УДК 621.039.3+541.124.13

ХИМИЯ

Н. Ф. ГОЛЬДШЛЕГЕР, И. И. МОИСЕЕВ, М. Л. ХИДЕКЕЛЬ, А. А. ШТЕЙНМАН

АЛКИЛИРОВАНИЕ СОЛЕЙ ПЛАТИНЫ РТУТНООРГАНИЧЕСКИМИ СОЕДИНЕНИЯМИ. ДОКАЗАТЕЛЬСТВА ОБРАЗОВАНИЯ АЛКИЛПЛАТИНЫ В ГОМОГЕННОЙ АКТИВАЦИИ НАСЫЩЕННЫХ УГЛЕВОДОРОДОВ

(Представлено академиком О. А. Реутовым 7 III 1972)

Ранее было показано, что в растворах хлоридных комплексов платины может быть осуществлена активация насыщенных углеводородов, приводящая к различным реакциям алканов в сравнительно мягких условиях (водные растворы, 100—120°) (1-3). Эти реакции (дейтероводородный обмен, окислительное галондирование и дегидрирование) могут быть объяснены образованием промежуточных нестабильных алкилов платины (3).

$$\begin{array}{c} RII + PtCl_2 \rightarrow R \ PtCl + H^+ + Cl^-. \\ \downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow \\ RD \ \downarrow \ RCl \\ R'-CH=CH_2 \end{array}$$

Мы исследовали обмен между солями платины и алкильными производными ртути и получили доказательства промежуточного образования алкилов платины в гомогенной активации насыщенных углеводородов.

Реакцию солей платины типа K_2 Рt X_4 (X = Cl, Br, CN) с ртутноорганическими соединениями типа RHgBr (R = CH₃, C_2 H₅, n-C₄H₉) проводили в условиях дейтероводородного обмена (смесь D_2 O: CH_3 COOD = 1:1, 0,02 M Pt(II), 0,02 M DCl при нагревании до 100° (1) и при комнатной температуре. Конечные продукты реакции — дейтероуглеводороды и функциональные производные углеводородов (галогениды, нитрилы), практически не содержащие дейтерия в алкильной группе.

Условия реакции CH₃HgBr с солями платины (оп. №№ 2; 7; 8; 10) и условия контрольных опытов (№№ 3; 5, 6, 9), соотношение продуктов по данным хроматографического анализа и распределение $d_1 - d_4$ -дейтерометанов согласно масс-спектрометрическому анализу представлены в табл. 1 (средние значения из 2—5 опытов). В выбранных условиях (время, температура, кислотность) реакция протодемеркурирования самих алкильных соединений ртути практически не идет (оп. №№ 3; 9). Известно, что Нд — С-связь достаточно стабильна к ацидолизу разбавленными кислотами (*). В отсутствие DCl (оп. № 4) реакция CH₃HgBr с хлорилатинитом калия также приводит к дейтерометанам и галоидным алкилам, в том числе CH₃Cl. При взаимодействии хлоридов Pt(II) с RHgBr наблюдается выделение некоторых количеств металлической платины. Известно (7), что распад Ar₂Hg катализируется чернями платиновых металлов. При нагревании CH₃HgBr с Pt-чернью мы наблюдали образование d-метанов и галоидных алкилов (оп. № 5). Скорость этого процесса существенно ниже, чем в присутствии солей платины. Мы нашли также, что с H₂PtCl₆ реакция не идет или идет крайне медленно (возможно, с некоторым индукционным периодом) и катализируется добавками хлороплатинита калия. В системе Pt(II): Pt(IV) = 1:19 реакция протекает гомогенно с достаточной скоростью (оп. № 8) и дает те же продукты, что и в отсутствие Pt(IV). При

взаимодействии хлорида Pt(II) с μ - C_4H_9HgBr продуктами реакции были смесь дейтеробутанов (мол. вес. 1,46), μ - C_4H_9Cl и μ - C_4H_9Br . Аналогичные результаты получены с C_2H_5HgBr . При алкилировании $K_2Pt(CN)_4$ бромидом метилртути в продуктах реакции обнаружен ацетонитрил (оп. № 10).

Резюмируя, можно сказать, что образование продуктов не связано с протодемеркурированием ртутноорганических соединений или катализом их распада металлической платиной, а обусловлено распадом в условиях реакции промежуточно образующихся алкильных соединений платины. Известно, что при взаимодействии ртутноорганических соединений и солей переходных металлов происходит перенос алкильной группы на переходный металл (5, 6).

Сходное с прямым H — D-обменом (оп. № 1) образование смеси дейтероуглеводородов в реакции K_2PtCl_4 с CH_3HgBr (оп. № 2) подтверждает, что в обеих этих реакциях дейтерометаны образуются из подобных промежуточных.

Образование набора дейтероэтанов при гомогенном катализе солями илатины связывалось ранее с взаимопревращением этильных и этиленовых комилексов платины (8). Этан при контакте с системой $CH_3HgBr+K_2PtCl_4$ обменивается с такой же скоростью, как и в опытах, где катализатором является только K_2PtCl_4 (0.22% D в этане по сравнению с 48.0% D в метане). Этот факт доказывает, что ответственным за образование дейтерометанов при реакции K_2PtCl_4 с CH_3HgBr является алкильный комилекс Pt(II), возникающий в результате переноса CH_3 -группы с атома ртути на платину, а не обмен метана в этих условиях.

