УДК 577.11.577.23

БИОХИМИЯ

Н. П. ЮРИНА, В. И. ЧУДИНА, Л. К. ОСНИЦКАЯ, М. С. ОДИНЦОВА, академик А. И. ОПАРИН

РИБОСОМЫ ФОТОСИНТЕЗИРУЮЩИХ БАКТЕРИЙ

Исследование белоксинтезирующего анпарата фотосинтезирующих бактерий — этой древней группы микроорганизмов представляет большой интерес с эволюционной точки зрения. Как известно, клетки фотосинтезирующих эукариотов содержат два типа рибосом: 80 S-рибосомы в цитоплазме и 70 S-рибосомы в хлоропластах. По ряду свойств 70 S-рибосомы хлоропластов сходны с бактериальными рибосомами. В связи с проблемой происхождения и эволюции пластид интересно было изучить рибосомы

прокариотов с примитивным типом фотосинтеза, фотосинтетический аппарат которых представлен относительно простой ламеллярной системой.

Имеются несколько работ по исследованию физико-химических свойств рибосом и их субъединиц, а также рибосомной РНК фотосинтезирующих бактерий (1-5).

Настоящая работа посвящена выделению и характеристике рибосом двух видов пурпурных бактерий: Rhodopseudomonas gelatinosa (сем. Athiorhodaceae) и Chromatium vinosum (сем. Thiorhodaceae).

В опытах использовали 4-суточные культуры (логарифмическая фаза роста), выращенные по методу, принятому в ла-

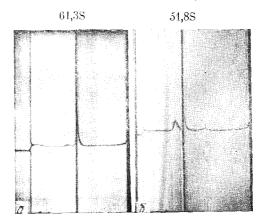


Рис. 1. Седиментационные диаграммы рибосом Rps. gelatinosa (a) и Ch. vinosum (б). 37 020 об/мин; температура 20°. Снимки сделаны через 16 мин. после достижения скорости. Движение пиков слева направо

боратории. Методы выделения рибосом, суммарного рибосомального белка, аминокислотного анализа и определения плавучей плотности рибосом описаны ранее $\binom{6}{7}$.

Рибосомы Rps. gelatinosa и Ch. vinosum имели типичный спектр поглощения в у.-ф. свете E_{260}/E_{280} 1,86 и 1,93; $E_{\rm max}/E_{\rm min}$ 1,40 и 1,77, и содержали соответственно 59 и 55% PHK, 41 и 45% белка (РНК/белок 1,44 и 1,22) *.

Исследование препаратов рибосом из клеток Rps. gelatinosa и Ch. vinosum в аналитической ультрацентрифуге показало, что они содержат преимущественно мономеры рибосом (рис. 1); иногда имелись также незначительные по величине пики димеров и субъединиц. Белковые примеси в препаратах отсутствовали. Экстраполяцией полученных в опыте значений коэффициентов седиментации мономеров рибосом к нулевой концентрации были получены величины $s^{\circ}_{20, w}$: для Rps. gelatinosa 69,0 и для

^{*} Отношения E_{260} / E_{280} , E_{\max} / E_{\min} , PHK / белок являются средними из 3—5 определений.

	Halobact. cutirub- rum (11)	Rps. gela- tinosa	Chromati - um vino- sum (*)	E. co'i	Fopox (e)	Печень крысы (⁶)
Аспарагиновая кислота Глутаминовая » Глицин Аланин Валин Лейцин Изолейцин Треонин Серин Пролин Тирозин Фенилаланин Метионин Половина цистина Лизин Гистидин Аргинин Аммиак	13,5 14,7 — 11,7 10,0 7,0 4,4 7,4 7,7 4,5 1,9 2,2 1,3 0,0 4,4 2,2 7,1 —	$\begin{array}{c} 9,46\\ 12,43\\ 11,91\\ 13,67\\ 6,44\\ 7,93\\ 4,61\\ 4,75\\ 4,59\\ 5,80\\ 1,25\\ 2,76\\ 1,42\\ \mathrm{Ca}.\\ 3,5\\ 1,15\\ 4,34\\ 4,28\\ \end{array}$	8.30 11,55 10,39 11,06 6.44 7,18 3.72 4,30 4,62 2,10 1,51 2,50 1,45 Ca. 5,15 1,36 6,76 10,67	8,30 10,08 8,18 10,98 9,63 7,40 5,51 5,22 4,38 3,67 1,78 3.03 2,40 0,53 9,01 1,91 2,30 7,08	9,5 10,2 8,1 8,4 7,4 8,7 5,7 5,6 5,9 5,0 4,1 1,6 9,1 1,4 6,3 12,8	8,06 8,87 7,72 8,58 7,98 8,79 4,92 5,06 4,85 4,93 2,93 3,80 2,14 1,09 9,63 2,38 7,53 7,36
Отношение $\frac{\text{лиз.} + \text{гист.} + \text{арг.}}{\text{глут.} + \text{асп.}}$	0,49	0,41	0,67	0,99	0,85	1,15

