УДК 546.137+546.45

ХИМИЯ

Л. Б. СЕРЕЖКИНА, З. И. ГРИГОРОВИЧ, А. И. КАРЕЛИН, Н. С. ТАММ, академик А. В. НОВОСЕЛОВА

ИНФРАКРАСНЫЕ СПЕКТРЫ ПЕРХЛОРАТОБЕРИЛЛАТОВ ЦЕЗИЯ, РУБИДИЯ И КАЛИЯ

В работах (4 , 2) приведены результаты исследования и.-к. спектров комплексных соединений алюминия и бора с координированной перхлорато-группой. Настоящая работа посвящена изучению и.-к. спектров поглощения новых комплексных соединений бериллия — перхлоратобериллатов состава $M_2Be(ClO_4)_4(M=Cs,Rb)$, $KBe(ClO_4)_3\cdot 2H_2O$ и дигидрата перхлотов состава $M_2Be(ClO_4)_4(M=Cs,Rb)$, $KBe(ClO_4)_3\cdot 2H_2O$ и дигидрата перхлората бериллия. И.-к. спектры поглощения суспензии перхлоратобериллатов в вазелиновом масле записывались на спектрофотометрах UR-20 ($400-4000 \text{ см}^{-1}$) и ИКС-22B ($200-500 \text{ см}^{-1}$).

Результаты химического анализа исследованных в данной работе соединений приведены в табл. 1.

В инфракрасных спектрах перхлоратобериллатов цезия, рубидия и калия, а также дигидрата перхлората бериллия найдены полосы поглощения перхлорато-групп, ковалентно связанных с атомом бериллия (рис. 1) Поскольку и.-к. спектр перхлорато-групп аниона $\mathrm{Be}\left(\mathrm{ClO}_4\right)_4^{2-}$ по значениям частот и интенсивностей полос поглощения $v_s\left(\mathrm{ClO}_3\right)$ и $v_{as}\left(\mathrm{ClO}_3\right)$ почти повторяет спектр ClO_4 -группы в хлорной кислоте (3), модель аниона $\mathrm{Be}\left(\mathrm{ClO}_4\right)_4^{2-}$ можно представить, заменив атомы фтора в тетраэдрическом анионе BeF_4^{2-} [4] монодентатными перхлорато-группами симметрии C_s . Симметрия всего комплекса $\mathrm{Be}\left(\mathrm{ClO}_4\right)_4^{2-}$ не должна быть более высокой, чем D_{2d} , если фрагмент BeOCl в тетраперхлоратобериллатах нелинеен.

Для модели D_{2d} аниона $Be(ClO_4)_4^{2-}$ 43 нормальных колебания распадаются по типам симметрии согласно $\Gamma = 9A_1 + 5A_2 + 6B_1 + 9B_2 + 14E$, из них колебания A_1 и B_1 активны в спектре комбинационного рассеяния, колебания B_2 и E активны в и.-к. спектре поглощения и в спектре комбинационного рассеяния. Отсутствие четко выраженной структуры у большинства полос поглощения тетраперхлоратобериллат-иона (исключая $\delta(OClO) \sim 440-480$ см⁻¹) свидетельствует о сравнительно небольшом кинематическом взаимодействии между ClO_4 -группами в $Be(ClO_4)_4^{2-}$ *, поэтому ниже мы ограничимся рассмотрением колебаний фрагментов BeO_4 , ClO_4 и BeOCl. Детализация отнесения была бы возможна при условии знапия структуры солей $M_2Be(ClO_4)_4(M) = Cs$ или Rb) и проведения расчетов на основе значительно более точных и полных спектроскопических данных.

Наиболее интенсивная в и.-к. спектрах перхлоратобериллатов полоса поглощения около 1185, 1218 см⁻¹ относится к валентным антисимметричным колебаниям концевых связей ClO. Компонента около 1218 см⁻¹ разрешена в виде перегиба. Причинами появления структуры у v_{as} (ClO₃) могут быть кинематическая связь между ClO₄-группами, влияние кристалличе-

^{*} Дополнительные сведения о структуре полос поглощения тетраперхлорато-бериллат-иона могли бы представить данные для дигидрата (табл. 2), однако эти данные не содержат одновначной информации о строении указанного соединения, И.-к. спектры дигидрата, а также соли $\mathrm{KBe}(\mathrm{ClO_4})_3 \cdot \mathrm{2H_2O}$ существенно не отличаются от суммы спектров ионов $\mathrm{Be}(\mathrm{H_2O})_4^{2+}$ и $\mathrm{Be}(\mathrm{ClO_4})_4^{2-}$, правда, максимум полосы $v(\mathrm{H_2O})$ в спектре $\mathrm{Be}(\mathrm{H_2O})_4^{2+}(\mathrm{ClO_4}^{-1})_2$ смещен на ~ 200 см⁻¹ пиже, а $\delta(\mathrm{HOH})$ — на 15 см⁻¹ выше по отношению к $v(\mathrm{H_2O})$ и $\delta(\mathrm{HOH})$ в спектре $\mathrm{Be}(\mathrm{ClO_4})_2 \cdot \mathrm{2H_2O}$.

