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Для быстрых процессов в плазме типа пинч-эффекта характерно уско­
ренное движение границы плазмы с магнитным полем. Если при этом 
ускорение направлено в сторону плазмы, то в неинерциальной системе 
координат такая ситуация эквивалентна плазме в гравитационном поле, 
действующем наружу плазмы. В подобном случае имеет место развитие 
неустойчивости типа Рэлея — Тэйлора. В рамках идеальной магнитной 
гидродинамики анализ указанной неустойчивости был дан в известной 
работе Крускала и Шварцшильда (!), изложение которой с учетом возмож­
ности разных направлений тангенциального магнитного поля в плазме 
(IV) и в вакууме (Во”) представлено Стиксом (2). Для волнового вектора 
возмущения к, направленного поперек магнитного поля (это возможно, 
конечно, только при ВОР||ВО’), инкремент неустойчивости неограниченно 
возрастает как со ~ к'12. Этот случай совпадает с классическим результа­
том Рэлея и Тэйлора для несжимаемой жидкости (3). Неограниченный 
рост инкремента неустойчивости следует трактовать как следствие физи­
чески некорректной постановки задачи. Поэтому для анализа возмущений 
с короткими длинами волн необходимо отказаться от модели идеальной 
магнитной гидродинамики и включить в рассмотрение диссипативные 
эффекты, в первую очередь, вязкость плазмы. Роль вязкости в обычной 
жидкости исчерпывающим образом описана Чандрасекаром (4).

В настоящей заметке мы рассмотрим влияние вязкости на неустойчи­
вость границы плазмы с магнитным полем, сохраняя все исходные пред­
положения известного магнитогидродинамического рассмотрения (*,  2). 
Отметим здесь, что роль вязкости рассматривалась в частном случае ста­
бильной геометрии пинча Тэйлером (5), но автор не получил в явном 
виде соответствующего дисперсионного уравнения *.

* Хорошо известно, что гравитационное поле моделирует эффекты кривизны си­
ловых линий магнитного поля. Поэтому анализ стабильной геометрии пинча во мно­
гих отношениях аналогичен данной задаче С,3,6).

В последние годы, благодаря открытию явления плазменного фокуса 
(7) и последующему изучению этого явления (8, а), интерес к неустойчи­
вости границы плазмы с магнитным полем возрос. Выводы линейной 
теории неустойчивости помогают истолковать получаемые в двумерных 
расчетах волнообразные возмущения границы плазмы (10) (похожие воз­
мущения наблюдаются в экспериментах (“)), а также понять удивитель­
ную симметрию эксперимента с нецилиндрическим z-пинчом в азиму­
тальном направлении (10).

В данной заметке мы ограничимся рассмотрением плоской границы 
плазмы с магнитным полем, причем плазму будем считать несжимаемой, 
однородной с изотропной вязкостью. Постоянное поле тяжести с ускоре­
нием g будет направлено перпендикулярно границе наружу плазмы.

1. На основе магнитогидродинамических уравнений несжимаемой бес­
конечно проводящей плазмы (2) с учетом вязкости можно получить
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линеаризованные уравнения для амплитуд возмущении вида 
ехр z(kp-r — ®i)

— iapov = jx Bq — ikpP — Ло (fcp)2v,

E + -LvxB? = 0, kpv = 0, zkpc X В = 4л j, (1)

кв-В = О, к’сХЕ = мВ, ikp-E = 4ns,

где к” — волновой вектор возмущений внутри плазмы, р0 — коэффициент 
вязкости (остальные обозначения совпадают с (2)).

Из системы уравнений (1) следует дисперсионное соотношение

В вакууме дисперсионное соотношение для возмущения с волновым 
вектором к”, очевидно, имеет вид (2)

т2 = о. , (з)

Для дальнейшего рассмотрения выберем систему координат так, что 
граница плазмы с магнитным полем расположена в плоскости xz, а ось у 
направлена внутрь плазмы. Пусть далее ось z совпадает с направлением 
невозмущенного магнитного поля в плазме, т. е. Вор = {О, О, Во/}, а поле 
в вакууме имеет две компоненты Во“ = {ВОх, 0, Во/}. Вектор ускорения 
силы тяжести g = {0, —g, 0}, где исходное ускорение плазмы g > 0. Не­
возмущенное решение известно:

Ро = — Ро°У + Р0’ Р<> = 8л ’

где Ро — давление на границе, а ра — убывающее давление в глубь плазмы.
Граничные условия, как известно, получаются путем интегрирования 

всей системы уравнений в направлении, перпендикулярном границе (2). 
Пусть п — единичный вектор нормали, который для невозмущенного со­
стояния направлен по оси у, н0 = {0, 1, 0}. При учете вязкости по срав­
нению с (2) изменяется только условие, соответствующее уравнению дви­
жения плазмы:

Вр+Вс , Ep+Ev
2 “И S 2 — П (р — б) = 0, (5)

где о — вязкий тензор в несжимаемой жидкости, 

a j*,  s*  — поверхностные плотности тока и заряда соответственно.
2. По аналогии с (2) можно записать систему линеаризованных гра­

ничных условий для амплитуд возмущения с учетом изменения (5). Пу­
тем разрешения этих условий (с использованием (1)) относительно ско­
ростей и давления на границе (при равенстве тангенциальных компонент 
векторов кр и к”: кхр — кх = кх, kzp = /с/ = /сг) получим в координатном 
виде

(6).

