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Пусть G  – конечная группа. Подгруппа A  группы G  называется квазиперестановочной в G,  если A  либо покрыва-
ет, либо изолирует каждую максимальную пару ( )K H,  из G.  Изучаются конечные группы с заданными системами 
квазиперестановочных подгрупп. 
 
Ключевые слова: конечная группа, максимальная пара, (слабо) квазиперестановочная подгруппа, обобщенная под-
группа Фиттинга, p -нильпотентная группа, U -гиперцентр. 
 
Let G  be a finite group. A subgroup A  of G  is said to be quasipermutable in G  if A  either covers or avoids every maximal 
pair ( )K H,  of G.  We study the finite groups with given systems of quasipermutable subgroups. 
 
Keywords: finite group, maximal pair, (weakly) quasipermutable subgroup, generalized Fitting subgroup, p -nilpotent group, 
U -hypercentre. 

 
 

Introduction  
Throughout this paper, all groups considered 

are finite. We write U  to denote the class of all su-
persoluble groups.  

Let A  be a subgroup of a group G,  
K H G≤ ≤ .  Then we say that A  covers the pair 
( )K H,  if ;AH AK=  A  avoids ( )K H,  if 
A H A K∩ = ∩ .  A subgroup H  of G  is said to be 

quasinormal or permutable in G  if HE EH=  for all 
subgroups E  of G.  The permutable subgroups have 
many interesting properties. In particular, if E  is a 
permutable subgroup of G,  then for every  maximal 
pair of G,  that is, a pair ( )K H, ,  where K  is a 
maximal subgroup of H ,  E  either covers or avoids 
( )K H, .  This observation leads us to the following 
generalizations of permutability.  

Definition. Let A  be a subgroup of a group 
G.  We say that:  

(1) A  is quasipermutable in G  if A  either 
covers or avoids every maximal pair ( )K H,  of G.   

(2) A  is weakly quasipermutable in G  if G  
has a subgroup T  and a quasipermutable subgroup 
C  such that G AT=  and T A C A∩ ≤ ≤ .   

In this paper we continue the research of the 
paper [1] and study the finite groups with given sys-
tems of quasipermutable subgroups and weakly qua-
sipermutable subgroups. Our main goal here is to 
prove the following result.  

Theorem A. Let G  be a group. The following 
statements are equivalent:  

(1) G  is supersoluble.  
(2) Every subgroup of ( )F G∗  is quasipermu-

table in G.   
(3) Every cyclic subgroup of ( )F G∗  with 

prime order and order 4  is weakly quasipermutable 
in G.   

In this theorem ( )F G∗  denotes the generalized 
Fitting subgroup of G,  that is, the product of all 
normal quasinilpotent subgroups of ;G  see [2, 
Chapter X].  

The proof of Theorem A consists of a large 
number steps and the following results are the main 
stages of it.  

Theorem B. Let G  be a group and p  a prime 
dividing G| |  such that ( 1) 1G p| |, − = .  Then G  is 
p -nilpotent if and only if for Sylow p -subgroup P  

of G  either all maximal subgroups of P  or all cy-
clic subgroup of P  with prime order and order 4  
(if P  is a non-abelian 2 -group) are weakly qua-
sipermutable in G.   

A chief factor H K/  of a group G  is called 
U -central provided  H K/ � ( ( ))GG C H K/ / ∈ .U  
The product of all normal subgroups of a group G  
whose G -chief factors are U -central in G  is called 
the U -hypercentre of G  and denoted by ( )Z GU  [3].  
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Theorem C. Let E  be a normal subgroup of a 
group G.  Suppose that all cyclic subgroups of E  of 
prime order and order 4  are weakly quasipermu-
table in G.  Then ( )E Z G≤ .U   

Note that Theorem C is independently interest-
ing because it generalizes the main results of some 
papers (see, for example, [17]–[28]).  

All unexplained notations and terminologies 
are standard. The reader is reffered to [3]–[5] if nec-
essary.  
 

