КОНЕЧНЫЕ ГРУППЫ, ВСЕ n-МАКСИМАЛЬНЫЕ $(n=2,3)$ ПОДГРУППЫ КОТОРЫХ K - \mathfrak{U}-СУБНОРМАЛЬНЫ

В.А. Ковалева ${ }^{1}$, Сяолан Йи ${ }^{2}$
${ }^{1}$ Гомельский государственный университет им. Ф. Скорины, Гомель, Беларусь
${ }^{2}$ Чжэизянский Научно-Технический университет, Ханчжоу, Китай

FINITE GROUPS WITH ALL n-MAXIMAL ($n=2,3$) SUBGROUPS K - \mathfrak{U}-SUBNORMAL

V.A. Kovaleva ${ }^{1}$, Xiaolan $\mathbf{Y i}^{2}$
${ }^{1}$ F. Scorina Gomel State University, Gomel
${ }^{2}$ Zhejiang Sci-Tech University, Hangzhou, China

Приведена полная классификация конечных групп, все n-максимальные $(n=2,3)$ подгруппы которых являются K - \mathfrak{U}-суб-
нормальными.

Ключевые слова: п-максимальная подгруппа, К- \mathfrak{U}-субнормальная подгруппа, \mathfrak{U}-субнормальная подгруппа, сверхразрешимая группа, минимальная несверхразрешимая группа, SDH-группа.

A full classification of finite groups with all n-maximal $(n=2,3)$ subgroups K - \mathfrak{U}-subnormal is given.
Keywords: n-maximal subgroup, K - \mathfrak{U}-subnormal subgroup, \mathfrak{U}-subnormal subgroup, supersoluble group, minimal nonsupersoluble group, SDH-group.

Introduction

Throughout this paper, all groups are finite and G always denotes a finite group. We use \mathfrak{U} to denote the class of all supersoluble groups; $G^{\mathfrak{U}}$ denotes the intersection of all normal subgroups N of G with $G / N \in \mathfrak{U}$. The symbol $\pi(G)$ denotes the set of prime divisors of the order of G.

A subgroup H of G is called a 2-maximal (second maximal) subgroup of G whenever H is a maximal subgroup of some maximal subgroup M of G. Similarly we can define 3-maximal subgroups, and so on. If H is n-maximal in G but not n-maximal in any proper subgroup of G, then H is said to be a strictly n-maximal subgroup of G.

One of the interesting and substantial direction in finite group theory consists in studying the relations between the structure of the group and its n-maximal subgroups. The earliest publications in this direction are the articles of L. Rédei [1] and B. Huppert [2]. L. Rédei described the nonsoluble groups with abelian two maximal subgroups. B. Huppert established the supersolubility of G whose all second maximal subgroups are normal. In the same article Huppert proved that if all 3-maximal subgroups of G are normal in G, then the commutator subgroup G^{\prime} of G is nilpotent and the chief rank of G is at most 2 . These results were developed by many authors. In partiqular, L.Ja. Poljakov [3] proved that G is supersoluble if every 2-maximal subgroup of G is permutable with every maximal
subgroup of G. He also established the solubility of G in the case when every maximal subgroup of G permutes with every 3-maximal subgroups of G. Some later, R.K. Agrawal [4] proved that G is supersoluble if any 2-maximal subgroup of G is permutable with every Sylow subgroup of G. In [5], Z. Janko described the groups whose 4-maximal subgroups are normal. A description of nonsoluble groups with all 2-maximal subgroups nilpotent was obtained by M. Suzuki [6] and Z. Janko [7]. In [8], T.M. Gagen and Z. Janko gave a description of simple groups whose 3 -maximal subgroups are nilpotent. V.A. Belonogov [9] studied those groups in which every 2 -maximal subgroup is nilpotent. Continuing this, V.N. Semenchuk [10] obtained a description of soluble groups whose all 2-maximal subgroups are supersoluble. A. Mann [11] studied the structure of the groups whose n-maximal subgroups are subnormal. He proved that if all n-maximal subgroups of a soluble group G are subnormal and $|\pi(G)| \geq n+1$, then G is nilpotent; but if $|\pi(G)| \geq n-1$, then G is φ-dispersive for some ordering φ of the set of all primes. Finally, in the case $|\pi(G)|=n$, Mann described G completely. A.E. Spencer [12] studied groups in which every n-maximal chain contains subnormal subgroup. In partiqular, Spencer proved that G is a Schmidt group with abelian Sylow subgroups if every 2-maximal chain of G contains subnormal subgroup. In [13], M. Asaad studied groups whose strictly
n-maximal subgroups are normal. P. Flavell [14] obtained an upper bound for the number of maximal subgroups containing a strictly 2 -maximal subgroup and classify the extremal examples.

