On the π -decomposable norm of a finite group

V.M. SELKIN, A.A. POBILOVSKY, S.I. ZINCHUK, D.A. YROSHENKO

Let G be a finite group and $\pi \subseteq P$. Then G is called: π -decomposable if $G = O_{\pi}(G) \times O_{\pi'}(G)$; meta- π -decomposable if G is an extension of a π -decomposable group by a π -decomposable group. We use N_{π} to denote the class of all finite π -decomposable groups. Let $N_{\pi}(G)$ be the intersection of the normalizers of the π -decomposable residuals of all subgroups of G, that is, $N_{\pi}(G) = \bigcap_{H \leq G} N_G(H^{N_{\pi}})$. We say that $N_{\pi}(G)$ is the π -decomposable norm of G. We study the basic properties of the π -decomposable norm of G. In particular, we prove that G is meta- π -decomposable if and only if $G/N_{\pi}(G)$ is meta- π -decomposable.

Kaywords: finite group, π -decomposable group, π -soluble group, π -decomposable residual of a group, π -decomposable norm of a group.

Пусть G является конечной группой и $\pi \subseteq P$. Тогда группа G называется: π -разложимой, если $G = O_\pi(G) \times O_{\pi'}(G)$; мета- π -разложимой если G является расширением π -разложимой группы по π -разложимой группе. Мы используем N_π для обозначения класса всех конечных π -разложимых групп. Пусть $N_\pi(G)$ пересечение нормализаторов π -разложимых радикалов подгрупп группы $G \colon N_\pi(G) = \bigcap_{H \leq G} N_G(H^{N_\pi})$. Мы говорим, что $N_\pi(G)$ является π -разложимой нормой группы G. Мы изучаем базисные свойства π -разложимой норма группы G. В частности, мы доказали, что G является мета- π -разложимой тогда и только тогда, когда $G / N_\pi(G)$ является мета- π -разложимой группой.

Ключевые слова: конечная группа, π -разложимая группа, π -разрешимая группа, π -разложимый радикал группы, π -разложимая норма группы.

1. Introduction. Throughout this paper, all groups are finite and G always denotes a finite group. Moreover, P is the set of all primes, $\pi \subseteq P$ and $\pi' = P \setminus \pi$.

The group G is said to be: π -decomposable (respectively p-decomposable) if $G = O_{\pi}(G) \times O_{\pi'}(G)$ (respectively $G = O_{p}(G) \times O_{p'}(G)$); meta- π -decomposable if G is an extension of a π -decomposable group by a π -decomposable group. We use \mathbb{N}_{π} to denote the class of all π -decomposable groups; $\mathbb{N}_{\{p\}}$ is the class of all p-decomposable groups.

Various classes of π -decomposable and meta- π -decomposable groups have been studied in many papers and, in particular, in the recent papers [1]–[6]. In this paper, we consider some new properties and applications of such groups.

If $1 \in F$ is the class of groups, then G^F is the F-residual of G, that is, the intersection of all normal subgroups N of G with $G/N \in F$. In particular, G^N is the nilpotent residual of G; $G^{N_{\pi}}$ is the π -decomposable residual of G.

Recall that the *norm* N(G) of G is the intersection of the normalizers of all subgroups of G. This concept was introduced by R. Baer [7] (see also [8]) and the norm and the generalized norm of a group has been studied by many authors. In particular, in the recent paper [9] the following analogues of the subgroup N(G) were introduced: (i) $S(G) = \bigcap_{H \leq G} N_G(H^N)$; (ii) let $1 = S_0(G) \leq S_1(G) \leq \cdots \leq S_n(G) \leq \cdots$, where $S_{i+1}(G)/S_i(G) = S(G/S_i(G))$ for all $i = 0,1,2,\ldots$. Then $S_{\infty}(G) = S_n(G)$, where let n is the smallest n such that $S_n(G) = S_{n+1}(G)$.

The basic properties and some applications of the subgroups S(G) and $S_{\infty}(G)$ were considered in [9]. In this paper we consider the following generalizations of the subgroups S(G) and $S_{\infty}(G)$.