1 Preliminaries  
We need the following properties of weakly 

quasipermutable subgroups.  
Lemma 1.1 [1, Lemma 2.15]. Let H  be a nor-

mal subgroup of a group G  and K  a weakly qua-
sipermutable subgroup of G.  Then:  

(1) If K E G≤ ≤ ,  then K  is weakly quasiper-
mutable in E.   

(2) If H K≤ ,  then K H/  is weakly quasiper-
mutable in G H/ .   

(3) If ( ) 1H K| |,| | = ,  then HK H/  is weakly 
quasipermutable in G H/ .    

Lemma 1.2 [1, Lemma 2.15]. Let F  be a satu-
rated formation containing all nilpotent groups and 
G  a group with soluble F -residual P G= .F  Sup-
pose that every maximal subgroup of G  not con-
taining P  belongs to .F  Then P  is a p -group for 
some prime p.  In addition, if every cyclic subgroup 
of P  with prime order and order 4  (if 2p =  and 
P  is non-abelian) is weakly quasipermutable in G,  
then P p| |=  is not the smallest prime dividing G| | .   

Lemma 1.3 [1, Lemma 2.5]. Every quasiper-
mutable subgroup of a group G  is subnormal in G.   

Lemma 1.4 [6, Lemma 2.9]. Let G  be a group, 
p  the smallest prime divisor of G| |  and P  a Sylow 
p -subgroup of G.  If every maximal subgroup of P  

has  a  p -nilpotent  supplement  in G,  then G  is 
p -nilpotent.  

Lemma 1.5 [7]. Let A  be a subnormal π -sub-
group of a group G.  Then ( )A O Gπ≤ .   

Let P  be a p -group. If P  is not a non-abelian 
2 -group we use ( )PΩ  to denote the subgroup 

1( )PΩ .  Otherwise, 2( ) ( )P PΩ = Ω .   
Lemma 1.6 [8]. Let P  be a p -group of class 

at most 2.  Suppose that exp( ( ))P Z P/  divides p.    
(1) If 2p > ,  then exp( ( ))P pΩ = .    
(2) If P  is a non-abelian 2 -group, then 

exp( ( )) 4PΩ = .    
Lemma 1.7 (See [9, II] or [3, IV, Chapter 6]). 

Let P  be a normal p -subgroup of a group G.  If 
( )Z GΩ ≤ ,U  then ( )P Z G≤ .U    

Lemma 1.8 [2, Chapter X]. Let G  be a group. 
If ( )F G∗  is soluble, then ( ) ( )F G F G∗ = .   

Lemma 1.9 [10, Theorem C]. Let E  be a sub-
group of a group G.  If every G -chief factor below 

( )F G∗  is cyclic, then every G -chief factor below 
E  is cyclic.  
 

2 Proof of Theorems B, C and A  
Proof of Theorem B. We only need to prove 

the “if part”. Suppose that this is false and let G  be 
a counterexample with minimal order.  

(1) ( ) 1pO G′ = .   
Suppose that ( ) 1pO G′ ≠ .  By Lemma 1.1 (3), 

the hypothesis holds for ( )pG O G′/ .  Therefore 
( )pG O G′/  is p -nilpotent by the choice of G,  a 

contradiction. Hence ( ) 1pO G′ = .   
(2) Every maximal subgroup of P  is weakly 

quasipermutable in G.   
Suppose that this is false. Then by hypothesis 

every cyclic subgroup of P  with prime order and 
order 4  (if P  is a non-abelian 2 -group) is weakly 
quasipermutable in G.  Since G  is not p -nilpotent, 
it has a p -closed Schmidt subgroup [11, IV, Theo-
rem 5.4] p qH H H= ,�  where pH P≤ .  By Lemma 
1.1 (1), every cyclic subgroup of pH  with prime 
order and order 4  (if pH  is a non-abelian 2 -group) 
is weakly quasipermutable in H .  Then by Lemma 
1.2, pH p| |= .  Hence ( ) ( )H p pH C H L Aut H/ ≤  
and ( )pAut H  is a cyclic subgroup with order 1p − .  
This contradiction shows that every maximal sub-
group of P  is weakly quasipermutable in G.   