Ch. vinosum 70,2 ед. Сведберга. Таким образом, по величине константы седиментации рибосомы обоих видов фотосинтезирующих бактерий являются типичными бактериальными рибосомами. Значения $\mathfrak{s}^0_{20, w}$, полученные нами для рибосом Rps. gelatinosa и Ch. vinosum, близки к константам седиментации рибосом различных видов фотосинтезирующих несерных бактерий $\binom{1}{2}$.

Плотностная характеристика рибосом Rps. gelatinosa и Ch. vinosum приведена на рис. 2. Как видно из рис. 2, плавучая плотность рибосом

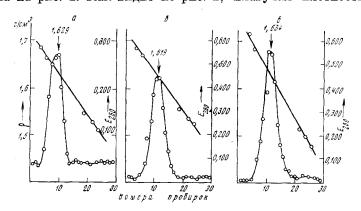
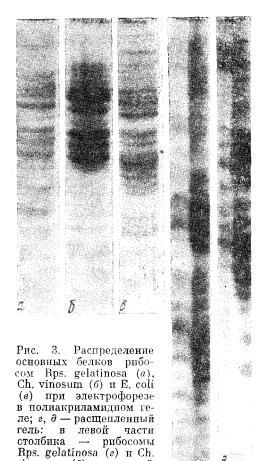


Рис. 2. Плотностное распределение рибосом Rps. gelatinosa (a), Ch. vinosum (б), E. coli (в) в градиенте CsCl

Rps. gelatinosa составляет $1,623 \pm 0,007$ г/см³ (по данным трех независимых опытов), а рибосом Ch. vinosum $1,616 \pm 0,004$ г/см³ (четыре независимых опыта). Плавучая плотность рибосом E. coli * в наших опытах составляла $1,639 \pm 0,005$ г/см³, что совпадает с данными, имеющимися в литературе (8). Выделенные препараты рибосом фотосинтезирующих бак-


^{*} Приносим глубокую благодарность Н. А. Барулиной за предоставленный препарат рибосом.

герий были гомогенны по плотности. Используя эмпирическую формулу (°), выражающую зависимость плавучей плотности рибосомных частиц от относительного содержания в них белка, было рассчитано, что рибосомы Rps. gelatinosa содержат 37,9% белка (РНК/белок 1,64), а рибосомы Ch. vinosum 39% белка (РНК/белок 1,56). Эти данные довольно хорошо согласуются с приведенными выше результатами химического определения белка и РНК в рибосомах. Как видно, рибосомы фотосинтезирующих

бактерий содержат несколько больше белка, чем рибосомы Е. coli (35—37% белка; РНК/белок 1,8) (*). 80S-рибосомы животного и растительного происхождения содержат существенно больше белка (около 50%; отношение РНК/белок близко к 1), чем бактериальные 70S-рибосомы (в том числе рибосомы фотосинтезирующих бактерий) (*, 10).

На рис. З представлены типичные электрофореграммы основных белков рибосом Rps. gelatinosa и Ch. vinosum. В использованных нами условиях белки этих рибосом делились на 30 полос, картина распределения которых воспроизводилась от опыта к опыту и в разных препаратах рибосом.