Definition 1.1. Let $N_{\pi(G)}$ be the intersection of the normalizers of the π -decomposable residuals of all subgroups of G, that is, $N_{\pi}(G) = \bigcap_{H \leq G} N_G(H^{N_{\pi}})$. We say that $N_{\pi}(G)$ is the π -decomposable norm of G. If $\pi = \{p\}$, we write $N_p(G)$ instead of $N_{\{p\}}(G)$ and say that $N_p(G)$ is the p-decomposable norm of G.

Definition 1.2. Let

$$1 = N_{\pi}^{0}(G) \le N_{\pi}^{1}(G) \le N_{\pi}^{2}(G) \le \cdots \le N_{\pi}^{n}(G) \le \cdots,$$

where

$$N_{\pi}^{i+1}(G) / N_{\pi}^{i}(G) = N_{\pi}(G / N_{\pi}^{i}(G)),$$

for all i=0,1,2,... And let n be the smallest n such that $N_{\pi}^{n}=N_{\pi}^{n+1}$. Then we write $N_{\pi}^{\infty}(G)=N_{\pi}^{n}(G)$ and say that $N_{\pi}^{\infty}(G)$ is the π -decomposable hypernorm of G.

Obviously, $N_{\pi}(G)$ and $N_{\pi}^{\infty}(G)$ are characteristic subgroups of G.

Before continuing, consider the following example.

Example 1.3. (i) Let $G = P\Gamma$ ($Q\Gamma$ R), where $Q\Gamma$ R is a non-abelian group of order 6 and P is a simple $F_5(Q\Gamma R)$ -module which is faithful for $Q\Gamma$ R. Let $\sigma = \{\{2,5\},\{2,5\}'\}$. Then G every proper non- π -decomposable subgroup H of G is either of the form $V\Gamma$ Q^x , where $V \leq P$, or of the form $(Q\Gamma R)^y$ for some $x, y \in G$. In the former case we have $H^{N_\pi} = V$ and $N_G(V) = PQ^x = PQ$. In the second case we have $((Q\Gamma R)^y)^{N_\pi} = Q^y$ and $N_G(Q^y) = (Q\Gamma R)^y$. Moreover,

$$\bigcap_{y \in G} (Q \Gamma R)^y = (Q \Gamma R)_G \le C_G(P) = P$$

and so $N_{\pi}(G) = 1 = N_{\pi}^{\infty}(G)$.

(ii) Let G and σ are the same as in (ii). Let $A=G\times C_2$. Let $B=(Q\cap R)C_2$, where C_2 is a group of order 2. Then $B^{N_\pi}=Q$, $C_2\leq N_\pi(A)$ and $N_A(Q)=B< A$. Hence $1< N_\pi(A)=C_2=N_\pi^\infty(G)< G$.

Our main goal here is to prove the following results.

Theorem 1.4. For any group G, the subgroup $N^{\infty}_{\pi}(G)$ is σ -separable.

Theorem 1.5. The group G is meta- π -decomposable if and only if $G/N_{\pi}(G)$ is meta- π -decomposable.

Theorem 1.6. Suppose that G is p-soluble and all elements of G of order p are in $N_p(G)$. If p > 2, then $l_p(G) \le 1$.

2. Proofs of the results. First we prove the following facts about the subgroups $N_{\pi}(G)$ and $N_{\pi}^{\infty}(G)$.

Lemma 2.1. If E is a subgroup of G, then $N_{\pi}(G) \cap E \leq N_{\pi}(E)$.

Proof. First observe that

$$N_{\pi}(G) = \bigcap_{H \leq G} N_{G}(H^{N_{\pi}}) \leq \bigcap_{H \leq E} N_{G}(H^{N_{\pi}}),$$

so

$$E \cap \mathcal{N}_{\pi}(G) = E \cap \bigcap_{H \leq G} \mathcal{N}_{G}(H^{\mathcal{N}_{\pi}}) = \bigcap_{H \leq E} \mathcal{N}_{G}(H^{\mathcal{N}_{\pi}}) = \mathcal{N}_{\pi}(E).$$

The lemma is proved.

