УДК 541.67

ФИЗИЧЕСКАЯ ХИМИЯ

А. А. ШКЛЯЕВ. В. Ф. АНУФРИЕНКО, Е. И. БЕРУС, Ю. Н. МОЛИН

РАДИОСПЕКТРОСКОПИЧЕСКОЕ ИССЛЕДОВАНИЕ КООРДИНАЦИОННЫХ ПЕРЕСТРОЕК КОМПЛЕКСОВ МЕДИ ПРИ ВЗАИМОДЕЙСТВИИ С ОСНОВАНИЯМИ

(Представлено академиком Г. К. Боресковым 25 I 1972)

До настоящего времени оставался неясным механизм, обеспечиваюций возникновение аномально больших парамагнитных сдвигов сигнала я.м.р. лигандов, образующих короткоживущие аддукты с бис-хелатами Cu(II) (¹⁻³). Величина контактных сдвигов в некоторых комплексах Cu(II) сопоставима со сдвигами в аналогичных комплексах Ni(II), но в общем случае их температурная зависимость заметно отклоняется от за-

Рис. 1. Структура образующихся аддуктов β-дикетонатов Cu (II)

копа Кюри (¹, ²).

В данной работе методами э.п.р. и я.н.р. проведен апализ структуры аддуктов трех β -дикетонатов меди: бензонл-, трифтор-, гексафтор-ацетилацетонатов (Cu(БАА)₂, Cu(ТФАА)₂ и Cu(ГФАА)₂ соответственно). Выбор хелатов определялся большим различием их акцепторных свойств (⁴, ⁵), возрастающих с введением трифторметильной группы. Особенности методики измерений э.п.р. (⁶, ⁷) и я.м.р. (³) описаны ранее.

Структура аддуктов (⁶). В табл. 1 даны параметры спектров э.п.р. β-дикетонатов Cu(II), полученные измерениями в замо-

роженных растворах толуола с добавками контролируемых концентраций оснований. При эквимолекулярных концентрациях комплекса и основания в толуоле образуется 1:1 аддукт, а спектры э.п.р. 1:2 аддуктов наблюдаются при избытке основания. Экспериментально наблюдаемая двухосная анизотропия \hat{g} - и \hat{a} -тензоров аддуктов более вероятна для квадратноипрамидальной (В и В') или октаэдрической (С, С' и С") структур 1:1 и 1:2 аддуктов (рис. 1). При аксиальной координации (структуры В и С) g-фактор возрастает, константа с.т.с. с ядром меди уменьшается, а ширина линий остается практически неизменной.

В спектрах э.п.р., соответствующих В' состоянию 1:1 аддукта, наблюдается дополнительная с.т.с. на ядре азота. При образовании 1:2 аддуктов β-дикетонатов с экваториальной координацией лигандов (структура С") появляется расщепление от двух азотов. Ослабление Си—О-связи в исходных комплексах (⁸) при введении в ацетилацетонат более электроотрицательных заместителей сопровождается возрастанием g-фактора, а константа с.т.с. уменьшается. Аксиальная координация, вызывая удлинение плоскостных связей (⁹⁻¹¹), приводит к аналогичному изменению параметров э.п.р. (табл. 1). Усиление аксиального связывания с возрастанием основности присоединяемого лиганда вызывает изменение параметров э.п.р., подобное присоединению второй аксиальной молекулы. С дальнейшим усилением аксиального связывания исходные связи ослабляются настолько, что аддукт стабилизируется в состоянии с орбитой неспаренного электрона, направленной на присоединяемый лиганд (состояния B', C''), а аксиальную координацию осуществляют кислороды бидентатного лиганда. Значения параметров э.п.р. в B' и C'' конфигурациях аддукта зависят от ковалентности плоскостных связей и приближаются к значениям, наблюдаемым для обычных тетрагоиальных хелатов с Cu(NO)² циклом (¹²).

Результаты измерений я.м.р. Из табл. 2 следует, что для алдуктов Cu (ТФАА)₂ величина сдвигов сильно уменьшается с понижением основности лиганда (рис. 2) и резко падает с повышением температуры (¹). Температурное новедение сдвигов аддуктов низкоосновных пиридинов с Cu (ГФАА)₂ аналогично поведению сдвигов для высокоосновных пиридинов с Cu (ГФАА)₂. Сдвиги минимальны для Cu (БАА)₂. образующего только пентакоординационные аддукты (⁴), а для Cu (ГФАА)₂

аддукты (*), а для Сu(ГФАА) сдвиги максимальны.

