ГЕОХИМИЯ

УЛК 554,493:553,64:551,35:550.4

г. н. батурин, в. з. блисковский, д. а. минеев

РЕДКОЗЕМЕЛЬНЫЕ ЭЛЕМЕНТЫ В ФОСФОРИТАХ СО ДНА ОКЕЛНА

(Представлено академиком Н. М. Страховым 25 VI 1971)

Содержание и состав р.з.э. в фосфоритах различных месторождений освещены в ряде публикаций ((1-3) и др.). Данные же о геохимии ТВ в фосфатных образованиях, залегающих на дне океана, весьма скудны. Известны результаты анализа лишь одного фосфоритового желвака с шельфа Калифорнии (4) и одной пробы глубоководного костного детрита (5).

В настоящей работе излагаются результаты исследования геохимии лантаноидов в 8 фосфоритах и 2 обломках костей со дна океана. Краткая

характеристика изученного материала дана в табл. 1.

Из образцов, фигурирующих в табл. 1, два (№№ 250—3 и 152—1) являются сравнительно молодыми и, возможно, относятся к современным образованиям (6). Обр. № 770 с шельфа Марокко, по всей вероятности, синхронен и генетически идентичен фосфоритам, образующим крупные месторождения на близлежащей суше (в эоцене). Обр. № 6002 представляет собой обломок фосфоритовой глыбы, покрытый железо-марганцевой коркой, с вершины одного из гайотов Срединно-Тихоокеанских подводных гор (8). Остальные фосфориты по составу, строению и условиям залегания аналогичны желвакам калифорпийского шельфа (9) и имеют, надо полагать, одинаковый с ними возраст (миоцен — плиоцен) (10). Кости китообразных (обр. №№ 1001 и 1004) относятся к современным видам.

 $\begin{tabular}{lll} T аблица & 1 \\ \begin{tabular}{lll} C одержание P_2O_5 и ΣTR_2O_3 (включая иттрий) в изученных образцах фосфоритов \\ \end{tabular}$

30 . 5	Местонахождение и краткая характеристика	Содержа	ание, %	$\frac{\Sigma TR_2O_3}{TPO} \cdot 10^{-3}$	
№ обр.	материала	P2O5	ΣTR ₂ O ₃	P ₂ O ₅ · 10 ⁻³	
	Marie Control				
2503	Фосфоритовая конкреция, шельф Чили, гл. 150 м	25,6	0,010	0,39	
540	Фосфоритовая конкреция, плато Блейк, гл. 300 м	20,3	0,040	1,97	
770	Фос роритовый конгломерат, западный шельф Марокко, гл. 150 м	18,9	0,010	0,57	
1568	Фосфоритовый конгломерат, западный шельф Анголы, гл. 160 м	9,0	0,010	1,11	
152—1	Фосфоритовая конкреция, внутренний шельф Намибии (в), гл. 76 м	27,7	Не оби. (<0,005)	0,18	
216	Фосфоритовая конкреция, внешний шельф Намибии, гл. 130 м	21,3	0,066	3,10	
390	Фосфоритовая плита, банка Агульяс (7), гл. ~ 500 м	19,1	0,030	1,57	
6002	Фосфоритовая глыба, подводные Срединно- Тихоокеанские горы (20°42' с. ш., 170°00' в. д.) (8), гл. 1950 м	30,9	0,098	3,17	
	Кости китообразных, внешний шельф На- мибии, гл. 150 м				
1001 1004	Позвонок Обломок реберной кости	$^{18,5}_{29,0}$	$0,021 \\ 0,019$	$\frac{1,13}{0,65}$	

Рассматривая табл. 1, можно видеть, что самые молодые образцы характеризуются наименьшими содержаниями TR (<0.005 и 0.010%) и наименьшими же отношениями $\Sigma TR_2O_3/P_2O_5$. Из-за ограниченности данных это нельзя пока считать установленной закономерностью. Следует, однако, заметить, что подобным же образом соотносятся между собой содержания TR в нефосфатных современных илах и ископаемых глинах. Так, в современных осадках океана и Черного моря количество редких земель составляет соответственно 0.0173 и 0.011% (11 , 12). Это ниже кларка для осадочных пород: 0.022-0.024% (13 , 14) и среднего содержания в яснополянских и фаменских глинах Русской платформы (0.039%) (15).