Lemma 2.2. If N is a normal subgroup of G, then $N_{\pi}(G)N/N \leq N_{\pi}(G/N)$.

Proof. For any subgroup H/N of G/N we have $(H/N)^{N_{\pi}} = H^{N_{\pi}}N/N$. Then for every $x \in N_{\pi}(G)$ we have $x \in N_{G}(H^{N_{\pi}})$, so $x \in N_{G}(H^{N_{\pi}}N)$ and hence xN normalizes $(H/N)^{N_{\pi}}$. Thus $N_{\pi}(G)N/N \leq N_{\pi}(G/N)$. The lemma is proved.

Lemma 2.3. If N is a normal subgroup of G and $N \le N_{\pi}^{\infty}(G)$, then $N_{\pi}^{\infty}(G/N) = N_{\pi}^{\infty}(G)/N$.

Proof. Since $N \leq \operatorname{N}_{\pi}^{\infty}(G)$, for some i we have $N \leq \operatorname{N}_{\pi}^{i}(G)$. Let $N^{i}/N = \operatorname{N}_{\pi}^{i}(G/N)$ for all $i=1,2,\ldots$, and let $N^{\infty}/N = \operatorname{N}_{\pi}^{\infty}(G/N)$. First we claim that $N^{1} \leq \operatorname{N}_{\pi}^{i+1}(G)$. Let $H/\operatorname{N}_{\pi}^{i}(G)$ be any subgroup of $G/\operatorname{N}_{\pi}^{i}(G)$ and $x \in N^{1}$. Then xN normalizes $(H/N)^{\operatorname{N}_{\pi}} = H^{\operatorname{N}_{\pi}}N/N$, that is, $(H^{\operatorname{N}_{\pi}})^{x}N/N = H^{\operatorname{N}_{\pi}}N/N$ and so $(H^{\operatorname{N}_{\pi}})^{x}N = H^{\operatorname{N}_{\pi}}N$, which implies that $(H^{\operatorname{N}_{\pi}})^{x}\operatorname{N}_{\pi}^{i}(G) = H^{\operatorname{N}_{\pi}}\operatorname{N}_{\pi}^{i}(G)$ since $N \leq \operatorname{N}_{\pi}^{i}(G)$. But then $(H^{\operatorname{N}_{\pi}})^{x}\operatorname{N}_{\pi}^{i}(G)/\operatorname{N}_{\pi}^{i}(G) = H^{\operatorname{N}_{\pi}}\operatorname{N}_{\pi}^{i}(G)/\operatorname{N}_{\pi}^{i}(G)$ and so $x\operatorname{N}_{\pi}^{i}(G)$ normalizes $(H/\operatorname{N}_{\pi}^{i}(G))^{\operatorname{N}_{\pi}}$. Hence $x\operatorname{N}_{\pi}^{i}(G) \in \operatorname{N}_{\pi}^{i+1}(G)/\operatorname{N}_{\pi}^{i}(G) = \operatorname{N}_{\pi}(G/\operatorname{N}_{\pi}^{i}(G))$. Thus $N^{1} \leq \operatorname{N}_{\pi}^{i+1}(G)$. Moreover, if $N^{n} \leq \operatorname{N}_{\pi}^{i+n}(G)$, then similarly we can show that $N^{n+1} \leq \operatorname{N}_{\pi}^{i+n+1}(G)$, so $N^{\infty} \leq \operatorname{N}_{\pi}^{\infty}(G)$.

Conversely, $N_{\pi}^{1}(G) \leq N^{1}$ by Lemma 2.2. And if for some n we have $N_{\pi}^{n}(G) \leq N^{n}$, then for every $x \in N_{\pi}^{n+1}(G)$ and for every subgroup $H/N_{\pi}^{n}(G)$ of $G/N_{\pi}^{n}(G)$ we as above get that $(H^{N_{\pi}})^{x}N_{\pi}^{n}(G) = H^{N_{\pi}}N_{\pi}^{n}(G)$ and so $(H^{N_{\pi}})^{x}N^{n} = H^{N_{\pi}}N^{n}$ and hence $x \in N^{n+1}$. Thus $N_{\pi}^{n+1}(G) \leq N^{n+1}$ and so $N_{\pi}^{\infty}(G) \leq N^{\infty}$. Hence $N_{\pi}^{\infty}(G) = N^{\infty}$. The lemma is proved.

