидкости не изменяется. Работа волн 
над ложем океана тем больше, чем больше скорость поступательного тече­
ния частиц жидкости при волнах. Следовательно, чем больше скорость 
поступательного течения частиц жидкости при волнах, тем больше масса 
жидкости увеличивается *.

* Этот результат докладывался автором в МГИ АН УССР в июне 1961 г.

Для вычисления используем решение для пологих волн4-^

о

4?2 = с2 — 2с2ку + u2$2k2e2hv = с2 — 2с2ку + и2р2А2 (1 Д- 2ку 
х

q2dx = с2 4- и2ра2к1 = с2-'- q2.
о

Уравнение (6) удовлетворяется, если

-^pgydx + p^-^O, Ар=р^-. (20)

о
Раньше получали (4,s)

х
А- q2dx = с2; (21)

о
•из выражения (21) не следует, что волна обладает свойствами частицы.

Это решение приводит к тому, что за энергию волны берут сумму кине­
тической энергии и потенциальной энергии; Qx = 0 (имеется только коле­
бательное движение частиц жидкости около некоторого среднего положе­
ния); с —и (скорость волны увеличивается при увеличении энергии).

Решение для пологих волн представлялось в Президиум АН СССР 
4 V 1967 г.; решение для крутых волн излагалось в докладе на научной 
конференции в Московском инженерно-строительном институте (март 
1970 г.).
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