(3) ( ) 1pO G = .   
Suppose that ( ) 1pO G ≠ .  Let N  be a minimal 

normal subgroup of G  contained in ( )pO G .  Then 
N P≤  and by Lemma 1.1 (2) the hypothesis holds 
for G N/ .  Therefore G N/  is p -nilpotent by the 
choice of G.  Since the class of all p -nilpotent 
groups is a saturated formation, N  is the only mini-
mal normal subgroup of G  contained in P,  

( )N GΦ  and ( )N Z G .  Moreover, G  is p -so-
luble. Since ( 1) 1G p| |, − = ,  N p| |> .  But 

( ) 1pO G′ =  by (1). Hence N  is the only minimal 
normal subgroup of G.  Let M  be a maximal sub-
group of G  such that N M⊆ ./  Then G N M= �  
and ( )pN O G= .  Indeed, 

( ) ( ) ( ( ) )p p pO G O G NM N O G M= ∩ = ∩ .  
Since ( ) ( ) ( )p GO G F G C N≤ ≤  by [9], ( )pO G M∩  
is normal in G,  so ( ) 1pO G M∩ = .  Hence 

( )pN O G= .   
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Since G N M= ,�  AM G=  for every maxi-
mal subgroup A  of P  containing N .  Moreover, 
M G N/  is a p -nilpotent supplement of A  in 
G.  Therefore by Lemma 1.4, some maximal sub-
group V  of P  neither contains N  nor has a p -
nilpotent supplement in G.  Then by (2), V  is 
weakly quasipermutable in G.  Let C  and T  be 
subgroups of G  such that VT G= ,  C  is quasiper-
mutable in G  and T V C V∩ ≤ ≤ .  By Lemma 1.3, 
C  is subnormal in G.  Hence by Lemma 1.5, 
C N≤ .  If 1C = ,  then 1T V∩ = ,  so 

pT P T p| |=| ∩ |= .  Hence T  is p -nilpotent by [12, 
Theorem 10.1.9], a contradiction. Therefore 1C ≠ .  
Since C  is quasipermutable in G,  CM G= ,  so 
C N= ,  a contradiction. Thus ( ) 1pO G = .   

Final contradiction. Let V  be a maximal sub-
group of P.  By (2), V  is weakly quasipermutable in 
G.  Let C  and T  be subgroups of G  such that 
VT G= ,  C  is quasipermutable in G  and 
T V C V∩ ≤ ≤ .  By Lemma 1.3, C  is subnormal in 
G.  Hence by Lemma 1.5, ( ) 1pC O G≤ = .  Then 

1T V∩ = ,  so pT P T p| |=| ∩ |=  and T  is p -nil-
potent. Therefore by Lemma 1.4, G  is p -nilpotent. 
This contradiction completes the proof of Theorem B.  

Proof of Theorem C. Suppose that theorem is 
false and consider a counterexample ( )G E,  for 
which G E| || |  is minimal. Let P  be a Sylow p -
subgrop of E,  where p  is the smallest prime divid-
ing E| | .   

(1) If X  is a Hall subgroup of E,  the hypothe-
sis is still true for ( )X X, .  If, in addition, X  is nor-
mal in G,  then the hypothesis also holds for ( )G X,  
and ( )G X E X/ , / .   

This follows directly from Lemma 1.1.  
(2) If X  is a non-identity normal Hall sub-

group of E,  then X E= .   
Since X  is a characteristic subgroup of E,  it 

is normal in G.  Hence by (1) the hypothesis is still 
true for ( )G X E X/ , /  and ( )G X, .  If X E≠ ,  then 

( )E X Z G X/ ≤ /U  and ( )X Z G≤ U  by the choice 
of ( )G E, .  Hence ( )E Z G≤ ,U  a contradiction. Thus 
X E= .   