Таким образом, если осадок, фосфатный или нефосфатный, контактирует с морской водой сравнительно недолго, то и содержание в нем TR ока-

зывается довольно невысоким.

Для более древних из исследованных фосфоритов содержания ΣTR_2O_3 (и отношения ΣTR_2O_3 / P_2O_5) заметно возрастают и становятся соизмеримыми с соответствующими показателями для фосфоритов, находящихся на континентах. Исключение составляет лишь обр. № 770, в котором TR значительно меньше, чем в фосфоритовых рудах Северной Африки (3, 16).

По-выдимому, отношение ΣΤR₂O₃/P₂O₅, равное 0,001—0,004, отвечает состоянию равновесия между морской водой и фосфатом осадка (в отношении ТR). Для достижения этого равновесия требуется определенное время, по истечении которого содержания TR в фосфоритах практически

остаются на том же уровне.

Большие концентрации редких земель в фосфоритах создаются лишь при наличии специфических условий. Таким условием может быть прпуроченность зоны фосфатонакопления к редкоземельной геохимической провинции (3), где содержания ТR регионально повышены. Другой случай—весьма высокие содержания редких земель в ископаемых костях и фосфатном костном детрите (до 4,7%) (17-19)—объясняется минералогохимическими особенностями фосфата костей, в котором из-за недостатка катионов изоморфные процессы идут особенно интенсивно (20).

В табл. 2 состав лантаноидов в изученных фосфоритах сравнивается с составом TR в фосфоритовых рудах, осадках, осадочных породах и морской воде. Групповой состав TR во всех этих образованиях показан на

треугольной диаграмме (рис. 1).

Ранее отмечалось (3), что в целом соотношение между группами лантаноидов в фосфоритах близко к кларковому. При этом существует не особенно значительное, но очень четкое различие между геосинклинальными и платформенными фосфоритами, выражающееся в более цериевом характере лантаноидов в последних. На рис. 1 очерчены частично перекрывающиеся поля составов ТВ в желваковых фосфоритах Русской платформы (I) и Каратауского бассейна (II).

Для четырех фосфоритов со дна океана — одного калифорнийского (4) и трех наших (табл. 2, $\mathbb{N}\mathbb{N}$ 6, 8, 9) — эти точки укладываются в платформенное поле диаграммы. Все перечисленные образды и петрографически и морфологически представляют собой как раз типичные желваковые плат-

форменные фосфориты.

Обособленно — на самой границе поля каратауских фосфоритов — расположена точка обр. № 6002. По составу лантаноидов этот образец оказывается близким к морской воде, где аномальность в соотношении ТК отмечалась Э. Голдбергом (4). Близость эта, скорее всего, не случайна, а обусловлена тем, что рассматриваемый фосфорит формировался в осадке, практически не содержащем терригенных компонентов. Естественно, что в решетку трехкальциевого фосфата этого образца индивидуальные лантаноиды входят примерно в тех же соотношениях, в каких они находятся в морской воде; особенно хорошо это соответствие выдерживается для групп лантаноидов.

