УДК 541.139 <u>ХИМИЯ</u>

в. т. калинников, в. в. зеленцов, о. д. убоженко, т. г. аминов

МАГНЕТОХИМИЯ ВАНАДИЛЬНЫХ КОМПЛЕКСОВ С ПРОИЗВОДНЫМИ КАРБОНОВЫХ КИСЛОТ С ПОВЫШЕННОЙ КООРДИНАЦИОННОЙ ЕМКОСТЬЮ

(Представлено академиком И. В. Тананаевым 13 IV 1972)

Обнаруженные нами ($^{1-3}$) аномальные магнитные свойства алкилкар-боксилатов ванадила VO(RCOO) $_2$ были подтверждены затем на примере ацетатного соединения в работах (4 , 5). Пониженные по сравнению с чисто спиновой величиной значения $\mu_{^3 \Phi \Phi}$ для этих комплексов при компатной температуре и дальнейшее «размагничивание» образцов по мере охлаждения объяснены антиферромагнитным спин-спиновым взаимодействием между ионами VO¹¹ в линейных цепочках полимерных молекул. Наиболее вероятно, что каждый атом V в таких цепочках неопределенной протяженности связан с соседними атомами V двумя мостиковыми ОСО-группами и донорно-акцепторной связью V=O . . . V=O по схеме

Такая структура согласуется с ранее установленным нами сильным понижением частоты валентных колебаний $v_{v=0}$ в VO(RCOO)₂ (⁶, ⁷).

Однако сложный характер температурной зависимости магнитных свойств обсуждаемых соединений (3-5, 8) не позволил сделать однозначный вывод об их структурной специфике, как это оказалось возможным, в частности, в случае димерных карбоксилатов меди (9). Мы полагали, что следует «упростить» структуру полимерных попытаться VO(RCOO)₂ так, чтобы из трех мыслимых механизмов спин-спинового обмена: а) по связи металл — металл; б) через л-систему мостиковых групп OCO; в) по связи $V = O \dots V = O$ исключить возможность хотя бы одного из них, например механизма (в). С этой целью были синтезированы два модифицированных класса карбоксилатных комплексов ванадила: 1) аддукты с нейтральными донорными лигандами VO(RCOO)₂·L, где L — дипиридил, фенантролин, тиомочевина и т. д.; 2) комплексы с замещенными карбоновых кислот, обладающими повышенной координационной емкостью (окси- и аминокислоты).

Как показали наши исследования (10), переход от карбоксилатов ванадила к их аддуктам типа VO(RCOO)₂ L действительно сопровождается разрывом донорно-акцепторной связи VO... VO... При этом полоса vvo смещается в коротковолновую область ~ 980 см⁻¹, а $\mu_{9\phi\phi}$ при комнатной температуре достигает чисто спинового значения $(1.71-1.73 \mu_B)$, характерпого для большинства известных мономерных комплексов ванадила (11). Понижение температуры до 80° K сопровождается незначительным уменьшением $\mu_{\text{офф}}$ и лишь при гелиевых температурах $\mu_{\text{офф}}$ для дипиридильного аддукта $VO(CH_3COO)_2 \cdot L$ падает до $\sim 1,30~\mu_B$. Заметим, что μ_{2000} для VO(СН₃СОО)₂ при 1,87° К составляет всего лишь 0,16 µ_в (⁹). Вероятно, в случае аддуктов не только устраняется допорно-акцепторное взаимодействие $V = O \dots V = O \dots$, но и вообще происходит радикальная перестройка молекулярной структуры по сравнению с «чистыми» карбоксилатами, приводящая к диамагнитному разбавлению ванадильных ионов. Некоторое слабое уменьшение $\mu_{\phi \Phi \Phi}$, наблюдаемое при очень низких температурах, вызвано дальними спин-спиновыми взаимодействиями антиферромагнитного типа, осуществляемыми между понами VOII по всей кристаллической решетке.

В ряду комплексов VO^{II} с замещенными карбоновых кислот нами были получены соединения с оксикислотами — винной, лимонной и триоксиглутаровой, изомерами аминобензойной кислоты (пара- и мета-), а также с гетероциклическими кислотами — пиколиновой и хинальдиновой. Для всех этих комплексов была изучена температурная зависимость магнитной восприимчивости в интервале $80-300^{\circ}$ K, рассчитаны эффективные магнитные моменты. Результаты измерений и формулы соединений, полученные на основе элементарного анализа на C, H, N, и V, представлены в табл. 1. Там же даны значения $v_{V=0}$ в и.-к. спектра обсуждаемых соединений.

