Доклады Академии наук СССР 1972. Том 205, № 5

УДК 549.333

МИПЕРАЛОГИЯ

В. С. ГРУЗДЕВ, В. И. СТЕПАНОВ, Н. Г. ШУМКОВА, Н. М. ЧЕРНИЦОВА, Р. Н. ЮДИН, И. А. БРЫЗГАЛОВ

ГАЛХАИТ $HgAsS_2 - HOBЫЙ$ МИНЕРАЛ ИЗ МЫШЬЯКОВО-СУРЬМЯНО-РТУТНЫХ МЕСТОРОЖДЕНИЙ СССР

(Представлено академиком Ф. В. Чухровым 2 ІХ 1971)

Минерал, получивший по месту первой находки название галхант (Galkhaite) *, обнаружен в месторождениях Гал-Хая (Якутия) (1) и Хайдаркан (Киргизия).

Галхаит встречается в рудах в виде идиоморфных кристаллов до 1 см величиной и их сростков, неправильных зерен среди других мине-

ралов и в виде зернистых агрегатов.

Рентгеновская гониометрия (камера РКОП) установила кубическую симметрию минерала, класс Лауэ $O_h = m3m$ **. Последующие съемки в камере КФОР (Мо-излучение) дали развертки нулевой, первой и второй слоевых линий. Их анализ выявил возможную принадлежность минерала к одной из трех пространственных групи $T^3_d - I43$, m, $O^9_h - Im3m$ и $O_5 - I432$. Однако наличие сильного пьезоэлектрического эффекта у галхаита, установленные формы кристаллов и характер штриховки на его гранях, исключающий центр симметрии, позволили отнести минерал к пространственной группе $T^3_d - I43m$. Параметр объемноцентрированной I-решетки определен в камере РКОП и затем уточнен по рентгенограмме порошка (камера РКУ-114, Си-излучение, Ni-фильтр, поправки по NaCl): $a = 10.41 \pm 0.01$ Å, Z = 12.

Обычно кристаллы галханта имеют кубический габитус с преобладанием форм a (100). Гораздо реже наблюдаются формы d (110) и o (111) — см. рис. 1. В единичных случаях наблюдались ромбододекаэдрические кристаллы с подчиненными гранями куба. На гранях куба часто развита комбинационная диагональная штриховка, соответствующая простой реберной форме (111) — тетраэдру.

Данные рентгенограммы порошка приведены в табл. 1. Несмотря на некоторую разницу в химическом составе минерала из Гал-Хая и Хайдаркана (см. табл. 3), их дебаеграммы и параметры решетки практически идентичны. Небольшие расхождения в интенсивностях отражений обусловлены, вероятно, различными условиями съемки галханта из Якутии и Киргизии.

Спайность у галхаита не установлена, излом неровный до мелкораковистого; хрупок. Твердость 3. Микротвердость вдавливания 171—205 при среднем значении 190 кГ/мм² (ПМТ-3, P равно 20 и 30 г). Наблюдаются колебания удельного веса в зависимости от состава: для галхаита из Якутии удельный вес равен 5,4 г/см³ (вычисленный 5,44), для минерала из Хайдаркана 5,7 г/см³ (вычисленный 5,75). Цвет темно-оранжево-красный с небольшими изменениями оттенков. Ипогда на поверхности кристаллов встречаются черные блестящие пленки и радужная побежалость. Черта оранжево-желтая. Блеск стеклянный до алмазного. Полупро-

** Исследовался монокристалл из месторождения Гал-Хая.

^{*} Минерал и пазвание утверждены Комиссией по новым минералам и пазваниям минералов Международной минералогической ассоциации и Комиссией по новым минералам при Всесоюзном минералогическом обществе.