Состав лантанопдов в фосфорнтах в некоторых других образованиях (%)

N.W D.D.	Характеристика материала	ΣTR_2O_3	La	Ce	Pr	Nd	∑ (La − Nd)	Sm	Eu	Gd	ТЬ	Dy	Но	Σ (Sm — Ho)	Er	Tu	Yb	Lu	Σ (Er – Lu)	Примечание
1	Пластовые фосфориты Кара- тауского бассейна	0,080	23,7	27,4	5,2	21,3	77,6	5,0	0,6	6,2	0,6	4,3	0,7	17,4	2,5	0,3	1,7	0,5	5,0	Σ _{ср} из 107; состав — из 44 обр. (³)
2	Желваковые фосфориты Рус- ской платформы																			
	Песчанистые Глинисто-глауконитовые	0,0418 0,0800	19,7	44,7	3,9	20,9	89,2	2,8	0,3	2,9	0,3	2,1	0,3	8,7	1,0	0,9	0,1	0,1	2,1	Σ _{ср} из 14 (песч.) и 19 (глин.);
3	Ракушняковые фосфориты се- веро-запада СССР	0,100	15,0	37,1	5,0	16,7	73,8	7,7	0,5	7,5	0,8	4,1	0,5	21,1	2,1	0,3	2,2	0,5	5,1	состав — из 51 обр. (3) Σ _{ср} из 8, состав — из 4 обр. (3, ²¹)
4	Зернистые фосфориты Ср. Азии и Сев. Африки	0,057	21,6	38,2	3,7	20,4	83,9	3,6	0,6	4,2	0,5	3,1	0,5	12,5	1,7	0,2	1,4	0,3	3,6	$\Sigma_{\mathbf{cp}}$ из 5, состав — из 3 обр. $\binom{(3, 16)}{3}$
5	Желвак фосфорита, континен-	0,0435		35,8		i e		1 1		1	1	- 1				. 1			,	(4)
6 7 8 9 10	тальный шельф Калифорнии Обр. № 216 Обр. № 6002 Обр. № 540 Обр. № 390 Океанические осадки	см. табл. 1 0,0173	19,3 28,9 29,1 36,7 18,5	46,4 9,4 25,0 38,0 39,2	$3,9 \\ 5,0 \\ 3,5 \\ 5,3$	18,2 23,1 18,0 18,8 21,3	87,8 66,4 75,6 93,5 84,3	3,5 $5,3$ $4,6$ $ 4,0$	$^{1,2}_{1,9}_{2,3}_{2,6}$	3,7 $6,9$ $5,8$ $2,6$ $4,5$	0,8 - 0,7	2,4 6,2 3,5 —	$\begin{array}{c} -1,7\\1,7\\1,2\\-\\0,7 \end{array}$	10,8 22,8 17,4 5,2 11,0	0,8 $4,1$ $3,5$ $1,3$ $2,2$	0,9 - 0,3	$0,6 \\ 5,2 \\ 3,5 \\ -2,2$	0,9	1,4 11,1 7,0 1,3 4,7	
11	Осадки Черного моря (глинистые и известково-глинистые	0,011	21,1	42,0	5,4	20 ,2	88,7	3,8	3,	,8		1,8	0,2	9,6	1,0	-	0,7	-	1,7	4 обр. (¹¹) Среднее из 19 обр. (¹²)
12 13	илы) Морская вода Среднее в осадочных породах	0,24	$\frac{27,4}{23,4}$	12,2 36,8	$^{6,0}_{5,8}$	21,6 19,0	67,2 85,0	$\frac{4,1}{4,0}$	1,0 1,0	$^{5,8}_{3,9}$	0,6	6,9	2,0 0,8	19,8 10,3	$^{5,8}_{2,1}$	$^{1,2}_{0,3}$	$^{4,9}_{2,0}$	$\begin{bmatrix} 1,1\\0,3 \end{bmatrix}$	$^{13,0}_{4,7}$	(⁴) (¹⁴)
1										ľ		ĺ	ĺ			ł				

Примечание. В (4, 11, 12, 14) составы дантановдов определялись различными методами— нейтронной активацией, хроматографией, рентгено-флюоресцентным. По-разному даны и конечные результаты— с иттрием или без него, в абсолютных или относительных единицах и т. д. Нами все данные пересчитаны и приводятся в соответствии с методикой, принятой в прежних работах ((4) и др.).

