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Let G be a finite group. A subgroup 4 of G is said to be quasipermutable in G if A4 either covers or avoids every maximal

pair (K,H) of G. We study the finite groups with given systems of quasipermutable subgroups.

Keywords: finite group, maximal pair, (weakly) quasipermutable subgroup, generalized Fitting subgroup, p -nilpotent group,

U -hypercentre.

Introduction

Throughout this paper, all groups considered
are finite. We write U/ to denote the class of all su-
persoluble groups.

Let A4 be a subgroup of a group G,
K <H <G. Then we say that A4 covers the pair
(K,H) if AH=A4K; A avoids (K,H) if
ANH =ANK. A subgroup H of G is said to be
quasinormal or permutable in G if HE = EH for all
subgroups E of G. The permutable subgroups have
many interesting properties. In particular, if £ is a
permutable subgroup of G, then for every maximal
pair of G, that is, a pair (K,H), where K is a
maximal subgroup of H, E either covers or avoids
(K,H). This observation leads us to the following
generalizations of permutability.

Definition. Let A be a subgroup of a group
G. We say that:

(1) A4 is quasipermutable in G if A either
covers or avoids every maximal pair (K, H) of G.

(2) A is weakly quasipermutable in G if G
has a subgroup 7 and a quasipermutable subgroup
C suchthat G=AT and TN A< C< A

In this paper we continue the research of the
paper [1] and study the finite groups with given sys-
tems of quasipermutable subgroups and weakly qua-
sipermutable subgroups. Our main goal here is to
prove the following result.
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Theorem A. Let G be a group. The following
statements are equivalent:

(1) G is supersoluble.

(2) Every subgroup of F*(G) is quasipermu-
table in G.

(3) Every cyclic subgroup of F*(G) with
prime order and order 4 is weakly quasipermutable
in G.

In this theorem F*(G) denotes the generalized
Fitting subgroup of G, that is, the product of all
normal quasinilpotent subgroups of G; see [2,
Chapter X].

The proof of Theorem A consists of a large
number steps and the following results are the main
stages of it.

Theorem B. Let G be a group and p a prime
dividing |G| such that (|G|, p—-1)=1. Then G is
p -nilpotent if and only if for Sylow p -subgroup P
of G either all maximal subgroups of P or all cy-
clic subgroup of P with prime order and order 4
(if P is a non-abelian 2 -group) are weakly qua-
sipermutable in G.

A chief factor H/K of a group G is called
U -central provided H/Kx (G/C;(H/K))elU.
The product of all normal subgroups of a group G

whose G -chief factors are U -central in G is called
the U -hypercentre of G and denoted by Z,,(G) [3].
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Theorem C. Let E be a normal subgroup of a
group G. Suppose that all cyclic subgroups of E of
prime order and order 4 are weakly quasipermu-
tablein G. Then E < Z,,(G).

Note that Theorem C is independently interest-
ing because it generalizes the main results of some
papers (see, for example, [17]-[28]).

All unexplained notations and terminologies
are standard. The reader is reffered to [3]-[5] if nec-
essary.

1 Preliminaries

We need the following properties of weakly
quasipermutable subgroups.

Lemma 1.1 [1, Lemma 2.15]. Let H be a nor-
mal subgroup of a group G and K a weakly qua-
sipermutable subgroup of G. Then:

(1) If K<EZQG, then K is weakly quasiper-
mutable in E.

(2) If H<K, then K/H is weakly quasiper-
mutable in G/ H.

B3)If (H|,|K|)=1, then HK/H is weakly
quasipermutable in G/ H.

Lemma 1.2 [1, Lemma 2.15]. Let F be a satu-
rated formation containing all nilpotent groups and
G a group with soluble F -residual P=G". Sup-
pose that every maximal subgroup of G not con-
taining P belongs to F. Then P is a p-group for
some prime p. In addition, if every cyclic subgroup
of P with prime order and order 4 (if p=2 and
P is non-abelian) is weakly quasipermutable in G,
then | P |= p is not the smallest prime dividing | G |.

Lemma 1.3 [1, Lemma 2.5]. Every quasiper-
mutable subgroup of a group G is subnormal in G.

Lemma 1.4 [6, Lemma 2.9]. Let G be a group,
p the smallest prime divisor of | G| and P a Sylow
p -subgroup of G. If every maximal subgroup of P
has a p-nilpotent supplement in G, then G is
p -nilpotent.