Proof of Theorem 1.4. It is enough to show that $N_{\pi}(G)$ is π -separable. Let $X = N_{\pi}(G)$. Then the group X has the following property: the π -decomposable residual of every subgroup of X is normal in X. We show that every group with such a property is π -separable. Assume that this is false and let X be a counterexample of minimal order. Let M be a maximal subgroup of X and let $N = M^{N_{\pi}}$ be the π -decomposable residual of M. Then N is normal in G. If $N \neq 1$, then X/N and N are π -separable since the hypothesis evidently holds for X/N and N and so in this case X π -separable by the choice of X. Therefore every maximal subgroup M of X is π -decomposable and so G is minimal non- π -decomposable group. Then G is a Schmidt group by the Belonogov result [10] and so soluble. This contradiction completes the proof of the result.

Proof of Theorem 1.5. It is enough to show that if $G/N_{\pi}(G)$ is meta- π -decomposable, then also G is meta- π -decomposable. Assume that this is false and let G be a counterexample of minimal order. Then $N_{\pi}(G) \neq 1$.

Let R be a minimal normal subgroup of G. Then $RN_{\pi}(G)/R \leq N_{\pi}(G/R)$ by Lemma 2.2. Moreover, $G/RN_{\pi\chi}(G)$; $(G/N_{\pi}(G)/(RN_{\sigma}(G)/N_{\pi}(G)) \in N_{\pi}$

since the class of all meta- π -decomposable groups is a homomorph. Therefore the hypothesis holds for G/R, so the choice of G implies that G/R is meta- π -decomposable. Hence

$$(G/R)^{N_{\pi}} = G^{N_{\pi}}R/R; G^{N_{\pi}}/(G^{N_{\pi}} \cap R),$$

is π -decomposable. Therefore $R \leq G^{N_{\pi}}$ and $G^{N_{\pi}}/R$ is π -decomposable. If G has a minimal normal subgroup $N \neq R$, then $G^{N_{\pi}}/L$ is also π -decomposable and so $G^{N_{\pi}}$; $G^{N_{\pi}}/(R \cap L)$ is π -decomposable and so G is meta- π -decomposable, contrary to the choice of G. Therefore G is the unique minimal normal subgroup of G, so $G \leq N_{\pi}(G)$ since G = RM and the inclusion G = RM and the inclusion G = RM and so G = RM and so G = RM and the inclusion G = RM and so G = RM and so G = RM and the inclusion G = RM. Now observe that G = RM and so G = RM and so G = RM and so G = RM and the inclusion G = RM. Now observe that G = RM and so G = RM is normal in G = RM. Hence G = RM is normal in G = RM.

Proof of Theorem 1.6. Assume that this theorem is false and let G be a counterexample of minimal order.

(1) For every proper subgroup E of G we have $l_n(E) \le 1$.

Let x be an element of E of order p. Then $x \in \mathbb{N}_p(G) \cap E \leq \mathbb{N}_p(E)$ by Lemma 2.1. Therefore the hypothesis holds for E, so $l_p(E) \leq 1$ by the choice of G.

(2) $O^{p'}(G) = G$, so for some normal subgroup V of G we have |G:V| = p.

Assume that $O^{p'}(G) < G$. Then $l_p(O^{p'}(G)) \le 1$ by Claim (1) and so $O^{p'}(G) / O_{p',p}(O^{p'}(G))$ is a p'-group, where $O_{p',p}(O^{p'}(G))$ is characteristic in $O^{p'}(G)$ and hence normal in G. But then $G/O^{p',p}(G)$ is a p'-group and so $l_p(G) \le 1$. This contradiction completes the proof of the fact that $O^{p'}(G) = G$ and so we have (2) since G is p-soluble.