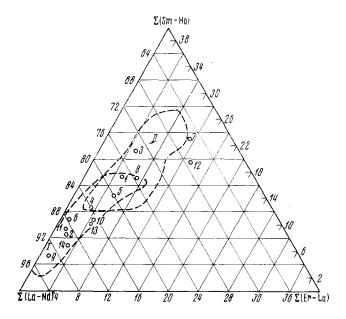


Рис. 1. Соотношение лантоноидов в фосфоритах и некоторых других образованиях (I-I3 см. $\mathbb{N}\mathbb{N}$ п.п. в табл. 2; I4— средний состав гранитов Финляндии (14).) I— поле фосфоритов Русской платформы, II— то же Каратауского бассейна

Напротив, во всех желваковых фосфоритах,—и залегающих сейчас на суше, и взятых со дна океана,— довольно велико количество терригенных примесей (до 30—50%). При образовании этих фосфоритов состав ТR должен контролироваться геохимическими особенностями не только морской воды, но и присутствующего в осадке терригенного материала.

В горных породах — источниках терригенного материала — редкие земли имеют существенно цериевый состав (см. на рис. 1 точки 13 и 14 — средний состав лантаноидов в осадочных породах и гранитах Финляндии (14)).

В свете отмеченных фактов логичным выглядит предположение о том, что степень близости состава ТR в осадке к таковому морской воды может служить мерилом относительной роли в осадконакоплении хемо- и биохемогенных процессов, с одной стороны, и терригенных — с другой.

Поступило 5 VI 1971

цитированная литература

¹ Е. И. Семенов, В. Н. Холодов, Р. Л. Баринский, Геохимия, № 5. 434 (1962). ² Z. Altschuler, S. Berman, F. Cuttita. U. S. Geol. Surv. Prof. Paper. № 575-b, 1 (1967). ³ В. З. Блисковский, Д. А. Минеев, В. Н. Холодов, Геохимия, № 11, 1348 (1969). ⁴ Е. Goldberg, М. Koide et al., J. Geophys. Res., 68, № 14, 4209 (1963). ⁵ G. Arrhenius, E. Bonatti, Neptunism and Vulkanism in the Ocean, N. Y., 1964. ⁶ Г. Н. Батурин, В. П. Петелин, А. В. Коченов. Литол. и полезн. ископ., № 3, 45 (1970). ⁷ J. Murray, A. Renard, Deep-Sea Deposits, Scientific Res., London, 1891. ⁸ П. Л. Безруков, П. Ф. Андрущенко и др., ДАН, 185, № 4 (1969). ⁹ R. Dietz, K. Emery, F. Shepard, Bull. Geol. Soc. Am., 53, № 6, 815 (1969). ¹⁰ K. Emery, The Sea of Southern. California, N. Y., 1960. ¹¹ Т. Wildeman, L. Haskin, J. Geophys. Res., 70, № 12, 2905 (1965). ¹² Л. С. Фомина, И. И. Волков, Литол и полезн ископ., № 2, 148 (1970). ¹³ А. П. Виноградов, Геохимия, № 1, 6 (1956). ¹⁴ Л. Хэскин, Ф. Фрей и др., Распределение редких земель в литосфере и космосе, М., 1968. ¹⁵ Ю. А. Балашов, А. Б. Ронов и др., Геохимия, № 10, 951 (1964). ¹⁶ W. Robinson, Soil Science, 66, № 4, 317 (1948). ¹⁷ В. В. Лавров, ДАН, 108, № 6, 1113 (1956). ¹⁸ А. В. Коченов, В. В. Зиновьев, Геохимия, № 8, 860 (1960). ¹⁹ А. М. Блох, Геохимия, № 5, 404 (1961). ²⁰ У. Ньюман, М. Ньюман, Минеральный обмен кости, М., 1961. ²¹ А. Р. Лоог, Изв. АН ЭстССР, хим. и геол., 17, № 4, 433 (1968).