Электрофореграммы сходны у обоих видов фотосинтезирующих бактерий. Особенно хорошо это видно по распределению интенсивно окрашенных полос. Наблюдаемые различия касаются 6-7 минорных компонентов, расположенных в верхней части колонки. При сравнении основных белков рибосом фотосинтезируюбактерий и энтеробактерии E. coli (рис. 3, 4) нетрудно заметить, что по числу белковых комрибосомы понентов эти очень близки. Однако наблюдаются значительные различия в распределебелковых полос. в средней части колонки. Наиболее

в средней части колонки. Наиболее убедительно эти различия видны в опытах с расщепленным гелием (рис. $3, z, \partial$).

vinosum (∂), в правой части — рибосомы Е. coli.

a — 80 µг белка, 5,5 час.:

6 — 110 µг белка, 4,5 час.;

в — 100 ur белка, 5,5 час.

В кислых белках рибосом Rps. gelatinosa и Ch. vinosum в использованных нами условиях обнаружено 8-9 компонентов, в кислых белках рибосом E. coli 10. Картина электрофоретического распределения белковых полос рибосом двух видов фотосинтезирующих бактерий при pH 8,3 очень сходна (рис. 4z, θ) и существенно отличается от распределения кислых белков рибосом E. coli (рис. 4).

В табл. 1 приведен аминокислотный состав белков рибосом Rps. gelatinosa и Ch. vinosum. Для сравнения в таблицу включены данные по аминокислотному составу белков рибосом различного происхождения.

Как видно из табл. 1, аминокислотный состав белков рибосом разных организмов довольно близок и характеризуется сравнительно высоким

содержанием основных аминокислот. Обращает на себя внимание значительно меньшее содержание лизина в рибосомах фотосинтезирующих бактерий, чем в рибосомах Е. coli, а также в рибосомах растительного и животного происхождения. По содержанию этой аминокислоты белки рибосом Rps. gelatinosa и Ch. vinosum близки к галофильной бактерии Halobacterium cutirubum. Величины отношения основных аминокислот

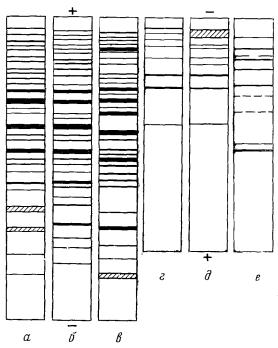


Рис. 4. Схема распределения белков рибосом Rps. gelatinosa (a, e), Ch. vinosum (b, a), E. coli (b, e)

к кислым у фотосинтезирующих бактерий меньше, чем у других типов рибосом, что свидетельствует об увеличении кислотности полипентидных цепей в рибосомах этих организмов.

Данные по электрофоретической подвижности и аминокислотному составу белков рибосом Rps. gelatinosa и Ch. vinosum указывают на их значительное сходство, что подтверждает таксономическое положение изученных видов бактерий. В соответствии с результатами, полученными нами ранее (6), белки рибосом фотосинтезирующих бактерий не обнаруживают сходства с таковыми хлоропластов. По-видимому, филогенетическая связь между фотосинтезирующими бактериями и хлоропластами мало вероятна.

Институт биохимии им. А. Н. Баха Академии наук СССР Москва Поступило 24 I 1972

цитированная литература

¹ M. M. Taylor, R. Storck, Proc. Nat. Acad. Sci. U.S.A., 52, 958 (1964). ² D. I. Friedman, B. Pollara, E. D. Gray, J. Mol. Biol., 22, 53 (1966). ³ M. M. Taylor, J. E. Glascow, R. Storck, Proc. Nat. Acad. Sci. U.S.A., 57, 164 (1967). ⁴ B. Marrs, S. Kaplan, J. Mol. Biol., 49, 297 (1970). ⁵ A. Robinson, J. Sykes, Biochim. et biophys. acta, 238, 99 (1971). ⁶ H. П. Юрина, В. И. Чудина и др., Мол. биол., 6, 153 (1972). ⁷ C. F. Brunk, Vagn Leick, Biochim. et biophys. acta, 179, 136 (1969). ⁸ A. S. Spirin, N. V. Belitzina, M. I. Lerman, J. Mol. Biol., 14, 614 (1965). ⁹ Л. И. Овчинников, Т. Ф. Быстрова, А. С. Спирин, ДАН, 185, 210 (1969). ¹⁰ Н. П. Юрина, М. С. Одиндова, А. И. Опарин, ДАН 205, № 4 (1972). ¹¹ S. T. Bayley, J. Mol. Biol., 15, 420 (1966).