Among the recent results on n-maximal subgroups we can mention the paper of X.Y. Guo and K.P. Shum [15]. In this paper the authors proved that G is soluble if all its 2 -maximal subgroups enjoy the cover-avoidance property. W. Guo, K.P. Shum, A.N. Skiba and Li Baojun [16,17,18] gave new characterizations of supersoluble groups in terms of 2-maximal subgroups. Li Shirong [19] obtained a classification of nonnilpotent groups whose all 2-maximal subgroups are $T I$-subgroups. In the paper [20], W. Guo, H.V. Legchekova and A.N. Skiba described the groups whose every 3 -maximal subgroup permutes with all maximal subgroups. In [21], W. Guo, Yu.V. Lutsenko and A.N. Skiba gave a description of nonnilpotent groups in which every two 3-maximal subgroups are permutable. Yu.V. Lutsenko and A.N. Skiba [22] obtained a description of the groups whose all 3-maximal subgroups are S-quasinormal. Subsequently, this result was strengthened by Yu.V. Lutsenko and A.N. Skiba in [23] to provide a description of the groups whose all 3-maximal subgroups are subnormal. Developing some of the above-mention results, D.P. Andreeva and A.N. Skiba [24] obtained a description of the groups in which every 3-maximal chain contains a proper S-qausinormal subgroup. Moreover, in [25], W. Guo, D.P. Andreeva and A.N. Skiba obtained the description of the groups in which every 3-maximal chain contains a proper subnormal subgroup. In [26], A. Ballester-Bolinches, L.M. Ezquerro and A.N. Skiba obtained a full classification of the groups in which the second maximal subgroups of the Sylow subgroups cover or avoid the chief factors of some of its chief series. In [27], V.N. Kniahina and V.S. Monakhov studied those groups G in which every n-maximal subgroup permutes with each Schmidt subgroup. In partiqular, it was be proved that if $n=1,2,3$, then G is metanilpotent; but if $n \geq 4$ and G is soluble, then the nilpotent length of G is at most $n-1$.

Another interesting results on n-maximal subgroups were obtained by V.A. Kovaleva and A.N. Skiba in [28], [29] and V.S. Monakhov and V.N. Kniahina in [30]. In [28], the authors described the groups whose all n-maximal subgroups are \mathfrak{U}-subnormal. In [29] a description of the groups with all n-maximal subgroups \mathfrak{F}-subnormal for some saturated formation \mathfrak{F} was obtained. In [30], the groups with all 2-maximal subgroups \mathbb{P}-subnormal were studied.

Recall that a subgroup H of G is said to be:
(i) \mathfrak{U}-subnormal in G if there exists a chain of subgroups

$$
H=H_{0} \leq H_{1} \leq \cdots \leq H_{n}=G
$$

such that $H_{i} /\left(H_{i-1}\right)_{H_{i}} \in \mathfrak{U}$, for $i=1, \ldots, n$;
(ii) \mathfrak{U}-subnormal (in the sense of Kegel [31]) or K - \mathfrak{U}-subnormal [32, p. 236] in G if there exists a chain of subgroups

$$
H=H_{0} \leq H_{1} \leq \cdots \leq H_{t}=G
$$

such that either H_{i-1} is normal in H_{i} or $H_{i} /\left(H_{i-1}\right)_{H_{i}} \in \mathfrak{U}$ for all $i=1, \ldots, t$. It is evident that every subnormal subgroup is $K-\mathfrak{U}$-subnormal. The inverse, in general, it is not true. For example, in the group S_{3} a subgroup of order 2 is $K-\mathfrak{U}$-subnormal and at the same time it is not subnormal. This elementary observation and the results in [23], [25] make natural the following question:
I. What is the structure of G under the condition that every 2-maximal subgroup of G is K- \mathfrak{U}-subnormal?
II. What is the structure of G under the condition that every 3-maximal subgroup of G is K- \mathfrak{U}-subnormal?