Lemma 1.5 [7]. Let A be a subnormal r -sub-
group of a group G. Then A< O, (G).

Let P bea p-group. If P is not a non-abelian
2 -group we use C((P) to denote the subgroup
Q,(P). Otherwise, Q(P)=Q,(P).

Lemma 1.6 [8]. Let P be a p-group of class
at most 2. Suppose that exp(P/ Z(P)) divides p.

(1) If p>2, then exp(Q(P)) = p.

(2) If P is a non-abelian 2 -group, then
exp(Q(P)) = 4.

Lemma 1.7 (See [9, 1] or [3, IV, Chapter 6]).
Let P be a normal p-subgroup of a group G. If
Q<Z,G), then P<Z,,(G).
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Lemma 1.8 [2, Chapter X]. Let G be a group.
If F*(G) is soluble, then F*(G) = F(G).

Lemma 1.9 [10, Theorem C]. Let E be a sub-
group of a group G. If every G -chief factor below
F*(G) is cyclic, then every G -chief factor below
E is cyclic.

2 Proof of Theorems B, C and A

Proof of Theorem B. We only need to prove
the “if part”. Suppose that this is false and let G be
a counterexample with minimal order.

M 0,(G)=1.

Suppose that O, (G)=1. By Lemma 1.1(3),
the hypothesis holds for G/O,(G). Therefore
G/0,(G) is p-nilpotent by the choice of G, a
contradiction. Hence O, (G) =1.

(2) Every maximal subgroup of P is weakly
quasipermutable in G.

Suppose that this is false. Then by hypothesis
every cyclic subgroup of P with prime order and
order 4 (if P is a non-abelian 2 -group) is weakly
quasipermutable in G. Since G is not p -nilpotent,

it has a p -closed Schmidt subgroup [11, IV, Theo-
rem 5.4] H=H,xH, , where H, <P. By Lemma
1.1 (1), every cyclic subgroup of H, with prime
order and order 4 (if H, is a non-abelian 2 -group)
is weakly quasipermutable in H. Then by Lemma
12, |H,|=p. Hence H/C,(H,)=L< Aut(H))
and Aut(H ) is a cyclic subgroup with order p—1.

This contradiction shows that every maximal sub-
group of P is weakly quasipermutable in G.

(3) 0,(6G)=1.
Suppose that O,(G) #1. Let N be a minimal
normal subgroup of G contained in O,(G). Then

N <P and by Lemma 1.1 (2) the hypothesis holds
for G/ N. Therefore G/ N is p -nilpotent by the

choice of G. Since the class of all p-nilpotent

groups is a saturated formation, N is the only mini-
mal normal subgroup of G contained in P,

N Z ®(G) and N ¢ Z(G). Moreover, G is p-so-
(Gl,p-H)=1, |NJ|>p. But
0,(G)=1 by (1). Hence N is the only minimal
normal subgroup of G. Let M be a maximal sub-
group of G such that Ng M. Then G=NxM
and N =0,(G). Indeed,
0,(G)=0,(G)NNM =N(O,(G)NM).

Since O,(G) < F(G)<C,;(N) by [9], 0,(G)nM
is normal in G, so O,(G)NnM =1. Hence
N=0,(G).

luble.  Since
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Since G=NxM, AM =G for every maxi-
mal subgroup 4 of P containing N. Moreover,
M =G/N is a p-nilpotent supplement of 4 in
G. Therefore by Lemma 1.4, some maximal sub-
group V' of P neither contains N nor has a p-
nilpotent supplement in G. Then by (2), V is
weakly quasipermutable in G. Let C and T be
subgroups of G such that VT =G, C is quasiper-
mutable in G and TNV <C<V. By Lemma 1.3,
C is subnormal in G. Hence by Lemma 1.5,
C<N. If C=1 then TNV =1, )
|T, |=| PNT |= p. Hence T is p-nilpotent by [12,
Theorem 10.1.9], a contradiction. Therefore C #1.
Since C is quasipermutable in G, CM =G, so
C =N, acontradiction. Thus O,(G) =1.

Final contradiction. Let V' be a maximal sub-
group of P. By (2), V' is weakly quasipermutable in
G. Let C and T be subgroups of G such that
VT =G, C is quasipermutable in G and
TNV <C<V. By Lemma 1.3, C is subnormal in
G. Hence by Lemma 1.5, C<0O,(G)=1. Then

TnV=l1 so |T,|5|PnT|=p and T is p-nil-
potent. Therefore by Lemma 1.4, G is p -nilpotent.