.№. № 11. 11.		Гал-Хая *			Х айдаркан **		
	hkl	I	$d_{113\mathrm{M}}$	$d_{\mathbf{B}\mathbf{H}\mathbf{Y}}$	I	$d_{ m M3M}$	
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 39 39 39 39 39 39 39 30 30 30 30 30 30 30 30 30 30 30 30 30	110 200 211 220 310 222 321 400 330; 411 420 332 431; 510 521 440 433; 530 442; 600 532; 611 620 541 622 631 444 543; 550; 710 552; 633; 721 651; 732 800 554; 741; 811 644; 820 653 743; 750; 831 662 752 840 655; 761; 921 664 754; 851; 930 763; 932 844 770; 853; 944	$\begin{array}{c} 50 \\ 6 \\ 70 \\ 5 \\ 8 \\ 400 \\ 80 \\ 29 \\ 15 \\ 4 \\ 20 \\ 20 \\ 50 \\ 6 \\ 2 \\ 17 \\ 2 \\ 4 \\ 29 \\ 6 \\ 12 \\ 6 \\ 12 \\ 10 \\ 8 \\ 6 \\ 2 \\ 10 \\ 8 \\ 6 \\ 2 \\ 4 \\ 10 \\ 6 \\ 8 \\ 7 \\ 2 \\ 4 \\ 10 \\ 6 \\ 8 \\ 7 \\ 2 \\ 4 \\ 10 \\ 6 \\ 8 \\ 7 \\ 2 \\ 4 \\ 10 \\ 6 \\ 8 \\ 7 \\ 2 \\ 4 \\ 10 \\ 6 \\ 8 \\ 7 \\ 2 \\ 4 \\ 10 \\ 6 \\ 8 \\ 7 \\ 2 \\ 4 \\ 10 \\ 6 \\ 8 \\ 7 \\ 2 \\ 4 \\ 10 \\ 6 \\ 8 \\ 7 \\ 2 \\ 4 \\ 10 \\ 6 \\ 8 \\ 7 \\ 2 \\ 4 \\ 10 \\ 6 \\ 8 \\ 7 \\ 2 \\ 4 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 $	7, 40 5, 26 4, 27 3, 72 3, 30 3, 01 2, 78 2, 604 2, 453 2, 327 2, 220 2, 040 1, 898 1, 841 1, 786 1, 732 1, 687 1, 648 1, 603 1, 569 1, 534 1, 569 1, 534 1, 415 1, 320 1, 302 1, 280 1, 263 1, 178 1, 178 1, 189 1, 193 1, 193 1, 193 1, 198 1, 19	7,36 5,20 4,25 3,68 3,29 3,00 2,78 2,602 2,453 2,327 2,219 2,041 1,900 1,840 1,785 1,733 1,688 1,645 1,606 1,535 1,502 1,472 1,416 1,322 1,301 1,281 1,262 1,244 1,210 1,194 1,178 1,164 1,178 1,164 1,122 1,109 1,097 1,073 1,062 1,051	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	7,5 4,2 3,34 3,01 2,79 2,61 2,47 2,3 2,22 2,04 1,90 1,84 1,79 1,73 1,69 1,66 1,61 1,57 1,53 1,501 1,474 1,417 1,322 1,301 1,282	
40 41 42 43 44	772; 10. 1. 1 943; 950 666; 10. 2. 2 765; 952; 10. 3. 1 961; 10. 3. 3	2 3 6 4 2	$ \begin{array}{c} 1,030 \\ 1,011 \\ 1,002 \\ 0,9924 \\ 0,9580 \end{array} $	$\begin{array}{c} 1,030 \\ 1,010 \\ 1,002 \\ 0,9921 \\ 0,9583 \end{array}$	1 3 5 4 —	1,031 1,011 1,002 1,992	

^{*} Камера РКУ: D=114.6 мм; CuK_{α} , Ni -фильтр, внутренний стандарт NaCl: $a=10.41\pm0.01$ Å. ** Камера РКД: D=57.3 мм; FeK_{α} , без фильтра, поправки по градуировочной шкале камеры, $a=10.41\pm0.02$ Å.

зрачный до просвечивающего. Плохой проводник электричества, обладает сильными пьезоэлектрическими свойствами.