In this paper we given the solutions of these two questions.

1 Preliminary results

The solutions of Question I and Question II are based on the following results.

Lemma 1.1. Let H and K be subgroups of G such that H is $K-\mathfrak{U}$-subnormal in G.
(1) $H \cap K$ is $K-\mathfrak{U}$-subnormal in K [32, Lemma 6.1.7 (2)].
(2) If N is a normal subgroup in G, then $H N / N$ is K - \mathfrak{U}-subnormal in G / N [32, Lemma 6.1.6 (3)].
(3) If K is $K-\mathfrak{U}$-subnormal in H, then K is $K-\mathfrak{U}$-subnormal in G [32, Lemma 6.1.6(1)].
(4) If $G^{\mathfrak{U}} \leq K$, then K is $K-\mathfrak{U}$-subnormal in G [32, Lemma 6.1.7 (1)].

The next lemma is evident.
Lemma 1.2. If G is supersoluble, then every subgroup of G is $K-\mathfrak{U}$-subnormal in G.

Lemma 1.3. If every n-maximal subgroup of G is K - \mathfrak{U}-subnormal in G, then every $(n-1)$-maximal subgroup of G is supersoluble and every $(n+1)$-maximal subgroup of G is $K-\mathfrak{U}$-subnormal in G.

Proof. We first show that every ($n-1$) -maximal subgroup of G is supersoluble. Let H be an ($n-1$)-maximal subgroup of G and K any maximal subgroup of H. Then K is an n-maximal subgroup of G and so, by hypothesis, K is $K-\mathfrak{U}$-subnormal in G. Hence K is $K-\mathfrak{U}$-subnormal in H by Lemma 1.1 (1). Therefore either K is normal in H or $H / K_{H} \in \mathfrak{U}$. If K is normal in H, then $|H: K|$ is a prime in view of maximality of K in H. Let $H / K_{H} \in \mathfrak{U}$. Then we also get that

$$
|H: K|=\left|H / K_{H}: K / K_{H}\right|
$$

is a prime. Thus H is supersoluble.
Now, let E be an $(n+1)$-maximal subgroup of G, and let E_{1} and E_{2} be an n-maximal and an ($n-1$) -maximal subgroup of G, respectively, such that $E \leq E_{1} \leq E_{2}$.

Then, by the above, E_{2} is supersoluble, so E_{1} is supersoluble. Hence it is easy to see that E is $K-\mathfrak{U}$-subnormal in E_{1}. By hypothesis, E_{1} is $K-\mathfrak{U}$-subnormal in G. Therefore E is $K-\mathfrak{U}$-subnormal in G by Lemma 1.1 (3). The lemma is proved.

Lemma 1.4. If every 3-maximal subgroup of G is $K-\mathfrak{U}$-subnormal in G, then G is soluble.

Proof. Suppose that lemma is false and let G be a counterexample with $|G|$ minimal. Since every 3-maximal subgroup of G is $K-\mathfrak{U}$-subnormal in G, every 2-maximal subgroup of G is supersoluble by Lemma 1.3. Hence every maximal subgroup of G is either supersoluble or a minimal nonsupersoluble group. Therefore all proper subgroups of G are soluble in view of [2]. Assume that all 3-maximal subgroups of G are identity. Then all 2 -maximal subgroups of G have prime orderes and so every maximal subgroup of G is supersoluble. Hence G is either supersoluble or a minimal nonsupersoluble group. Thus in view of [2], G is soluble, a contradiction. Hence there is a 3 -maximal subgroup T of G such that $T \neq 1$. Since T is $K-\mathfrak{U}$-subnormal in G, there exists a proper subgroup H of G such that $T \leq H$ and either $G / H_{G} \in \mathfrak{U}$ or H is normal in G. If $G / H_{G} \in \mathfrak{U}$, then G is soluble in view of solubility of H_{G}, a contradiction. Therefore H is normal in G. Let E / H be any 3-maximal subgroup of G / H. Then E is a 3 -maximal subgroup of G, hence E is K - \mathfrak{U}-subnormal in G. Hence E / H is $K-\mathfrak{U}$-subnormal in G / H by Lemma 1.1 (2). Thus the hypothesis holds for G / H. Hence G / H is soluble by the choice of G. Therefore G is soluble. This contradiction completes the proof of the lemma.