Мы предположили, что не совсем точное совиадение распределения d-метанов в обеих этих реакциях, как следует из табл. 1 (оп. №№ 1, 2), обусловлено уменьшением закомилексованности Pt(II) хлорид-ионом в опытах с алкилированием вследствие связывания части Cl^- ртутноорганическим соединением по реакции (2). Это обстоятельство также должно понижать стабильность Pt(II) в растворе по отношению к выпадению металлической платины. Действительно, увеличение концентрации DCl до $6\cdot 10^{-2}~M$ (Pt(II):DCl=1:3) существенно уменьшает выпадение металлической платины.

Таблица 1 Взаимодействие СН₃HgBr с K₂PtX₄^a

М.	CH ₃ HgBr,	K ₂ PtX ₁ , 10-4 MOJI	Т-ра—вре- мя (°С-час)	$lpha_i = d_i / \sum\limits_1^4 d_i$				D, %	М. в.	CH ₃ X/RH ⁶	
İ				α1	α₂	α3	α_4			X = C1	X = Br
1 ^e		1	100/9	0.650	0.248	0.0760	0,0328	0.94	1,50		
2	1	1	100/0,3				0,0523		1,69	34	12
3	1		100/0,3	(Следы :	метана				Сл.	Сл
4^{Γ}	4	1	100/0,3	0,550	0,294	0,118	0,0410	39,1	1,65	7,3	19
5	1	1 ^H	100/0,3	0,821	0,122	0,034	0,0232	12,4	1,26	Сл.	Сл
6	_	1 ^e	100/11	0,537	0,227	0,114	[0,116]	0,20	1,81	'	
7	1	1	[-20/96]	0,217	0,240	0,232	0,308	61,7	1,63	16	9,5
8	1,2	0.06^{\Re}	20/96	0,303	0,285	0,218	0,194	55,5	2,30	36	10
9	1	_	20/96		Следы	метана	i		-	Сл.	Сл.
10	1	13	100/4		Следы	метана	a			-	83

^а Реанция проводилась в запаянной вакуумированной ампуле в смеси $CH_3COOD: D_2O = 1:1$, $\{DC1\} = 2\cdot10^{-2}$ мол/л; ^б Расчет по хроматограммам после отбора пробы из газовой фазы для масс-слектрометрического анализа; B $[K_2PtCl_4] = 2\cdot10^{-2}$ мол/л, P_{CH_4} 760 мм рт. ст.; F нет DCl_5 R Pt-чернь; C Дейтерообмен метана в присутствии Pt-черни; $P_{CH_4} = 760$ мм г. ст.; K K_2PtCl_4 : $:H_2PtCl_6 = 1:19$; 3 K_2Pt $(CN)_4$ вместо K_2PtCl_4 , в этом случае 7% CH_2CN .

Распределение дейтерометанов в реакциях типа А и Б

$$\begin{array}{c} \text{CH}_{4}\text{^{A}} & +\text{D}^{+}\text{CH}_{3}\text{D} & +\text{D}^{+}\text{CH}_{2}\text{D}_{2} \\ \text{Pt} - \text{CH}_{3} & \text{Pt}\text{CH}_{2}\text{D} \\ \text{CH}_{3}\text{HgBr} & -\text{H}^{+} & +\text{D}^{+} \\ & +\text{D}^{+} & +\text{D}^{+} \\ \text{Pt} - \text{CHD} & +\text{D}^{+}\text{CHD} \\ & +\text{D}^{+}\text{CHD}_{3} & +\text{D}^{+}\text{CD}_{4} \\ & +\text{D}^{+} & +\text{D}^{+} & +\text{D}^{+} \\ & +\text{D}^{+} & +\text$$

№ oп.	Условия		D, %	М. в.			
		d_{i}/α_{i}	d_2/α_2	d_3/a_3	d4/α4		
1 2	$ \begin{cases} K_{2}PtCl_{4}: CH_{3}HgBr: DCl = \\ = 4.4.3; \\ 100^{\circ}; 0,3 \text{ vaca} \end{cases} $	59,0 0,630 61,5 0,652	$\begin{bmatrix} 25,0\\0,268\\24,3\\0,253 \end{bmatrix}$	$ \begin{array}{c c} 7,62 \\ 0,0815 \\ 6,92 \\ 0.0735 \end{array} $	1,99 0,0212 1,63 0,0173	35,0 34,4	1,49 1,46
3 4	$\left. \begin{array}{l} K_2 PtCl_4: HgCl_2: DCl == \\ = 1:1:3; \\ P_{CH_4} = 760 \text{ MM} \end{array} \right.$	$\begin{array}{c} 0,052 \\ 1,59 \\ 0,650 \\ 1,36 \end{array}$	0,253 $0,617$ $0,251$ $0,527$	0,180 0,0735 0,150	0.0727 0.0296 0.0557	0,915	,
*	100°; 9 час.	0,650	0,251	0,0718	0,0266	0,77	1,47