ского поля, резонанс Ферми $v_{as}(\text{ClO}_3) \sim 1185 \text{ см}^{-1}$ с обертоном полосы $\delta(\text{OClO}) = 613 \text{ см}^{-1}$ (если частота 613 см^{-1} относится к антисимметричному колебанию), а также отличие от 180° валентного угла BeOCl. Можно предположить, что расщепление $\Delta v_{as}(\text{ClO}_3) \sim 33 \text{ см}^{-1}$ обусловлено понижением симметрии перхлорато-групп за счет нелинейности группы BeOCl, так как дублетная структура полосы $v_{as}(\text{XO}_3)$ (X = Cl, S) наблюдается в и.-к. спектрах газовой фазы хлорной кислоты (3), ее жидких эфиров (5), а также анионов $C_2H_5OSO_3^-$ (монокристалл) (6) и $CH_3OSO_3^-$ (водный раствор) (7). С другой стороны, кристаллическое поле, по-видимому,

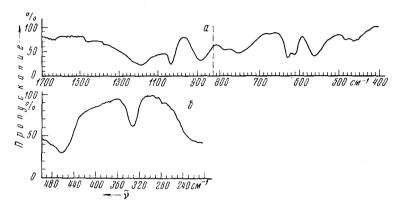


Рис. 1. И.-к. спектр поглощения $Cs_2Be\ (ClO_4)_4$ в вазелиповом масле $(\pmb{\delta}-\mathbf{cootsetctsyet}$ большей концентрации вещества)

влияет на расщенление малоинтенсивной полосы поглощения $\delta_{as}({\rm OClO}) \sim 453~{\rm cm}^{-1}$ (рис. 1, табл. 2).

Полоса поглощения симметричного валентного колебания концевых связей CIO находится около 1033 см $^{-1}$. Более низкое значение имеет частота валентного колебания мостиковой связи CIO ν (Cl-O), которая попадает в тот же диапазон (750-900 см $^{-1}$), что и частота, соответствующая антисимметричному валентному колебанию группы BeO₄. Для отнесения этой группы полос воспользуемся предположением о корреляции частот анионов B(CIO₄) $_4$ - (2) и Be(CIO₄) $_4$ -.

Таблица 1 Результаты анализа некоторых перхлоратных соединений бериллия

Соединение	Найдено, мас. %			Вычислено, мас. %		
	M (Cs, Rb, K)	Ве	ClO⁴	M (Cs, Rb, K)	Ве	C104
Cs ₂ Be (ClO ₄) ₄ Rb ₂ Be (ClO ₄) ₄ KBe (ClO ₄) ₃ ·2H ₂ O Be(ClO ₄)·2H ₂ O	40,17 29,93 10,31	1,32 1,57 2,35 3,65	59,07 68,61 77,91 81,82	39,53 29,58 10,20	1,34 1,56 2,35 3,69	59,13 68,86 78,03 81,56

Литературные данные для хлорной кислоты (3), хлорного ангидрида (8) и перхлоратоалюминатов (1) показывают, что частота v(Cl-O) перхлорато-группы сдвигается в более широком диапазоне и в противоположном направлении по сравнению с $v_s(ClO_3)$ и $v_{as}(ClO_3)$. Следовательно, наблюдаемое при переходе от $Be(ClO_4)_4^{2-}$ к $B(ClO_4)_4^{--}$ увеличение $v_{as}(ClO_3)$ на 56-80 см⁻¹ может сопровождаться значительным уменьшением v(Cl-O). Подобное понижение v(S-O) (~ 50 см⁻¹) с возрастанием порядкового номера атома Z имеет место в и.-к. спектрах соединений

 $H_3Z - OSO_3^{n-}$ (Z = C, N; $n_C = 1$, $n_N = 0$) (7 , 9) (изменения остальных частот скелета Z — OSO_3 при этом незначительны). В идеальном случае — полной характеристичности колебаний по форме частота v(Cl-O) могла бы понизиться от 883 см⁻¹ (Be(ClO_4)₄²⁻) до 760 см⁻¹ (B(ClO_4)₄⁻ (2)), а частота v(ZO) (Z = Be, B) сместиться от 753, 786 см⁻¹ до 950 см⁻¹ в соединении бора (2). В действительности колебания v(ZO) (Z = Be, B) и v(Cl-O) мало различаются по частоте и, вероятно, нехарактеристичны по форме (для одних и тех же типов симметрии точечной группы аниона), хотя величина вклада колебаний v(ClO) и v(ZO) в полосы поглощения около 750—900 см⁻¹ при замене Be \rightarrow В может измениться.