2 Description of groups with all 2-maximal or all 3-maximal subgroups K - \mathfrak{U}-subnormal

Recall that G is called a minimal nonsupersoluble group provided G does not belong to \mathfrak{U} but every proper subgroup of G belongs to \mathfrak{U}. Such groups were described by B. Huppert [2] and K. Doerk [33]. We say that G is a special Doerk-Huppert group or an SDH-group if G is a minimal nonsupersoluble group such that $G^{\mathfrak{U}}$ is a minimal normal subgroup of G.

The solution of Question I originates to [28], [29], where, in particular, the following theorem was proved.

Theorem \mathbf{A}^{*}. Every 2-maximal subgroup of G is \mathfrak{U}-subnormal in G if and only if G is either supersoluble or an SDH-group.

If every 2-maximal subgroup of G is $K-\mathfrak{U}$-subnormal, then every maximal subgroup of G is supersoluble by Lemma 1.3. Therefore in this case G is either supersoluble or a minimal nonsupersoluble group, hence G is soluble by [2]. Thus we get the following

Theorem A. Every 2-maximal subgroup of G is $K-\mathfrak{U}$-subnormal in G if and only if G is either supersoluble or an SDH-group.

The solution of Question II is more complete. Note that since each subgroup of every supersoluble group is $K-\mathfrak{U}$-subnormal, we need, in fact, only consider the case when G is not supersoluble. But in this case, in view of [28] or [29], $|\pi(G)| \leq 4$.

The following theorems are proved.
Theorem B. Let G be a nonsupersoluble group with $|\pi(G)|=2$. Let p, q be distinct prime divisors of $|G|$ and G_{p}, G_{q} be Sylow p-subgroup and q subgroup of G respectively. Every 3-maximal subgroup of G is $K-\mathfrak{U}$-subnormal in G if and only if G is a soluble group of one of the following types:
I. G is a minimal nonsupersoluble group and either $\left|\Phi\left(G^{\mathfrak{U}}\right)\right|$ is a prime or $\Phi\left(G^{\mathfrak{U}}\right)=1$.
II. $G=G_{p} \rtimes G_{q}$, where G_{p} is the unique minimal normal subgroup of G and every 2-maximal subgroup of G_{q} is an Abelian group of exponent dividing $p-1$. Moreover, every maximal subgroup of G containing G_{p} is either supersoluble or an SDH-group and at least one of the maximal subgroup of G is not supersoluble.
III. $G=\left(G_{p} \times Q_{1}\right) \rtimes Q_{2}$, where $G_{q}=Q_{1} \rtimes Q_{2}$, G_{p} and Q_{1} are minimal normal subgroups of G, $\left|Q_{1}\right|=q, \quad G_{p} \rtimes Q_{2}$ is an SDH-group and every maximal subgroup of G containing $G_{p} \rtimes Q_{1}$ is supersoluble. Moreover, if $p<q$, then every 2-maximal subgroup of G is nilpotent.
IV. $G=G_{p} \rtimes G_{q}$, where G_{p} is a minimal normal subgroup of $G, O_{q}(G) \neq 1, \quad \Phi(G) \neq 1$, every maximal subgroup of G containing G_{p} is either supersoluble or an SDH-group and $G / \Phi(G)$ is a group one of types II or III.
V. $G=\left(P_{1} \times P_{2}\right) \rtimes G_{q}$, where $G_{p}=P_{1} \times P_{2}, \quad P_{1}$, P_{2} are minimal normal subgroups of G, every maximal subgroup of G containing G_{p} is supersoluble, $P_{1} \rtimes G_{q}$ is an SDH-group and $P_{2} \rtimes G_{q}$ is either an SDH-group or a supersoluble group with $\left|P_{2}\right|=p$.
VI. $G=G_{p} \rtimes G_{q}, \Phi\left(G_{p}\right)$ is a minimal normal subgroup of G, every maximal subgroup of G containing G_{p} is supersoluble and $\Phi\left(G_{p}\right) \rtimes G_{q}$ is an SDH-group.
VII. Every of the subgroups G_{p} and G_{q} is not normal in G and the following hold:
(i) if $p<q$, then $G=P_{1} \rtimes\left(G_{q} \rtimes P_{2}\right)$, where $G_{p}=P_{1} \rtimes P_{2}, \quad P_{1}$ is a minimal normal subgroup of $G,\left|P_{2}\right|=p, G_{q}=\langle a\rangle$ is a cyclic group and $\left\langle a^{q}\right\rangle$ is normal in G. Moreover, G has precisely three classes of maximal subgroups whose representatives are $P_{1} \rtimes G_{q}, \quad G_{q} \rtimes P_{2},\left\langle a^{q}\right\rangle \rtimes G_{p}$, where $P_{1} \rtimes G_{q}$ is an SDH-group;
(ii) if $p>q$, then $G=P_{1}\left(G_{q} \rtimes P_{2}\right)$, where $G_{p}=P_{1} P_{2}, P_{1}$ is a normal subgroup of $G, P_{2}=\langle b\rangle$ is a cyclic group and $1 \neq P_{1} \cap P_{2}=\left\langle b^{p}\right\rangle$. Moreover, G has precisely three classes of maximal subgroups whose representatives are $P_{1} \rtimes G_{q}, \quad G_{q} \rtimes P_{2}, \quad G_{p}$, where $\left|G: G_{q} \rtimes P_{2}\right|=p, \quad P_{1} \rtimes G_{q}$ is a supersoluble group and $G_{q} \rtimes P_{2}$ is an SDH-group.