(3) $O_{p'}(G) = 1$. Hence $C_G(O_p(G)) \le O_p(G)$.

Assume that $O_{p'}(G) \neq 1$. Then for every element $a/O_{p'}(G)$ of $G/O_{p'}(G)$ order p, there is an element x of G of order p such that $a/O_{p'}(G) = x/O_{p'}(G)$. Then $x \in \mathbb{N}_p(G)$, so $a/O_{p'}(G) = x/O_{p'}(G) \in \mathbb{N}_p(G/O_{p'}(G))$ by Lemma 2.2. Therefore the hypothesis holds for $G/O_{p'}(G)$ and so $l_p(G/O_{p'}(G)) \leq 1$ by the choice of G. But then $l_p(G) \leq 1$, a contradiction. Hence $O_{p'}(G) = 1$, so $O_{p',p}(G) = O_p(G)$. Therefore we have $C_G(O_p(G)) \leq O_p(G)$ since G is p-soluble by hypothesis.

(4) G is q-nilpotent for every prime $q \neq p$.

Assume that this is false and let A be a minimal non-q-nilpotent subgroup of G. Then A is a q-closed Schmidt group by [11, IV, Satz 5.4] and, by [12, V, Theorem 26.1], for a Sylow q-subgroup Q of A we have $Q = A^N$. It is clear that, in fact, $Q = A^{N_{\{p\}}}$ and so $\Omega_1(O_p(G)) \leq N_G(Q)$. Then $Q \leq C_G(\Omega_1(O_p(G)))$ and so $Q \leq C_G(O_p(G))$ by [11, IV, Satz 5.12], contrary to (3). Hence we have (4).

The final contradiction. From Claim (4) we get that G is p-closed. But then $l_p(G) = 1$, contrary to the choice of G. This final contradiction completes the proof of the result.

References

- 1. Guo W. On σ -supersoluble groups and one generalization of *CLT* -groups / W. Guo, A.N. Skiba // J. Algebra. 2018. V. 512 (1). P. 92–108.
- 2. Skiba, A.N. On σ -subnormal and σ -permutable subgroups of finite groups / A.N. Skiba // J. Algebra. 2015. V. 436. P. 1–16.
- 3. Skiba, A.N. Some characterizations of finite σ -soluble $P\sigma T$ -groups / A.N. Skiba // J. Algebra. 2018. V. 495 (1). P. 114–129.
- 4. Chi Z. On Σ_t^{σ} -closed classes of finite groups / Z. Chi, A.N. Skiba // Ukrainian Math. J. 2018. N_2 12. P. 1707–1716.
- 5. Chi, Z. On *n* -multiply σ -local formations of finite groups / Z. Chi, V.G. Safonov, A.N. Skiba // Commun. Algebra 2019. \mathbb{N}_2 47 (1). P. 957–968.
- 6. Chi, Z. A generalization of the Kramer's theory / Z. Chi, A.N. Skiba // Acta Math. Hungarica. -2019.-V.158, is. 1.-P.87-99.
- 7. Baer, R. Der Kern eine charkteristishe Untergruppe / R. Baer // Compos. Math. 1935. V. 1. P. 254–283.
 - 8. Baer, R. Norm and hypernorm / R. Baer // Publ. Math. Debrecen. 1956. V. 4. P. 347–350.
- 9. Shen, Z. On the norm of the nilpotent residuals of all subgroups of a finite group / Z. Shen, W. Shi, G. Qian // J. Algebra. 2012. V. 352. P. 290–298.
- 10. Belonogov, V.A. Finite groups all of whose 2-maximal subgroups are π -decomposable / V.A. Belonogov // Trudi Instituta Matematiki i Mekhaniki Uro RAN. 2014. V. 20 (2). P. 29–43.
- 11. Huppert, B. Endliche Gruppen I / B. Huppert. Berlin-Heidelberg-New York : Springer-Verlag, $1967.-793~\mathrm{p}.$
 - 12. Shemetkov, L.A. Formations of finite groups / L.A. Shemetkov. Moscow: Nauka, 1978. 272 p.