УЛК 513.83

MATEMATHKA

д. АДНАДЖЕВИЧ (ФНРЮ) ТОПОЛОГИЯ И ПОРЯЛОК

(Представлено академиком П. С. Александровым 21 III 1972)

Множество, наделенное двумя структурами—структурой порядка и топологической структурой,—было предметом рассмотрения ряда авторов. В основном были исследованы связи между порядком и топологией в T_1 -пространствах. Здесь рассматриваются самые общие топологические пространства и некоторые их связи с порядком, которым наделен носитель пространства. Конечно, если топология более богатая и порядок более сильный, то и взаимоотношения могут оказаться более разнообразными.

Введем некоторые обозначения. Пусть (X, ρ) — упорядоченное мпожество, где ρ является отношением порядка со свойством рефлексивности, антисимметричности и транзитивности. Обозначим

$$x \, \wp' \, y \Longleftrightarrow y \, \wp \, x,$$
 $x \, \wp \, y \Longleftrightarrow x \, \wp \, y, \quad x \neq y,$ $x \, \wp \, y \Longleftrightarrow x \, \wp \, y, \quad x \neq y,$ $x \, \wp \, y \Longleftrightarrow x \, \wp \, y \quad \text{или} \quad y \, \wp \, x,$ $x \|_{\wp} y \, (x \| y) \iff x \, \text{ не находится в отношении } \wp \, c \, y$ $x \, \wp \, y \iff x \, \wp \, y \quad \text{или} \quad x \| y.$

Отображение $f: (X, \rho) \to (Y, \tau)$ будем называть: а) изотонным, если $x \circ y \Rightarrow f(x) \tau f(y)$, б) дуально изотонным, если $f(x) \tau f(y) \Rightarrow x \rho y$, в) гомо-

морфным, если $x \rho y \iff f(x) \tau f(y)$.

Подмножества $A, B \subset X, A \cap B = \phi$, множества (X, ρ) будем называть упорядоченно разделенными, если для каждой пары $x \in A, y \in B$ имеет место условие $x \circ y$ или для каждой пары $x \in A, y \in B$ имеет место условие $y \circ x$. Если особенно $B = \{b\}$, то будем говорить, что множество A и точка b упорядоченно разделенные.

Пусть на множестве X даны топология $\mathcal U$ и порядок ϱ в обозначении $(X,\,\mathcal U,\,\varrho)$. Для непересекающихся множеств $A,\,B\subset X$ будем говорить, что они упорядоченно отделимые, если существуют упорядоченно разделен-

ные окрестности $U \supset A$, $V \supset B$ в пространстве X.

Определение 1. Топология $\mathcal U$ и порядок ρ на множестве X согласованы между собой, если удовлетворяют условию: для каждой пары $a, b \in X$, для которой существует окрестность $U(a) \subset X$ точки $a, b \notin U(a)$, существует окрестность V(a), $V \subset U$, так что V и b упорядоченно разделены.

Определение 2. Пространство (X, \mathcal{U}, ρ) называется O_0 -пространство м, если для каждой пары $a, b \in X$ хотя бы одна точка имеет окрестность, упорядоченно разделенную с другой точкой. Пространство (X, \mathcal{U}, ρ) называется O_1 -пространством, если каждая точка пары $a, b \in X$ имеет окрестность, упорядоченно разделенную с другой точкой. Пространство (X, \mathcal{U}, ρ) называется O_2 -пространством, если каждые две точки упорядоченно отделимые (см. $(^1, ^3, ^{5-7})$).

Очевидны следующие предложения.

Предложение 1. Пусть $(A, \mathcal{U}_A, \rho_A)$ — подпространство пространства (X, \mathcal{U}, ρ) с индуцированными топологией и порядком. Если тополо-

гия ${\mathcal U}$ согласована с порядком ho, то и топология ${\mathcal U}_{A}$ согласована с порядком $ho_{A}.$

Предложение 2. Пространство (X, \mathcal{U}, ρ) является O_i -пространством тогда и только тогда, когда $\mathcal{U} - T_i$ -топология и она согласована с порядком ρ , где $i \in \{0, 1\}$.

Предложение 3. Каждое O_2 -пространство является хаусдорфовым

пространством, в котором топология согласована с порядком.

Теперь приведем несколько простых свойств упорядоченных пространств.