Theorem C. Let G be a nonsupersoluble group with $|\pi(G)|=3$. Let p, q, r be distinct prime divisors of $|G|$ and G_{p}, G_{q}, G_{r} be Sylow p-subgroup, q-subgroup and r-subgroup of G respectively. Every 3-maximal subgroup of G is $K-\mathfrak{U}$-subnormal in G if and only if G is a soluble group of one of the following types:
I. G is a minimal nonsupersoluble group and either $\left|\Phi\left(G^{\mathfrak{L}}\right)\right|$ is a prime or $\Phi\left(G^{\mathfrak{U}}\right)=1$.
II. $G=G_{p} \rtimes\left(G_{q} \rtimes G_{r}\right)$, where G_{p} is a minimal normal subgroup of G, every maximal subgroup of G is either supersoluble or an SDH-group and at least one of the maximal subgroups of G is not supersoluble. Moreover, the following hold:
(i) if G_{p} is the unique minimal normal subgroup of G, then every 2-maximal subgroup of $G_{q} \rtimes G_{r}$ is an Abelian group of exponent dividing $p-1$;
(ii) if $G_{q} \rtimes G_{r}$ is an SDH-group, then every maximal subgroup of G containing $G_{p} G_{q}$ is supersoluble and $G_{p} \rtimes G_{r}$ is either an SDH-group or a supersoluble group with $\left|G_{p}\right|=p$.
III. $G=\left(P_{1} \times P_{2}\right) \rtimes\left(G_{q} \rtimes G_{r}\right)$, where $G_{p}=P_{1} \times P_{2}$, P_{1}, P_{2} are minimal normal subgroups of G and G_{q}, G_{r} are cyclic groups. Moreover, every maximal subgroup of G containing G_{p} is supersoluble, $P_{1} \rtimes\left(G_{q} \rtimes G_{r}\right)$ is an SDH-group and $P_{2} \rtimes\left(G_{q} \rtimes G_{r}\right)$
is either an SDH-group or a supersoluble group with $\left|P_{2}\right|=p$.
IV. $G=G_{p} \rtimes\left(G_{q} \rtimes G_{r}\right), \quad \Phi\left(G_{p}\right)$ is a minimal normal subgroup of G, every maximal subgroup of G containing G_{p} is supersoluble and $\Phi\left(G_{p}\right) \rtimes\left(G_{q} \rtimes G_{r}\right)$ is an SDH-group.