Многократные попытки получить комплексы VO^{11} с аминобензойными кислотами типа $VO(OCOR)_2$ пока оканчивались безуспешно. Если исходить из $VOCl_2$ и спиртовых растворов кислот, антранилатные производные не удается выделить из растворов, а с n- и m-аминобензойными кислотами получаются комплексы состава $VOCl_2 \cdot 2NH_2 \cdot C_6H_4COOH \cdot 2H_2O$. По-видимому, аминокислоты входят в координационную сферу иона V^{1V} в виде нейтральных молекул. Полосы, соответствующие валентным колебаниям V = O в и.-к. спектрах этих соединений, лежат в области ~ 1000 см $^{-1}$, что говорит об отсутствии координационной связи $V = O \dots V = O \dots$ Можно было ожидать, что ионы VO^{11} в этих комплексах будут днамагнитно разбавлены, как, например, в аддуктах $VOCl_2 \cdot L$ (L — дипиридил и фенантролин) (12).

Однако их магнитные свойства оказались весьма необычными. Магнитные моменты, будучи существенно меньше чисто спиновой величины при комнатной температуре, при охлаждении образцов до 80° К не понижаются, а даже несколько возрастают. Качественно наши результаты согласуются с таковыми для аддуктов $CuCl_2$ с азопиридином, в которых обменные взаимодействия ферромагнитного типа ($I \sim 10 \div 20$ см⁻¹) осуществляются в бесконечных цепочках из ионов Cu^{II} , связанных галоидными мостиками (I3). Возможно, и в случае наших ванадильных комплексов с аминобензойными кислотами также образуются цепочечные структуры с Cl-мостиками, но обменные взаимодействия для них имеют более сложный характер и магнитные свойства не поддаются количественной интерпретации в рамках существующих теоретических моделей.

Известно, что оксикарбоновые кислоты могут координироваться с металлами-комплексообразователями различными способами. Даже если оксигруппы и не участвуют в комплексообразовании, их введение обычно резко усиливает способность кислот к комплексообразованию. В зависимости от кислотности реакционной среды при синтезе соединений оксигруппы могут принимать участие в комплексообразовании в недиссоциированной форме или с отщеплением протона. Нам удалось получить комплекс-

ные оксикарбоксилаты ванадила с лимонной и триоксиглутаровой кислотами в сильно кислой среде при взаимодействии кислот с $VOCl_3$ в среде хлорбензола (7). Их магнитные свойства вместе с формулами соединений, уточненными с помощью и.-к. спектров (14), представлены в табл. 1. Виннокислая соль по этой методике не образуется. Комплексный тартрат ванадила (NH_4)₂[$VO(OCOCHO)_2$] был получен в нейтральной среде по мегоду (15).

. Таблица т Магнитные свойства и значения $v_{V=0}$ для комплексов ванадила с производными карбоновых кислот

Соединение	Температурная зависимость, $ u_{\partial \hat{\Phi} \hat{\Phi}}$					Константа Вейсса, °К	νV=0,
(NH ₄) ₂ [VO(OOCC ₂ H ₂ O ₂ COO)] (тартрат ванадила)	Т, °К µ _{эфф}	291 1,70	203 1,63	131 1,60	79 1,57	_36	965
(VO)3[C3H4(OH) (COO)3]2·4H2O (цитрат ванадила)	<i>T</i> , °К µ _{эфф}	292 1,51	193 1,45	131 1,38	79 1,37	-25	990
VO[OOC(СНОН) ₃ СОО]·¹/ ₂ Н ₂ О (триоксиглутарат ванадила)	T, °K μ _{эφφ}	$ \begin{array}{c} 291 \\ 1,57 \end{array} $	$\frac{214}{1,52}$	133 1,46	79 1,43	-23	985
VOCl₂·2MABR·2H₂O	Τ, °K μ _{οφφ}	$\frac{291}{1,28}$	$\frac{226}{1,30}$	$\frac{145}{1,33}$	79 1,39	+18	990
$VOCl_2 \cdot 2\Pi A E K \cdot 2H_2O$	T, °K μ _{οφφ}	293 1,40	$\frac{201}{1,47}$	$\frac{123}{1,56}$	79 1,61	+27	995
$ m VO(C_5H_4NCOO)_2 \cdot H_2O$ (пиколинат ванадила)	T, °K μ _{эφφ}	$\frac{290}{1,66}$	$ \begin{array}{c} 243 \\ 1,65 \end{array} $	163 1,63	79 1,62	5	970
VO(С ₈ H ₆ NCOO)₂·Н ₂ О (хинальдинат ванадила)	Τ, °K μ _{οφφ}	$ \begin{array}{c} 291 \\ 1,70 \end{array} $	$ \begin{array}{c} 203 \\ 1,63 \end{array} $	131 1,60	79 1,58	7	985

Примечание. МАБК и ПАБК — мета- и пара-аминобензойные кислоты соответственно.