Предложение 4. Пусть $f: (X, \mathcal{U}, \rho) \to (Y, \mathcal{V}, \tau)$ — непрерывное, открытое и дуально изотонное отображение. Если топология \mathcal{U} согласована с порядком ρ , то и топология \mathcal{V} согласована с порядком τ . \square

Предложение 5. Пусть $f\colon (X,\mathcal{U},\rho)\to (Y,\mathcal{V},\tau)$ — сюръективное отображение T_2 -пространства X в T_2 -пространство Y. Если f открыто и дуально изотонно, то из O_2 -упорядоченности пространства X следует O_2 -упорядоченность пространства Y. Если f непрерывно и изотонно, то из O_2 -упорядоченности пространства Y следует O_2 -упорядоченность пространства X. \square

Назовем мпожество $A \subset (X, \mathcal{U}, \rho)$ возрастающим (убывающим), если

из $a \circ b$, $a \in A$ $(a \circ b, b \in A)$ следует $b \in \hat{A}$ $(a \in A)$.

Предложение 6. Пусть $(X, \mathcal{U}, \varrho)$ — хаусдорфово пространство. Топология \mathcal{U} тогда и только тогда согласована с порядком ϱ , когда для каждой пары $a, b \in X$, а ϱ b существуют убывающая окрестность U точки a u возрастающая окрестность V точки $b, U \cap B = \varphi$ (окрестности не обязательно открыты) (см. $({}^{\mathfrak{s}})$). \square

Приведем некоторые примеры топологических пространств, обладающих структурой порядка.

Пример 1. Дискретное пространство отождествляется с упорядоченным множеством (см. $(^2)$). Оно является O_0 -пространством.

Пример 2. Топологическая решетка, обладающая T_1 -топологией, является пространством, имеющим топологию, согласованную с порядком решетки. Заметим, что если топология в топологической решетке (X, \mathcal{U}, ρ) является T_2 -топологией, то $(X, \mathcal{U}, \rho) - O_2$ -пространство.

В дальнейшем будем исследовать некоторые свойства более общих топологических пространств, наделенных отношением порядка, согласованного с топологией. Предположим, что у нас есть два упорядоченных множества $(X_1, \, \wp_1), \, (X_2, \, \wp_2)$. В множестве $X_1 \cup X_2 = X$ определим отношение $\wp_1 \cap \wp_2 = \wp$ следующим образом:

 1°) $x \circ y \Leftrightarrow x \circ_i y, x, y \in X_i$ и хотя бы один из элементов x, y принадле-

жит множеству $X_i \setminus (X_1 \cap X_2), i = 1, 2;$

 2°) $x \circ y \Leftrightarrow x \circ_i y \quad \forall i \in \{1, 2\}, x, y \in X_1 \cap X_2;$

3°) отношение ρ транзитивно.

Легко показать, что отношение $\rho_1 \cap \rho_2 = \rho$ является отношением порядка в множестве X.

Замечание. Порядок на множестве X_i , i=1, 2, индуцированный

порядком $\rho = \rho_1 \cap \rho_2$ множества X, не сильнее порядка ρ_i .

Предложение 7. Пусть топологии \mathcal{U}_1 , $\hat{\mathcal{U}}_2$ согласованы с порядками ρ_1 , ρ_2 соответственно. Если инъекции $i\colon X_1\to X_1\cup X_2$ для $i\in\{1,2\}$ открыты и $X_1\cup X_2$ замкнуто в $X_1\cup X_2$, то топология $\mathcal{U}_1\cup \mathcal{U}_2$ топологической суммы согласована с порядком $\rho_1\cap\rho_2$ пространства $(X_1\cup X_2,\ \mathcal{U}_1\cup\mathcal{U}_2,\ \rho_1\cap\rho_2)$. \square

Рассмотрим теперь произведение $X = \prod X_{\alpha}$, $\alpha \in A$, топологических пространств $(X_{\alpha}, \rho_{\alpha})$ с порядками ρ_{α} . Пусть пространство X обладает порядком ρ со свойством

 $\{x_{\alpha}\} \cap \{y_{\alpha}\} \iff x_{\alpha} \cap_{\alpha} y_{\alpha}, \ V_{\alpha} \subseteq A.$

Теорема 1. В топологическом произведении $X = \prod X_{\alpha}$, $\alpha \in A$, пространств $(X_{\alpha}, \mathcal{U}_{\alpha}, \rho_{\alpha})$ топология \mathcal{U} согласована с порядком о тогда и толь-

ко тогда, когда топология \mathcal{U}_{α} каждого пространства $X_{\alpha},\ \alpha \in A,$ согласова-

на с порядком оа.