Полученные данные позволяют предположить схему реакций, протекающих при взаимодействии солей Pt(II) с моноалкилами ртути.

$$PtCl_4^{2-} \rightleftharpoons PtCl_3^{-} + Cl^{-}, \tag{1}$$

$$RHgBr + Cl^{-} \rightleftharpoons RHgBrCl^{-} \rightleftharpoons RHgCl + Br^{-}, \tag{2}$$

$$Pt^{II}X_{2} + RIIgX \rightleftharpoons X Pt^{IV} R_{HgX},$$
(3)

$$\frac{X}{X} Pt^{IV} \begin{cases} R \\ \cong RX + XPt^{II}HgX, \end{cases}$$
(4)

$$\rightleftharpoons \operatorname{HgX}_2 + \operatorname{RPt}^{\operatorname{H}}X, \tag{5}$$

(II)
$$RPt^{II}X + DCl \rightarrow RD + Pt^{II}X_{2},$$
(6)

$$XPt^{H}HgX \rightarrow Pt(0) + HgX_{2}.$$
 (7)

Взаимодействие ртутноорганических соединений с солями Pt(II), повидимому, протекает по схеме окислительного присоединения (стадия (3)) (9) с образованием комплекса Pt(IV) с Pt — Hg-связью. Этот комплекс может затем распадаться путем восстановительного отщепления RX или HgX_2 (стадии (4) и (5)). Реакция (4), таким образом, подобна одной из стадий галоидирования алканов в растворах галоидных комплексов платины (2). При отщеплении HgX_2 в стадии (5) образуется то же самое алкильное соединение Pt(II), которое получается при гомогенной активации на-

сыщенных углеводородов ионом $PtCl_4^{2-}$. Множественный дейтерообмен протекает только в алкильном соединении Pt(II), но не в алкильное соединении Pt(IV), так как для последнего невозможно образование комплекса с метиленом или олефинами. Стадия (5) в принципе обратима, однако тот факт, что образующиеся в реакции RHgBr с K_2PtX_4 галопдные алкилы не содержат дейтерия, указывает на то, что в паших условиях обратная реакция медленнее, чем распад алкильного соединения в стадии (6) с образованием d-углеводородов. На это также указывает отсутствие втор.- C_4H_9X в продуктах реакции n- C_4H_9HgBr с K_2PtCl_4 . Стадия (7), возможно, ответственна за выпадение металлической платины.

Таким образом, связь между активацией насыщенных углеводородов с образованием алкилилатины, реакциями дейтерообмена и окислительного галоидирования алканов в растворах солей платины и, наконец, реакцией алкилирования Pt(II) ртутноорганическими соединениями иллюстрируется следующей схемой:

$$\begin{array}{c} \text{RH} + \text{Pt}^{\text{II}} \text{X}_2 \xrightarrow{\text{углеводорода}} & \text{RPt}^{\text{II}} \text{X} \xrightarrow{\text{-HgX}_2} \xrightarrow{\text{-HgX}_2} & \text{X} \xrightarrow{\text{-Pt}^{\text{IV}}} \text{X} \xrightarrow{\text{-HgX}_1} & \text{-HgX}_2 & \text$$

Соединение I является ключевым для галоидирования, а соединение II — для дейтерообмена в связи с тем, что $k_{\rm D} \ll k_{\rm Cl}$ для I и $k_{\rm D} \gg k_{\rm Cl}$ для II ($k_{\rm D}$ и $k_{\rm Cl}$ — константы скорости для дейтерообмена и галоидирования). Совпадение распределения дейтерометанов в реакциях метана и CH₃HgBr объясняется тем, что обе эти реакции, как показано в схеме к табл. 2, имеют общее ключевое соединение II для дейтерообмена.

Филиал Института химической физики Академии наук СССР Черноголовка Моск. обл. Поступило 7 III 1972

Ипститут общей и неорганической химии им. Н. С. Курнакова Академии наук СССР Москва

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ Н. Ф. Гольдшлегер, М. Б. Тябин и др., ЖФХ, 43 (8), 2174 (1969). ² Н. Ф. Гольдшлегер, В. В. Еськова и др., ЖФХ, 46, № 5, 1353 (1972). ³ Н. Ф. Гольдшлегер, М. Б. Тябин и др., Тез. V Международн. конгресса по металлоорганической химии, 1, 1971, стр. 326. ⁴ А. Г. Макарова, А. Н. Несмеянов, Методы элементоорганической химии. Ртуть, «Наука», 1965, стр. 270. ⁵ И. И. Моисеев, М. Н. Варгафтик, ДАН, 166, 370 (1966). ⁶ R. F. Неск, J. Am. Chem. Soc., 90, 5518 (1968). ⁷ Г. А. Разуваев, М. М. Котон, ЖОХ, 4, 647 (1934); Chem. Ber., 66, 4210 (1933). ⁸ М. Б. Тябин, А. Е. Шилов, А. А. Штейнман, ДАН, 198, 380 (1971). ⁹ R. J. Cross, R. Wardle, J. Chem. Soc. A, 1970, 840.