В шлифах в проходящем свете прозрачный, оранжево-желтый, изотропный. Полируется хорошо. В отраженном свете светло-серый с голубоватосиреневым оттенком. Характерны сильные внутренние рефлексы оранжево-красного цвета. Анизотропия и двуотражение не установлены. По относительному рельефу близок к антимониту.

Оптические характеристики галхаита (табл. 2) изучались на установке специальной конструкции, принципиальная схема которой приведена в работе (2). Теоретические основы метода изложены П. Друде (5). По зна-

Оптические характеристики галханта

Пересчет химических анализов галхаита

Дин п х R,% 1010 2,61 0,04 19,9 970 2,60 0,05 19,9 930 2,60 0,06 20,1 49,02 0,237276 0,742 890 2,62 0,04 20,1 Ze,83 0,044854 0,172 890 2,59 0,07 19,8 2,85 0,044854 0,172 850 2,61 0,06 20,0 20,1 Ze,83 0,044854 0,143 850 2,61 0,06 20,0 20,2 TI 0,46 0,002251 0,007 810 2,63 0,05 20,3 TI 0,46 0,002251 0,007 2,63 0,05 20,7 20,2 TI 0,46 0,002251 0,007 2,63 0,08 20,4 As 23,60 0,315045 0,985 730 2,63 0,08 20,4 As 23,60 0,315045 0,985		•	•					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	λ,μ	n	х	R,%	Элемент		Ат. колич.	Отнош, ат. колич.
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4040	2,61	0,04	19,9	<u></u>		- -	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1010		0.04	$\frac{1}{20.1}$			ĺ	1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	970		0,05		Hg	47,60	0,237276	0,742
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$\overline{2,62}$	$\overline{0.04}$	$\overline{20,1}$	_	49.02	0,244355	0.800
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	930	2,60		19,9	<i>C</i>	2.70	0.05/026	0.479
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	000	$\overline{2,62}$		$\overline{20,1}$	GII			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	890		0.07			2,85	0,044854	0,147
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		2,62			Zn	3,00	0,045886	0,143
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	850	$\frac{2,61}{}$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						1	,	,
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	810				$\mathbf{T}\mathbf{I}$			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						2,90	0,014189	0,046
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	770				As	23.60	0.315045	0.985
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		2,65					1 '	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	730		1	1		ł '	·	,
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$\frac{2,67}{2}$			$\mathbf{S}\mathbf{b}$	0,59	,	1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	691					5,51	0,045253	0,148
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		2,66			9	24.00	0 654899	2 043
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	670	2,04			1.5			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.40	2,68				19,51	· ·	1,012
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	640		l ——		\mathbf{Se}			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	coo	$\begin{bmatrix} 2,70 \\ 2,72 \end{bmatrix}$		21,4		0.015	0,000190	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	000				E o	0.94	0.005554	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	579	2,74		21,9	re		0,003331	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						не оон.	_	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	546	2.81			Mn	Не обн.	ł	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			1					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	527	$\frac{5,85}{2.85}$			**		1	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					н. о.			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	496	2,90				Не обн.	•	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$\overline{3.04}$			Сумма	100.05		
$\overline{3,09}$ $\overline{0,20}$ $\overline{27,8}$	472	2,92		$\frac{1}{26,1}$.			
Применяние При редисте формули						,		1
т р и меча и не. при расчете формулы суммируется с S. а Fe пересчитывается на пир		,	,	 				

Примечание. Здесь и в табл. 3 над чертой — минерал из Гал-Хая, под чертой — из Хайларкана.

Примечание. При расчете формулы Se суммируется с S, а Fe пересчитывается на пирит и исключается, поскольку анализировавшийся галхаит из Якутии содержал незначительную-п эмесь пирита.

чениям главного угла φ и главного азимута падения 2ψ , измеренным в интервале спектра от 472 до 1010 мµ, были определены показатели преломления (n) и поглощения (\varkappa) , а затем по формуле Бера $R=[(n-1)^2+n^2\varkappa^2]/[(n+1)^2+n^2\varkappa^2]$ рассчитана отражательная способность (R). Результаты непосредственных измерений отражательной способности (Т. Н. Чвилева, а также Л. Н. Вяльсов — Институт геологии рудных месторождений, петрографии, минералогии и геохимии АН СССР) находятся в полном соответствии с приведенными в табл. 2 значениями. Наблюдавшиеся расхождения были вдвое меньше допустимой погрешности каждого метода.