Theorem D. Let G be a nonsupersoluble group with $|\pi(G)|=4$. Let p, q, r, t be distinct prime divisors of $|G|(p>q>r>t)$ and G_{p}, G_{q}, G_{r}, G_{t} be Sylow p-subgroup, q-subgroup, r-subgroup and t-subgroup of G respectively. Every 3-maximal subgroup of G is K - \mathfrak{U}-subnormal in G if and only if $G=G_{p} \rtimes\left(G_{q} \rtimes\left(G_{r} \rtimes G_{t}\right)\right)$ is a soluble group such that G has precisely three classes of maximal subgroups whose representatives are $G_{q} G_{r} G_{t}, \quad G_{p} G_{q} G_{r} \Phi\left(G_{t}\right), \quad G_{p} G_{q} \Phi\left(G_{r}\right) G_{t} \quad$ and $G_{p} \Phi\left(G_{q}\right) G_{r} G_{t}$, and every nonsupersoluble maximal subgroup of G is an SDH-group, G_{r} and G_{t} are cyclic groups and following hold:
(1) if $G_{q} G_{r} G_{t}$ is an SDH-group, then $G^{\mathfrak{L}}=G_{p} \times G_{q}$, G_{q} is a minimal normal subgroup of G, the subgroups $G_{p} G_{q} G_{r} \Phi\left(G_{t}\right)$ and $G_{p} G_{q} \Phi\left(G_{r}\right) G_{t}$ are supersoluble and $G_{p} G_{r} G_{t}$ is either an SDH-group or a supersoluble group with $\left|G_{p}\right|=p$;
(2) if $G_{q} G_{r} G_{t}$ is a soluble group, then G_{q} is cyclic.

The classes of groups which are described in Theorems B and C are pairwise disjoint. It is easy to construct examples to show that all classes of the groups in this theorems and in Theorems A and D are not empty. Note also that Theorems B, C and D show that the class of the groups with all 3-maximal subgroups $K-\mathfrak{U}$-subnormal is essentially wider then the class of the groups with all 3-maximal subgroups subnormal [23].