Для интерпретации данных я.м.р. необходимо учесть, что в растворах бис-хелатов, содержащих основание, устанавливается равновесие как между А и (B, B") состояниями (или А и (C, C', C")), так и внутри В \Rightarrow В' и С \Rightarrow С' \Rightarrow \Rightarrow С". В контактный сдвиг я.м.р. могут вносить вклад только В', С' и С" состояния.

1:1 аддукты. Принимая энергетическую разницу между В и В' формами аддукта равной Δ_в, а вероятность нахождения лиганда в закомплексованном состоянии *p*_в; выражение для наблюдаемого парамагнитного сдвига можно записать для этого случая в виде

$$\delta = p_{\rm E} \delta_{\mu} / \left[1 + \frac{1}{2} \exp \left(\Delta_{\rm E} / RT \right) \right]$$
⁽¹⁾

CH,~PU M. ð CH-PU 25 20 C2 H5 CO2 - P4 15 р С 10 Δ a Ï б c 3,0 4,0 4.5 T

Рпс. 2. Изменение нарамагнитных сдвигов в CH_2Cl_2 от температуры при концентрациях (мол/л) [Cu] = 0,01 \div 0,4 [B] = 2. $a - Cu (T\Phi AA)_2, \ \delta - Cu (\Gamma\Phi AA)_2$

где δ_{μ} — контактный сдвиг на лиганде в состоянии В'. Заметим, что исевдоконтактный вклад в б мал так же как маловсроятен перенос спиновой илотности через d_{z^2} -орбиту в случае аксиального расположения основания. Из постоянства спиновой плотности (7—9%) на атомах азота плоских комилексов, хорошо известного по данным я.м.р. и э.п.р., величину δ_{μ} можно считать одинаковой для всех аддуктов и принять равной предельному сдвигу Сu (ГФАА)₂ с высокоосновными пиридинами.

Выражение (1) позволяет объяснить возрастание сдвигов я.м.р. с повышением температуры, наблюдавшееся (¹) для 1:1 аддуктов Cu(AA)₂ с ү-пиколином и Cu(TФАА)₂ с ү-пиколин-N-оксидом (¹, ²), увеличением вклада В' конфигурации с ростом температуры. Сдвиги я.м.р. на Ру в комплексах Cu(БАА)₂, Cu(AA)₂ и Cu(ДТК)₂ примерно равны (³), и оценки с использованием (1) дают порядок величины $\Delta_{\rm B} \simeq 2$ ккал/моль. В то же время наблюдаемый сдвиг на протонах пиперидина в 1:1 аддукте Cu(БАА)₂. Pip ($H_{\alpha} - 20$, $H_{\beta} - 8$) составляет половину от сдвига в Ni(AA)₂. (Pip)₂ ($H_{\alpha} - 42$, $H_{\beta} - 16$), что соответствует $\Delta_{\rm B} \simeq 0$. Интересно отметить, что разница между $\Delta_{\rm B}$ в 1:1 аддуктах Cu(БАА)₂ с Ру и пиперидином почти совпадает с разницей между энтальпиями образования 1:1 аддуктов с теми же основаниями близкого комплекса Cu(AA)₂: -5,5 и -8,0 ккал/моль соответственно (¹³).