(3) E P= .   
By Theorem B, E  is p -nilpotent. If H  is a 

Hall p′ -subgroup of E,  then H  is normal in E.  
Suppose that E P≠ .  Then H E≠ ,  which contra-
dicts (2). Thus E P= .   

(4) P  is not cyclic.  
This follows from (3) and [13, 7, Theorem 6.1].  
(5) G  has a normal subgroup R P≤  such that 

P R/  is a non-cyclic chief factor of G,  ( )R Z G≤ U  

and V R≤  for any normal subgroup V P≠  of G  
contained in P.   

Let P R/  be a chief factor of G.  Then by 
Lemma 1.1 the hypothesis holds for ( )G R, .  Hence 

( )R Z G≤ ,U  so P R/  is non-cyclic by the choice of 
( )G E, .  Let V P≠  be any normal subgroup of G  
contained in P.  Then ( )V Z G≤ U  by the choice of 
( )G E,  and Lemma 1.1. If V R≤ ,/  then by [14, 
Lemma 2.3], ( )P VR Z G= ≤ ,U  a contradiction. 
Hence V R≤ .   

(6) ( )P PΩ = .  
Suppose that ( )P PΩ < .  Then by (5), 

( ) ( )P Z GΩ ≤ .U  Hence by Lemma 1.7, ( )P Z G≤ ,U  
a contradiction. Thus ( )P PΩ = .   

The final contradiction. Let H R/  be any 
minimal subgroup of ( )pP R Z G R/ ∩ / ,  where pG  
is a Sylow p -subgroup of G.  Let \x H R∈  and 
L x= .  Then L p| |=  or 4L| |=  by (6) and 
Lemma 1.6. Hence by hypothesis L  is weakly qua-
sipermutable in G.  Let C  and T  be subgroups of 
G  such that LT G= ,  C  is quasipermutable in G  
and T L C L∩ ≤ ≤ .  If T G≠ ,  then G  has a maxi-
mal normal subgroup M  such that G LM= .  Hence 

( )P L P M= ∩ ,  so p G M P P M=| / |=| / ∩ | .  
Therefore P P M/ ∩  is cyclic and 

( )P M R Z G∩ ≤ ≤ .U  Hence ( )P Z G≤ ,U  a contra-
diction. Thus T G=  and L  is quasipermutable in 
G.  Let W  be a maximal subgroup of G  such that 
G P W= .�  Since L  is quasipermutable in G,  L  
either covers or avoids ( )W G, .  If L  covers ( )W G, ,  
then LW G PW= = ,  so L P= ,  a contradiction. 
Hence L  avoids ( )W G, .  Thus L W≤ .  This contra-
diction completes the proof of Theorem C.  

Proof of Theorem A. First we show that (1) 
implies (2). Let A  be any subgroup of ( )F G∗  and 
( )K H,  a maximal pair of G.  Since G  is super-
soluble, ( ) ( )F G F G∗ =  by Lemma 1.8, so 

( ) ( )A H F G H F H∩ ≤ ∩ ≤ .  Hence by induction 
we may assume that H G= .  If A K⊆ ,  then 
A A K A G= ∩ = ∩ ,  that is, A  avoids 
( ) ( )K G K H, = , .  Suppose that A K  and 1GK ≠ .  
Since ( ) ( )G G G G GAK K F G K K F G K/ ≤ / ≤ / ,  by 
induction, ( )( )G G G GK A K K K G K/ / = / .  Hence 
AK G= ,  that is, A  covers ( )K G, .  Hence we can 

assume that 1GK = .  In this case G  is primitive. 
Therefore ( )F G  is a minimal normal subgroup of 
G  and so ( )F G p| |=  is prime. Hence either 1A =  
or ( )A F G= .  Therefore A  covers or avoids 
( ) ( )K G K H, = , .  Thus, (2) is a consequence of (1).  
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(2) ⇒  (3) It is evident.  
Finally, we shall prove the implication (3) ⇒  

(1). By Theorem C, ( ) ( )F G Z G∗ ≤ .U  Hence G  is 
supersoluble by Lemma 1.9.  
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