Идентификация частот деформационных колебаний δ (OCIO) тетраперхлоратобериллат-иона в области 500-600 см⁻¹ затрудняется из-за погло-

 $\begin{tabular}{lll} T аблица & 2 \\ \hline \begin{tabular}{lll} C см-1 & группы & Be (ClO_4)_x & $(x=2,4)$ \\ \hline \end{tabular}$

Be(ClO ₄) ₂ ·2H ₂ O	Rb ₂ Be(ClO ₄) ₄ Cs ₂ Be(ClO ₄) ₄		Pаствор Cs ₂ Be(ClO ₄) ₄ в HCl ₄	Описание колебания	
3175—3710 (~3410)				v (H ₂ O)	
1632				δ (НОН)	
~1190	$^{\sim 1205}_{1177}$ }	1218 } 1185 }	_	v _{as} (ClO ₃)	
1054 1030 }	1031	1032		₹ ν _s (ClO ₃)	
	887	88 3	900	v (Cl—O) и v (Be—O)	
770—920	785 733 }	786 753		v (Be—O) и v (Cl—O)	
	652 *	670 *		,	
613	614	613	617	δ_{s} (OClO)	
555	5 55	564	· <u>-</u>	δ_{as} (OC10)	
475 405—450?	$\left\{ egin{array}{c} 486 \\ 469 \\ 457 \end{array} \right\}$	$\left.\begin{array}{c} 483 \\ 462 \\ 453 \\ 443 \end{array}\right\}$	_	δ_{as} (OClO)	
_	333	332	_	δ_{as} (OBeO)	
_	~220	~208—212		δ (BeOCl)	

^{*} Слабая полоса поглощения.

щения около 628 см⁻¹ примеси перхлорат-иона. Если ник 628 см⁻¹ принадлежит целиком перхлорат-иону, то достаточно узкую полосу поглощения около 613 см⁻¹ можно отнести к симметричному колебанию δ_s (OClO), а более интенсивную, широкую и несимметричную полосу поглощения около 564 см⁻¹ — к δ_{as} (OClO). В спектре тетраперхлоратоборат-иона (²) частота несимметричной полосы поглощения равна \sim 603 см⁻¹. Отнесение деформационных частот перхлорато-группы в настоящей работе соответствует отнесению δ_s (OSO) = 617 см⁻¹ $> \delta_{as}$ (OSO) = 562, 572 см⁻¹ для $C_2H_s{\rm OSO}_3$ (6), но не согласуется с интерпретацией (7) данного участка спектра для метилсульфат-иона $CH_s{\rm OSO}_3$ (δ_s (OSO) = 559 см⁻¹ < $< \delta_{as}$ (OSO) = 615 см⁻¹).

Полосы поглощения деформационных колебаний $\delta(\mathrm{OBeO})$ и $\delta(\mathrm{BeOCl})$ аниона $\mathrm{Be}(\mathrm{ClO_4})$, ²⁻ находятся в области ≤ 350 см⁻¹. Ниже 400 см⁻¹ зафиксированы малоинтенсивная и относительно узкая полоса поглощения с частотой 332 см⁻¹ и часть более интенсивной и широкой полосы с максимумом приблизительно около 232 см⁻¹. Первая из них, возможно, отно-

сится к деформационному колебанию $\delta_{as}(\mathrm{OBeO})$, соответствующему ко-

лебанию у гипотетического изолированного тетраэдра ВеО.

По данным (4) $v_4(F_2) = 386$ см⁻¹ для BeF_4^{2-} ; частота аналогичного колебания для $Be(H_2O)_4^{2+}$ $\delta_{as}(OBeO)$ равна 325 см⁻¹; в соответствии с (6) $\delta(COS) = 347$ см⁻¹ для $C_2H_5OSO_3^-$; согласно (7) в спектре $CH_3OCO_3^-\delta(COS) = 273$ см⁻¹.

В заключение отметим, что, несмотря на некоторые различия, и.-к. спектры поглощения изоэлектронных анионов $\operatorname{Be}(\operatorname{ClO_4})_4^{2-}$ и $\operatorname{B}(\operatorname{ClO_4})_4^{-}$ (2) сходны, поэтому строение данных анионов должно быть аналогичным. В тетраперхлоратобериллат-ионе различия между удлиненной мостиковой связью Cl —О и короткими концевыми связями Cl —О меньше, чем в тетраперхлоратоборат-ионе.

Московский государственный университет им. М. В Ломоносова

Поступило 26 I 1972

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ Д. Г. Лемешева, В. Я. Росоловский, Изв. АН СССР, сер. хим., 1969, № 9, 1877. ² В. Я. Росоловский, В. П. Бабаева, Изв. АН СССР, сер. хим., № 4, 873 (1971). ³ Р. А. Giguere, R. Sovoie, Canad. J. Chem., 40, 495 (1962). ⁴ В. А. Сипачев, А. И. Григорьев, Статья в сборн. Колебательные спектры в неорганической химии, «Наука», 1971, стр. 123. ⁵ J. Radell, J. W. Connolly, А. J. Raymond, J. Am. Chem. Soc., 83, 3958 (1961). ⁶ N. Krischnamurthy, R. S. Katiyar, Indian J. Pure and Appl. Phys., 7, № 2, 97 (1969). ⁷ H. Siebert, Zs. anorg. u. allgem. Chem., 289, 15 (1957). ⁸ J. D. Witt, R. H. Hammaker, Chem. Commun., № 11, 667 (1970). ⁹ V. Wannagat, R. Pfeiffenschneider, Zs. anorg. u. allgem. Chem., 297, 151 (1958).