По химическому составу галхаит является сложным сульфидом ртути и мышьяка, по набору входящих в формулу компонентов сходным с некоторыми ртутьсодержащими блеклыми рудами и акташитом (4, 5). Химические анализы (табл. 3) при пересчете приводят к эмпирическим формулам:

$$(Hg_{0,74}Cu_{0,17}Zn_{0,14}Tl_{0,01})_{1,06}(As_{0,98}Sb_{0,02})_{1,00}S_{2,01}$$
— Гал-Хая $(Hg_{0,80}Cu_{0,15}Zn_{0,03}Tl_{0,05})_{1,03}(As_{0,85}Sb_{0,15})_{1,00}S_{1,97}$ — Хайдаркан.

Теоретическая формула (Hg, Cu, Zn, Tl) (As, Sb) S_2 или HgAs S_2 . Спектральный анализ дополнительно показал наличие 0, n% Ca; 0,1% Ag; 0,0n% Si, Mg; 0,00n% Pb, Ti, Al, Mn — Гал-Хая; 0,0n% Cd, Ag, Fe; 0,00n% Pb, In, Ti, Mg, Si, Al, Ba — Хайларкан.

В кислотах и щелочах галхаит нерастворим. От действия копцентрированной КОН покрывается темной пленкой. Растворяется в царской водке. Травление в шлифах стандартными реактивами положительных результатов не дало. Галхаит может быть легко принят за реальгар, но в отличие

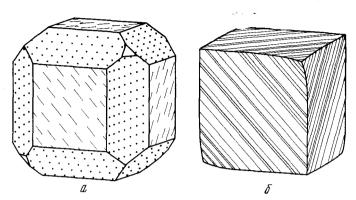


Рис. 1. Кристаллы галхаита из месторождений Гал-Хая (а) и Хайдаркан (б)

от последнего не разлагается КОН. От киновари отличается отсутствием спайности, оранжевым оттенком и морфологией кристаллов.

Галхаит встречается в рудах в разнообразных ассоциациях, включающих пирит, антимонит, киноварь, метациннабарит, акташит, вакабаяшилит *, аурипигмент, реальгар, кварц, кальцит, флюорит, барит и др. В Хайдаркане найден более чем в 10 пупктах в ассоциации с метациннабаритом, киноварью, антимонитом, диккитом, гетчелитом, вакабаяшилитом и аурипигментом в кальцит-флюорит-кварцевых агрегатах.

В частично окисленных рудах на месторождении Гал-Хая галхаит замещается метациннабаритом и порошковатой киноварью, имеющей необычный оранжевый цвет. В Хайдаркане в зоне окисления установлено его замещение педостаточно изученным гипергенным минералом зеленоватоголубого цвета.

Образцы с галхаитом из Якутии и Хайдаркана передацы в Минералогический музей АН СССР.

Институт минералогии, геохимии и кристаллохимии редких элементов Москва

Поступило 30 VIII 1971

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ В. С. Груздев, Р. Н. Юдии, V научн. отчетн. копфер. геол. фак. Московск. унив. (тез. докл.), М., 1970, стр. 170. ² У. Вустер, Практическое руководство по кристаллофизике, ИЛ, 1958. ³ П. Друде, Оптика, 1935. ⁴ В. И. Васильев, Вопросы металлогении ртути, ИН, «Наука», 1968. ⁵ Э. М. Бонштедт-Куплетская, Зап. Всесоюзн. мин. общ., 99, 1, 71 (1970). ⁶ Introduction to Japanese Minerals. Geol. Surv. Japan, 1970.

^{*} Установлен В. С. Груздевым в месторождении Гал-Хая и в коллекциях руд месторождения Хайдаркан (материалы В. Ю. Волгина). В СССР пайден впервые. Краткое описание вакабаящилита есть в работе (6).