Таблица 1

Бис- хе лат	Основание	Аддукт	g II	A (Cu ⁶³)	ξТ	В	a ^N ⊥, rc	Структура
Cu (AA2)			2,256	19 6	2,054	24		A
Cu (BAA) ₂	-		2,259	187	2,053 2,053 2,057	$ \begin{array}{c} 23 \\ 28 \\ 30 \end{array} $		A
Cu (TΦAA) ₂	γ-NO — пиридин Пиридин Пиперидин — γ-NO2-пиридин Пиридин	$ \begin{array}{c} 1:1\\ 1:1\\ 1:2\\ 1:1\\ 1:2\\ 1:1\\ 1:2\\ 1:1\\ 1:2\\ 1:1\\ 1:2 \end{array} $	$\begin{array}{c} 2,298\\ 2,303\\ 2,332\\ 1,317\\ 2,259\\ 2,271\\ 2,313\\ 2,341\\ 2,317\\ 2,316\\ \end{array}$	$ \begin{array}{c c} 171 \\ 165 \\ 155 \\ 157 \\ 169 \\ 187 \\ 161 \\ 149 \\ 1 00 \\ 159 \\ \end{array} $	$\begin{array}{c} 2,063\\ 2,065\\ 2,069\\ 2,068\\ 2,068\\ 2,051\\ 2,054\\ 2,054\\ 2,073\\ 2,068\\ 2,067\\ 2,068\\ 2,067\end{array}$	10 23 25	14	B B C B C" A B C B C C
Си (ГФАА) ₂	γ-Пиқолин Морфолип — Ацетонитрил γ-CN — пиридин Пиридин	$\begin{array}{c} 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 2 \\ 1 & 1 \\ 1 & 1 \\ 1 & 2 \\ 1 & 1 \\ 1 & 1 \\ 1 & 2 \\ 1 & 1 \\$	$\begin{array}{c} 2,319\\ 2,303\\ 2,303\\ 2,293\\ 2,264\\ 2,284\\ 2,323\\ 2,323\\ 2,351\\ 2,331\\ 2,305\\ 2,305\\ 2,303\end{array}$	$\begin{array}{c} 157\\ 165\\ 158\\ 171\\ 168\\ 183\\ 156\\ 149\\ 153\\ 154\\ 172\\ 145\end{array}$	2,068 2,065 2,065 2,064 2,057 2,067 2,074 2,068 2,067 2,067 2,060 2,065	22	$ \begin{array}{c c} 13, \\ 14\\ 14\\ 14\\ 13, \\ 14\\ 14\\ 14\\ 14\\ 14\\ 14\\ 14\\ 14\\ 14\\ 14$	B B' C" B' C B C B C B C" B' C"

Параметры спектров э.п.р. аддуктов β-дикетонатов Cu (II)

Примечание. Константы с.т.с. на Си⁶³ даны в см⁻¹.10⁻⁴.

Таблица 2

Заместитель	Протон	Cu (EAA) ₂	Cu (ΤΦΑΑ) ₂	Cu $(\Gamma \Phi \Phi A)_2$	Ni (AA)2*	pK _a
γ-CH3	H _x	9,0	30,5		81,0	6.02
	H_{β} H_{α} H	4,0 8,5 8,0	12,0 25,0 22,0	21,0	23,5 84,5	5,23
γ-C2H5CO2	H_{α} H_{α}		16,5 5,0	24,5	72,0 21,2	3,49
γ-C N	H_{α} H_{β}		$7,3\\2,0$	16,5	$70,0\\18,5$	1,90

Параметры сдвигов сигналов я.м.р. на протонах замещенных пиридинов в аддуктах β-дикетонатов Си (II), наблюдаемых в растворе CH₂Cl₂ при +38° C

• Для Ni (AA)₂ сдвиги определялись с CCl₄ при 38° С.

Присутствие формы В' в растворе $Cu(ДTK)_2$ в пиридине позволяет объяснить и наблюдаемое дополнительное уширение линий э.п.р. аддукта $Cu(ДTK)_2 \cdot Py(^{14})$. Действительно, оценка населенности $(p_{\rm B} = \delta / \delta_{\mu})$ В' конформации из величин наблюдаемых сдвигов я.м.р. (³) $p_{\rm B} \approx 0,06$ дает величину, необходимую для интерпретации дополнительного уширения порядка 1,5 гс спектров э.п.р. аддуктов в растворе $(\delta H_{\rm B} \approx p_{\rm B} \cdot 2a_{\rm N})$. 1:2 аддукты. Сильноакцепторный комплекс Cu (ГФАА)₂ образует наиболее устойчивые 1:2 аддукты (⁵), для которых основным состоянием является C'' конфигурация (табл. 2). Величины сдвигов я.м.р. аддуктов с пиридинами близки к сдвигам в Ni (AA)₂· Py₂ (табл. 2), и их температурное изменение для более сильных оснований следует закону Кюри (рис. 2). Из данных э.п.р. следует, что в 1:2 аддуктах Cu (ТФАА)₂ с γ -пиколином реализуется C'' состояние с плоскостной координацией лигандов. По изменению положения высокополевой части спектра э.п.р. с возрастанием концентрации основания, в приближении быстрого обмена между 1:1 и 1:2 аддуктами, оценена константа устойчивости бис-аддуктов Cu (ТФАА)₂ с γ -пиколином и с γ -CO₂C₂H₅—Ру. В толуоле при —20° С $K = 2,0 \pm 0,8$ л/моль для γ -РіС и $K = 0,9 \pm 0,5$ л/моль для γ -CO₂C₂H₅—Ру. С переходом к CH₂Cl₂ значение K уменьшается и при —20° оно составляет 0,2 $\pm 0,1$ л/моль для γ -РіС. Оценить K в CH₂Cl₂ в случае γ -CO₂C₂H₅—Ру не уцалось из-за малой ее величины.