Доказательство. Пусть $x = \{x_{\alpha}\}, \ y = \{y_{\alpha}\}, \ \alpha \in A, -$ две функции пространства $X, \ x \ \bar{\rho} \ y$ и U — открытое множество, $x \in U, \ y \notin U$. Множество U является объединением множеств вида $\bigcap_{i=1}^{\rho} p_{\alpha_i}^{-1}(U_{\alpha_i}^{\beta})$, где p_{α_i} — проекция пространства X на пространстве X_{α_i} . Должно существовать одно β , пусть это будет $\beta = \delta$, для которого $\{x_{\alpha}\} \in \bigcap_{i=1}^{i_{\delta}} p_{\alpha_i}^{-1}(U_{\alpha_i}^{\delta})$. Пусть $x_{\alpha_k}^{\delta} \in U_{\alpha_k}^{\delta}, \ y_{\alpha_k}^{\delta} \notin U_{\alpha_k}^{\delta}, \ 1 \le k \le i_{\delta}$. Тогда в пространстве X_{α_k} существует открытое множество $V_{\alpha_k}^{\delta} \subset U_{\alpha_k}^{\delta}, \ x_{\alpha_k}^{\delta} \in V_{\alpha_k}^{\delta}, \ z_{\alpha_k}^{\delta} \bar{\rho}_{\alpha_k} y_{\alpha_k}^{\delta}$ для всех $z_{\alpha_k}^{\delta} \in V_{\alpha_k}^{\delta}$. Множество $p_{\alpha_k}^{-1}(V_{\alpha_k}^{\delta}) \cap (\bigcap_{i=1}^{i_{\delta}} p_{\alpha_i}^{-1}(U_{\alpha_i}^{\delta}))$ искомое.

Обратно, пусть в пространстве $(X_{\delta}, \rho_{\delta})$ существует окрестность $U_{\delta}, x_{\delta} \in U_{\delta}; y_{\delta} \notin U_{\delta}$, такая, что в нее нельзя вписать окрестность, упорядоченно разделенную с точкой y_{δ} . Берем в пространстве $X = \prod X_{\alpha}, \alpha \in A$, функции $x = \{x_{\alpha}\}, y = \{y_{\alpha}\}, \alpha \in A$ такие, что $p_{\alpha}(x) = p_{\alpha}(y), \alpha \neq \delta$, $p_{\delta}(x) = x_{\delta}, p_{\delta}(y) = y_{\delta}$. Очевидно, в окрестность $p_{\delta}^{-1}(U_{\delta})$ функции x нельзя вписать окрестность, упорядоченно разделенную с функцией y. \square

Теорема 2. Произведение $X \neq \prod X_{\alpha}$, $\alpha \in A$, является O_2 -пространством только тогда, когда каждое из пространств $(X_{\alpha}, \mathcal{U}_{\alpha}, \rho_{\alpha}), \alpha \in A$ есть O_2 -пространство.

Доказательство. Пусть $x, y \in X$ — две разные точки, $x = \{x_{\alpha}\}_{\alpha \in A}, y = \{y_{\alpha}\}_{\alpha \in A}, x_{\alpha} \bar{\rho}_{\alpha} y_{\alpha}$. Существует $\delta \in A$, $x_{\delta} \hat{\rho}_{\delta} y_{\delta}$. Берем окрестности $U_{x}^{\delta} \ni x_{\delta}$, $U_{y}^{\delta} \ni y_{\delta}$ точек x_{δ} , y_{δ} , $u\bar{\rho}_{\delta}v$, $u \in U_{x}^{\delta}$, $v \in U_{y}^{\delta}$. Открытые множества $p_{\delta}^{-1}(U_{x}^{\delta})$, $p_{\delta}^{-1}(U_{y}^{\delta})$ упорядоченно отделимы. Необходимость условия доказывается, как и в теореме 1. \square

Займемся теперь фактор-пространствами. Пусть дано пространство (X, \mathcal{U}, ρ) и его фактор-пространство (X^*, \mathcal{U}^*) , в котором порядок ρ^* определим следующим образом:

$$x^* \rho^* y^* \iff x \rho y \quad \forall x, y, x \in p^{-1} x^*, y \in p^{-1} y^*,$$

где p означает каноническое отображение $p: X \to X^*$ (см. (4)).