Полосы валентного колебания V=0 в спектрах всех трех соединений лежат при $\sim 1000~{\rm cm^{-1}}$, т. е. донорно-акцепторного взаимодействия между VO-группами в этих комплексах нет.

Как видно из табл. 1, отклонение $\mu_{\text{офф}}$ от чисто спинового значения для цитрата и триоксиглутарата во всем температурном интервале существенно меньше, чем в случае незамещенных моно- и дикарбоксилатов VO^{11} (*), что свидетельствует об ослаблении спин-спинового взаимодействия между ионами V^{1v} . Хотя неспаренный электрон ионов ванадила находится в основном состоянии на орбитали d_{xy} атома V (*) и обмен по связи $V=0\ldots V=0\ldots$ не может играть доминирующей роли, разрыв этой связи, по-видимому, все же приводит к некоторому изменению структуры, приводящему к уменьшению обмена.

Недиссоциированные оксигруппы, по-видимому, не входят в координационную сферу цитратного комплекса, поскольку положения полос деформационных колебаний δ_{он} (1310 и 1125 см⁻¹) в и.-к. спектре этого соединения практически не меняется по сравнению с таковыми в спектре цитрата калия (¹⁴). Из-за сложности спектра сделать подобный вывод в случае триоксиглутаратного комплекса не предоставилось возможным.

Магнитные свойства тартрата ванадила, так же как и синтезированных нами (при кипячении спиртового раствора смеси $VOCl_2$ + кислота) пиколината и хинальдината VO^{11} , очень близки к свойствам аддуктов ацетата VO^{11} (10), что говорит об отсутствии и в этих соединениях внутримолекулярных обменных взаимодействий. По-видимому, координационная сфера иона V^{1V} в указанных соединениях насыщается за счет донорных атомов мономерных молекул. С этим согласуются данные и.-к. спектров: полосы $v_{V=0}$ в спектрах пиколината и хинальдината лежат при ~ 970 см $^{-1}$, а в спектре

тартратного комплекса отсутствуют полосы, соответствующие недиссоциированным группам СООН и ОН винной кислоты (14). Некоторое уменьшение $\mu_{\text{оф}}$, наблюдаемое при азотных температурах, может быть вызвано слабыми молекулярными антиферромагнитными взаимодействиями, осуществляющимися по всей кристаллической решетке.

Московский физико-технический институт Институт общей и неорганической химии им. Н. С. Курнакова Академии наук СССР Москва

Поступило 4 III 1972

цитированная литература

¹ В. В. Зеленцов, В. Т. Калинников, ДАН, 155, 395 (1964). ² В. В. Зеленцов, В. Т. Калинников, М. Н. Волков, ЖСХ, 6, 647 (1965). ³ В. Т. Калинников, Т. Г. Аминов, ДАН, 177, 633 (1967). ⁴ D. R. Dakternicks, С. М. Haris et al., Inorg. and Nucl. Chem. Letters, 5, 97 (1969). ⁵ А. Т. Саѕеу, Ј. R. Тhаскегау, Austral. J. Chem., 22, 2549 (1969). ⁶ В. Т. Калиников, В. В. Зеленцов и др., ДАН, 159, 882 (1964). ⁷ В. Т. Калинников, В. В. Зеленцов, М. Н. Волков, Изв. высш. учебн. завед., Химия и хим. технология, 9, 729 (1966). ⁸ В. Т. Калинников, В. В. Зеленцов и др., ЖНХ, 15, 661 (1970). ⁹ М. Като, Н. В. Іоппаѕѕоп, І. С. Fanning, Chem. Rev., 64, 99 (1964). ¹⁰ В. Т. Калинников, В. В. Зеленцов и др., ДАН, 187, 1089 (1969). ¹¹ J. Selbin, Chem. Rev., 65, 153 (1965). ¹² R. J. H. Clark, J. Chem. Soc., 1963, 1677. ¹³ М. J. М. Самрьеll, R. Grzeskoneiak, F. B. Тауler, J. Chem. Soc., (A), 1970. ¹⁴ А. Н. Ермаков, И. Н. Маров, Л. П. Казанский, ЖНХ, 12, 2725 (1967). ¹⁵ G. I. В. Сопп, U.S. Pat. 3076830, 1963; Chem. Abstr., 58, 12375 (1963).