Возможность одновременного наблюдения двух форм В и В' (сравнимой концентрации) аддукта Cu (T Φ AA)₂· γ -PiC в замороженных растворах свидетельствует об энергетичсской эквивалентности этих форм. При малом значении К наблюдаемый сдвиг я.м.р. будет зависеть от концентрации как В', так и С" конформаций. Действительно, величина б при низких температурах (рис. 2, Cu (T Φ AA)₂ + γ -CH₃—Ру) близка к предельным значениям, возможным для устойчивой С" конформации, а с повышением температуры падает быстрее, чем по закону Кюри, что соответствует уменьшению константы устойчивости 1:2 аддукта. Аналогично может быть объяснено температурное изменение сдвигов в 1:2 аддуктах Cu (Г Φ AA)₂ с γ -NO₂—Ру и γ -CN—Ру, для которых данные э.п.р. по анализу устойчивости конформаций указывают на их близость к системе Cu (T Φ AA)₂ + γ -Pic (табл. 1). В аддуктах Cu (T Φ AA)₂ с низкоосновными пиридинами вероятность образовании 1:2 аддукта мала, а температурпос поведение сдвигов также определяется диссоциацией этого аддукта.

Таким образом, контактный сдвиг сигнала я.м.р. на протонах оснований в аддуктах комплексов меди вызван возможностью плоскостной координации этих оснований в образующемся аддукте. Величина сдвига определяется как равновесием между разнокоординационными состояниями комплекса, так и энергетической неэквивалентностью конформационных состояний аддукта.

Институт катализа Сибирского отделения Академии наук СССР Институт химической кинетики и горения Сибирского отделения Академии наук СССР Новосибирск Поступило 17 I 1972

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ С. Н. Ке, R. J. Kurland et al., J. Phys. Chem., **74**, 1726 (1970). ² R. W. Kluiber, W. O. Horrocks, Inorgn. Chem., **6**, 1427 (1967). ³ Е. И. Берус, В. Ф. Ануфриенко и др., ДАН, 200, 1129 (1971). ⁴ D. P. Graddon, Coord. Chem. Rev., **4**, 1 (1969). ⁵ W. Partenheimer, R. S. Drago, Inorgn. Chem., **8**, 47 (1970). ⁶ A. A. Шкляев, В. Ф. Ануфриенко, В. Д. Огородников, ЖСХ, **13**, № 5 (1972). ⁷ A. A. Шкляев, В. Ф. Ануфриенко, КСХ, **12**, 601 (1971). ⁸ K. Nakamoto, Y. Morito, A. Е. Martell, J. Phys. Chem., **66**, 346 (1962). ⁹ P. Jose, S. Ooi, G. Fernando, J. Inorgn. and Nucl. Chem., **31**, 1971 (1969). ¹⁰ D. W. Smith, J. Chem. Soc., **1970**, 3108. ¹¹ B. J. Hathaway, D. E. Billing, Coord. Chem. Rev., **5**, 143 (1970). ¹² D. Kivelson, R. Neiman, J. Chem. Phys., **35**, 156 (1961). ¹³ B. Ф. Ануфриенко, А. А. Шкляев, ДАН, **196**, 844 (1971). ¹⁴ А. А. Шкляев, В. Ф. Ануфриенко, ДАН, **201**, 1154 (1971).