 \hat{T} еорема 3. Если порядок ρ и топология $\mathcal U$ согласованы в дискретном пространстве $(X, \mathcal U, \rho)$ и отношение эквивалентности в пространстве X является открытым, то и индуцированные порядок ρ^* и топология $\mathcal U^*$

согласованы в фактор-пространстве $(X^*, \mathcal{U}^*, \rho^*)$.

Доказательство. Пусть A^* , $B^* \in X^*$ — элементы фактор-пространства $(X^*, \mathcal{U}^*, \rho^*)$, где X является дискретным пространством, $U^* \ni A^*$ — окрестность точки A^* , не содержащая B^* , и $A^* \rho^* B^*$. Тогда $A = p^{-1}(A^*) \subset p^{-1}(U^*) = U$, и $U \cap B = \emptyset$, $B = p^{-1}(B^*)$. Фиксируем $a_\alpha \in A$; для каждого $b_B \in B$ существует открытое множество $V_\alpha{}^\beta \ni a_\alpha$, упорядоченно разделенное с b_β , даже со свойством $x \bar{\rho} b \beta$, $x \in V_\alpha{}^\beta$. Обозначим $W_\alpha = \bigcap_{b_\beta \in B} V_\alpha{}^\beta$. Открытое множество $W = \bigcup_{\alpha a \in A} W_\alpha \subset U$ упорядоченно разделено с B. Следовательно, множество $p(W) \subset U^*$, как канонический об-

делено с B. Следовательно, множество $p(W) \subset U^*$, как канонический образ открытого в X множества, открыто в X^* и упорядоченно разделено с B^* ,

В случае $A^*\parallel_{\rho^*}B^*$ доказательство такое же. \square

Предложение 8. Пусть отношение эквивалентности в пространстве (X, \mathcal{U}, ρ) является открытым. Если существует пространство (Y, \mathcal{V}, τ) с согласованными топологией и порядком и непрерывные отображения $f\colon X\to Y, g\colon Y\to X^*, g\circ f=p, f$ изотонно, g дуально изотонно, то топология \mathcal{U}^* и порядок ρ^* согласованы.

Доказательство. Пусть $A^*\bar{\wp}^*B^*$, $A^*B^* \in X^*$, и $U^* \ni A^*$ — открытое множество в X^* , не содержащее точку B^* . Берем $a \in g^{-1}(A^*)$, $b \in g^{-1}(B^*)$. В $g^{-1}(U^*)$ впишем открытое множество W, упорядоченно разделенное с b. Множество $f^{-1}(W)$ открыто в X, содержит точку $a^1 \in f^{-1}(a)$ и упорядоченно разделено с точкой $b' \in f^{-1}(b)$. В силу предположений классы эквивалентности, содержащие a' и b', различны; обозначим эти классы A и B соответственно. Берем множество $(p^{-1} \circ p \circ f^{-1})(W) = V$. Из условия $x \bar{\wp} y$, $x \in f^{-1}(W)$, $y \in B$, следует, что множества p(V) и $p(b') = \{B^*\}$ упорядоченно разделены. Множество $p(V) \subset U^*$ открыто, откуда следует утверждение предложения. \square

Математический институт им. В. А. Стеклова Академии наук СССР Москва Поступило 10 III 1972

Белградский университет Югославия

ПИТИРОВАННАЯ ЛИТЕРАТУРА

¹ D. Adnadjevic, Матем. вестник, 7 (22), № 1 (1970). ² P. Alexandroff, Матем. сборник, 2, № 3 (1937). ³ E. S. Wolk, Proc. Am. Math. Soc., 9, 524 (1958). ⁴ S. D. McCartan, Proc. Camb. Phil. Soc., 64, 347 (1968). ⁵ S. D. McCartan, ibid., p. 965. ⁶ L. Nachbin, Topology and Order, N. Y., 1965. ⁷ A. and M. Secanina, Arch. Math., 2 (1966). ⁸ G. Szasz, Introduction to Lattice Theory, N. Y., 1963.