This contradiction completes the proof of Theorem B.
Proof of Theorem C. Suppose that theorem is
false and consider a counterexample (G,E) for

which |G || E| is minimal. Let P be a Sylow p-
subgrop of E, where p is the smallest prime divid-
ing | E]|.

(1) If X is a Hall subgroup of E, the hypothe-
sis is still true for (X, X). If, in addition, X is nor-
mal in G, then the hypothesis also holds for (G, X)
and (G/ X,E/ X).

This follows directly from Lemma 1.1.

(2) If X is a non-identity normal Hall sub-
group of E, then X =E.

Since X is a characteristic subgroup of E, it
is normal in G. Hence by (1) the hypothesis is still
true for (G/X,E/ X) and (G,X). If X #E, then
E/X<Z,G/X) and X <Z,(G) by the choice
of (G,E). Hence E <Z,(G), a contradiction. Thus
X=E.

3) E=P.

By Theorem B, E is p-nilpotent. If H is a
Hall p’-subgroup of E, then H is normal in E.
Suppose that E# P. Then H # E, which contra-
dicts (2). Thus E =P.

(4) P is not cyclic.

This follows from (3) and [13, 7, Theorem 6.1].

(5) G has a normal subgroup R < P such that

P/ R is a non-cyclic chief factor of G, R<Z,,(G)
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and V <R for any normal subgroup V # P of G
contained in P.

Let P/R be a chief factor of G. Then by
Lemma 1.1 the hypothesis holds for (G, R). Hence
R<Z,(G), so P/R is non-cyclic by the choice of
(G,E). Let V# P be any normal subgroup of G
contained in P. Then V' <Z,(G) by the choice of
(G,E) and Lemma 1.1. If V £R, then by [14,
Lemma 23], P=VR<Z,(G), a contradiction.
Hence V <R.

6) QP)=P.

Suppose that Q(P)<P. Then by (5),
Q(P)< Z,(G). Hence by Lemma 1.7, P<Z, (G),
a contradiction. Thus Q(P) = P.

The final contradiction. Let H/R be any
minimal subgroup of P/RNZ(G,/R), where G,
is a Sylow p-subgroup of G. Let xe H\R and
Lz(x). Then |L|=p or |L|=4 by (6) and
Lemma 1.6. Hence by hypothesis L is weakly qua-
sipermutable in G. Let C and T be subgroups of
G such that LT =G, C is quasipermutable in G
and TNL<C<ZL. If T#G, then G has a maxi-
mal normal subgroup M such that G = LM. Hence
P=L(PNM), so p=G/M|=s|P/PnM|.
Therefore P/PNM is cyclic and
PNM<R<Z,G). Hence P<Z,(G), a contra-
diction. Thus 7 =G and L is quasipermutable in
G. Let W be a maximal subgroup of G such that
G =PxW. Since L is quasipermutable in G, L
either covers or avoids (W,G). If L covers (W,G),
then LW =G=PW, so L=P, a contradiction.
Hence L avoids (W,G). Thus L <W. This contra-

diction completes the proof of Theorem C.
Proof of Theorem A. First we show that (1)

implies (2). Let 4 be any subgroup of F*(G) and
(K,H) a maximal pair of G. Since G is super-
soluble, F*(G)=F(G) by Lemma 1.8, so
ANH<F(G)nH<F(H). Hence by induction
we may assume that H=G. If Ac K, then
A=ANnK =ANG, that s, A avoids
(K,G)=(K,H). Suppose that 4 K and K, #1.
Since AK./K,<F(G)K,/K;<F(G/K;), by
induction, (K,;4/K )K/K;)=G/K;. Hence
AK =G, that is, A covers (K,G). Hence we can
assume that K; =1. In this case G is primitive.
Therefore F(G) is a minimal normal subgroup of
G and so | F(G)|= p is prime. Hence either 4 =1
or A=F(G). Therefore A covers or avoids
(K,G)=(K,H). Thus, (2) is a consequence of (1).

Ipo6remvr uzuxu, mamemamuru u mexuuxu, Ne 3 (12), 2012
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(2) = (3) Itis evident.

Finally, we shall prove the implication (3) =
(). By Theorem C, F*(G)<Z,(G). Hence G is
supersoluble by Lemma 1.9.
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