REFERENCES

1. Rédei, L. Ein Satz uber die endlichen einfachen Gruppen / L. Rédei // Acta Math. - 1950. Vol. 84. - P. 129-153.
2. Huppert, B. Normalteiler and maximal Untergruppen endlicher gruppen / B. Huppert // Math. Z. - 1954. - Vol. 60. - P. 409-434.
3. Poljakov, L.Ja. Finite groups with permutable subgroups, in Proc. Gomel Sem.: Finite groups / L.Ja. Poljakov. - Minsk.: Nauka i Tekhnika, 1966. P. 75-88.
4. Agrawal, R.K. Generalized center and hypercenter of a finite group / R.K. Agrawal // Proc. Amer. Math. Soc. - 1976. - Vol. 54. - P. 13-21.
5. Janko, Z. Finite groups with invariant fourth maximal subgroups / Z. Janko // Math. Zeitschr. 1963. - Vol. 82. - P. 82-89.
6. Suzuki, M. The nonexistence of a certain type of simple groups of odd order / M. Suzuki // Proc. Amer. Math. Soc. - 1957. - Vol. 8, № 4. P. 686-695.
7. Janko, Z. Endliche Gruppen mit lauter nilpotent zweitmaximalen Untergruppen / Z. Janko // Math. Z. - 1962. - Vol. 79. - P. 422-424.
8. Gagen, T.M. Finite simple groups with nilpotent third maximal subgroups / T.M. Gagen, Z. Janko // J. Austral. Math. Soc. - 1966. - Vol. 6, № 4. - P. 466-469.
9. Belonogov, V.A. Finite soluble groups with nilpotent 2-maximal subgroups / V.A. Belonogov // Math. Notes. - 1968. - Vol. 3, № 1. - P. 15-21.
10. Semenchuk, V.N. Soluble groups with supersoluble second maximal subgroup / V.N. Semenchuk // Voprosy Algebry. - 1985. - Vol. 1. - P. 86-96.
11. Mann, A. Finite groups whose n-maximal subgroups are subnormal / A. Mann // Trans. Amer. Math. Soc. - 1968. - Vol. 132. - P. 395-409.
12. Spencer, A.E. Maximal nonnormal chains in finite groups / A.E. Spencer // Pacific J. of Math. - 1968. - Vol. 27, № 1. - P. 167-173.
13. Asaad, M. Finite groups some whose n-maximal subgroups are normal / Asaad // Acta Math. Hung. - 1989. - Vol. 54, № 1-2. - P. 9-27.
14. Flavell, P. Overgroups of second maximal subgroups / P. Flavell // Arch. Math. - 1995. Vol. 64. - P. 277-282.
15. Guo, X.Y. Cover-avoidance properties and the structure of finite groups / X.Y. Guo, K.P. Shum // J. Pure Appl. Algebra. - 2003. - Vol. 181. P. 297-308.
16. Guo, W. X-Semipermutable subgroups of finite groups / W. Guo, K.P. Shum, A.N. Skiba // J. Algebra. - 2007. - Vol. 315. - P. 31-41.
17. $L i, B$. New characterizations of finite supersoluble groups / B. Li, A.N. Skiba // Sci. China Ser. A: Math. - 2008. - Vol. 50, № 1. - P. 827-841.
18. Guo, W. Finite groups with given s-embedded and n-embedded subgroups / W. Guo, A.N. Skiba // J. Algebra. - 2009. - Vol. 321. - P. 2843-2860.
19. $L i, S h$. Finite non-nilpotent groups all of whose second maximal subgroups are $T I$-groups / Sh. Li // Math. Proc. of the Royal Irish Academy. 2000. -Vol. 100 A, № 1. - P. 65-71.
20. Guo, W. Finite groups in which every 3-maximal subgroup commutes with all maximal subgroups / W. Guo, E.V. Legchekova, A.N. Skiba // Math. Notes. - 2009. - Vol. 86, № 3-4. - P. 325-332.
21. Guo, W. On nonnilpotent groups with every two 3-maximal subgroups permutable / W. Guo, Yu.V. Lutsenko, A.N. Skiba // Siberian Math. J. 2009. - Vol. 50, № 6. - P. 988-997.
22. Lutsenko, Yu.V. Structure of finite groups with S-quasinormal third maximal subgroups / Yu.V. Lutsenko, A.N. Skiba // Ukrainian Math. J. 2009. - Vol. 61, № 12. - P. 1915-1922.
23. Lutsenko, Yu.V. Finite groups with subnormal second or third maximal subgroups / Yu.V. Lutsenko, A.N. Skiba // Math. Notes. - 2012. - Vol. 91, № 5-6. - P. 680-688.
24. Andreeva, D.P. Finite groups with givem maximal chains of length $\leq 3 /$ D.P. Andreeva, A.N. Skiba // Problems of Physics, Mathematics and Technics. - 2011. - Vol. 3. - P. 39-49.
25. Guo, W. Finite groups of Spencer hight ≤ 3 / W. Guo, D.P. Andreeva, A.N. Skiba // Algebra Colloquium. - (in Press).
26. Ballester-Bolinches, A. On second maximal subgroups of Sylow subgroups of finite groups / A. Ballester-Bolinches, L.M. Ezquerro, A.N. Skiba // J. Pure Appl. Algebra. - 2011. - Vol. 215, № 4. P. 705-714.
27. Kniahina, V.N. On the permutability of n-maximal subgroups with Schmidt subgroups / V.N. Kniahina, V.S. Monakhov // Trudy Inst. Mat. i Mekh. UrO RAN. - 2012. - Vol. 18, № 3. - P. 125130.
28. Kovaleva, V.A. Finite solvable groups with all n-maximal subgroups \mathfrak{U}-subnormal / V.A. Kovaleva, A.N. Skiba // Sib. Math. J. - 2013. - Vol. 54, № 1. - P. 65-73.
29. Kovaleva, V.A. Finite soluble groups with all n-maximal subgroups \mathfrak{F}-subnormal / V.A. Kovaleva, A.N. Skiba // J. Group Theory. - 2014. - Vol. 17. - P. 273-290.
30. Monakhov, V.S. Finite groups with \mathbb{P}-subnormal subgroups / V.S. Monakhov, V.N. Kniahina // Ricerche di Matematica. - 2013. - Vol. 62, № 2. P. 307-322.
31. Kegel, O.H. Zur Struktur mehrfach faktorisierbarer endlicher Gruppen / O.H. Kegel // Math. Z. 1965. - Vol. 87. - P. 409-434.
32. Ballester-Bolinches, A. Classes of Finite Groups / A. Ballester-Bolinches, L.M. Ezquerro. -Springer-Verlag, 2006.
33. Doerk, K. Minimal nicht uberauflosbare, endliche Gruppen / K. Doerk // Math. Z. - 1966. Vol. 91. - P. 198-205.

The research of the second author is supported by a NNSF grant of China (Grant \# 11101369) and the Science Foundation of Zhejiang Sci-Tech University under grant 1013843-Y.

Поступила в редакцию 02.05.14.