(?)

(8>

причем, согласно (3), kvv = ■—ifkx -ф /с/ = —ik. Заметим, что для 
исключенных в ходе вывода (6) — (8) граничных у-компонент магнитного 
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поля сохраняется соотно­
шение из (2)

п,-В« = —пВ0”,
(9) 

п0Вр = -п-В,’,

означающее, что силовые 
линии искривляются па­
раллельно границе.

В плазме vx, vy, vz и р 
связаны неиспользованны­
ми до сих пор уравнения­
ми несжимаемости и дви­
жения. Из уравнения не­
сжимаемости и продоль­
ной составляющей уравне­
ния движения vz и р выра­
жаются через vx и vy. Две 
поперечные составляющие 
уравнения движения дают 
два соотношения между 
оставшимися компонента­
ми vx и vy. С помощью дис­
персионного уравнения (2) 
можно разрешить эти соот­
ношения для обоих видов 
возмущений. Для поверх­
ностных волн (с индек­
сом 1), когда (Лр)2 = 0, 
т. е.

Юг = ik, (10)

из указанных соотношений 
получается одна связь

= — ivyikx]k. (И) 

Для альвеновских волн 
(с индексом 2), когда об­
ращается в нуль квадрат­
ная скобка (2), т. е.

Рис. 1. Зависимость безразмерного инкремента к от 
безразмерного волнового числа |г в случае сильного 
скинирования (Д) и в случае равенства внутреннего 
и внешнего полей (К) при различных значениях па­
раметра р (18): 1, 1', Г — 0; 2, 2', 2" — 0,25; 3, 3', 

3" — 0,5; 4, 4', 4" — 1,0; 5, 5’ — 2,0

соро

оба соотношения равны нулю тождественно, другими словами, vx, и vy2 
являются независимыми величинами. Ясно, что три граничных усло­
вия (6) — (8) могут быть однозначно удовлетворены, потому что общее 
решение в плазме как раз задается тремя независимыми величинами 

^у2, &х2>
Введя обозначения

bp = Bfz (4лр0)-,/2, bl = Bvoi (4np0)-V2, i = x,z, х0 = r|o/Po, (13) 

получим тогда условие разрешимости системы линейных уравнений
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(6)-(8)
Г 0)2 "I[Ю2 + gk _ (к. Ьр)2 - к*  <т [-р-----(byJ -

— 4icox0 [к (ку)2 их0 — со2 — г(о/с2х0 + Й (&р)2] = 0, (14)

где (Л/) 2 определено в (12).
В случае равных нулю магнитных полей из (12) и (14) следует дис­

персионное уравнение из ('*).  Наоборот, в отсутствие вязкости мы прихо­
дим к уравнению из (2).

3. Общее дисперсионное уравнение (14) удобно записать в безразмер­
ных переменных щ щ и Л, которые будут определены, как в (4):

к = р (g/x.o)‘/3, ki = щ (g/x2)‘/3, i = x, z, co = Л (g2/x0)’/3. (15)

Еще можно ввести безразмерные параметры

Щ = (И (х0£)-,/з, ₽. = (&.”) (Xog)_1/s, i = X, Z. (16)

Уравнение (14) с учетом (12) тогда запишется в виде

(?12 — Ц 4- Р-iPi + Pzaz) (^2 4~ Pzaz) +
+ 4/щ2 [-(и2 + к + р2а2А)'/з + V + А,ц2 + plai] = 0. (17)

Решение Л(р, цг), зависящее от параметров az, р.с, рг, означает не­
устойчивость, если к > 0.

Ниже мы дадим решение уравнения (17), несколько ограничивая об­
ласть изменения параметров. Положим, что внешнее магнитное поле 
имеет лишь z-компоненту, [Ц = 0, причем оно либо равно внутреннему 
полю, р2 = az (случай К), либо внутреннее поле вообще отсутствует, 
а2 = 0 (случай Д). При таких ограничениях можно ввести параметры а 
и р вместо az и |3Z так, чтобы к зависело только от одной переменной р. 
Обозначим

Р2 = YP, « = Y«z, 0 = V0z = -,В°\Чг &овГ'г- (18)
к (4лро)'2

На рис. 1 сплошными линиями изображены численные решения уравне­
ния (17) для ряда значений р в случае Д (а = 0) ив случае К (а = Р). 
Для сравнения пунктирными линиями даны кривые инкремента к = к' 
при отсутствии вязкости (2). Параметр р может изменяться от 0 до оо. 
Интересно отметить, что граница обращения к в нуль не зависит от нали­
чия вязкости. Рисунки показывают, как вязкость уменьшает величину 
инкремента, пока параметр Р не становится достаточно большим.
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