Доклады Академии наук СССР 1973. Том 208, № 2

УДК 541.667.03

ФИЗИЧЕСКАЯ ХИМИЯ

В. В. ЗЕЛЕНЦОВ, И. К. СОМОВА

МАГНИТНЫЕ СВОЙСТВА ДИМЕРНЫХ ХЕЛАТОВ Mn(III) ТИПА [Mn(Salen)]₂O

(Представлено академиком В. И. Спицыным 19 VI 1972)

Большинство исследованных соединений Mn(III) с основаниями Шиффа (¹⁻⁸) оказались высокоспиновыми, часть из которых характеризуется лишь слабым антиферромагнитным взаимодействием (1, 3, 7). Вместе с тем известны фталоцианиновые комплексы Mn(III) (9) и хелаты Fe(III) с тетрадентатными шиффовыми основаниями (10, 11), в которых атомы марганда и железа связаны в димерный комплекс кислородным мостиком. Строение и магнитные свойства соединений Mn (III) определяются не только природой шиффова основания, но во многом обусловлены свойст-

Таблица 1

_	Найдено, %						Вычислено, %					
Соединения	С	Н	Mn	N	Br	CI	С	Н	Mn	N	Br	Cl
[Mn-(5Br-Salen)] ₂ O·2H ₂ O [Mn-(3Br-Salen)] ₂ O·2ДМФА [Mn-(3CH ₂ O-Salen)] ₂ O·2H ₂ O [Mn-(5Cl-Salen)] ₂ O· -ДМФА·Н ₂ O	37,96 40,33 52.86 47,22	4,67	10,56 9,48 13,68 11,90	6,05 8,14 6,96 8,01	27,75	15,42	38,0 40,72 53,0 47,40	4,92	10,9 9,74 13,50 12,4	5,55 7,5 6,9 7,89	28.6	

Таблица 2 Магнитная воспринмчивость $\mu_{a\phi\phi}$ соединений Mn (III) [Mn—(3CH₃O—Salen)]₂O·2H₂O, $\chi_{\pi\pi a}^*$ ==-234,52·10⁻⁶

T, °K	272,49	252, 9 0	223,76	200,71	172,0	142,8	125,35	96,30	77,7
106.×'M	1295,5	1304,5	1248,5	1248,5	1166,5	1065,5	1004,5	859,5	760,5
и** эфф, м. Б.	1,69	1,63	1,51	1,42	1,27	1,11	1,01	0,82	0.69

[Mn-(5Br-Salen)[
$$_2$$
O·2H $_2$ O, χ^*_{nua} =-263,77·10-6

T, ${}^{\circ}K$ 270.0 257.11 236.19 228.42 215.88 197.48 183.56 166.13 144.67 116.6 91.35 77,7 $10^8 \cdot \chi_{M}$ 1191 1525 1545 1525 1514 1359 1605 1553 1525 1525 **1**553 0,86 1,71 1,66 1,63 1,57 1,52 1,43 1,13 0,94 **μ**афф.м. Б. 1,80

 $[M_n - (5Cl - Salen)]_2O \cdot \mathcal{I}M\Phi A \cdot H_2O, \quad \chi^*_{\pi\mu a} = -267,69 \cdot 10^{-6}$

T, °K 266,42 245,72 210,98 182,37 172,0 152,1 106.XM 2527.7 2527,7 2529,7 2407,7 2197,4 2009,7 2552,7 2573,7 2573,7 2557,7 1,88 2,26 2,09 1,93 1,76 µ_{∂фф}, м. Б.

Mn—(3Br—Salen)]₂O·2ДМФА, $\chi_{\text{пиа}}^*$ =-314,41·10⁻⁶

217,72 193,92 164,10 150,52 77,4 123,32 260,21 245,03 231.4 T, °K 292.85 106 X M 2473 2675 2714 2354 2473 2584 2279 2334 и_{эфф,} м. Б. 2,06 2,02 1,92 1,81 1,73 1,60 2,30 2,19 2,15

^{*} Расчет диамагнитных поправок по (13).

^{**} $u_{9\Phi\Phi} = 2.84 \ \sqrt{\chi_{M} \cdot T}$.

³⁸⁵

вами растворителя, в среде которого осуществляется синтез $(^2, ^8)$. Используя в качестве растворителя диметилформамид (ДМФА), мы синтевировали четыре новых комплекса Mn(III) окислением кислородом воздуха соответствующих хелатов Mn(II)

2 [Mn (X—Salen)]
$$+ \frac{1}{2}O_2 \rightarrow [Mn (X—Salen)]_2O$$
.

Анализ полученных соединений приведен в табл. 1.

Магнитная восприимчивость измерена методом Фарадея в интервале 78—300° К с использованием в качестве эталона CoHg(SCN), и приведена в табл. 2, из данных которой видно, что магнитные свойства всех четырех

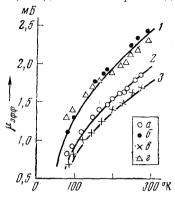


Рис. 1. Зависимость магпитного момента димерных хелатов Mn (III) от температуры. I, 2, 3— теоретические кривые, обменные интегралы которых I = -61, -87, -105 см $^{-1}$ соответственно; $a - [\text{Mn} - (5\text{Br} - \text{Salen})]_2\text{O} \cdot 2\text{H}_2\text{O}$, $\delta - [\text{Mn} - (5\text{Cl} - \text{Salen})]_2\text{O} \cdot 2\text{H}_2\text{O}$, $\delta - [\text{Mn} - (5\text{Cl} - \text{Salen})]_2\text{O} \cdot 2\text{H}_2\text{O}$, $\delta - [\text{Mn} - (3\text{CH}_3\text{O} - \text{Salen})]_2\text{O} \cdot 2\text{H}_2\text{O}$, $\delta - [\text{Mn} - (3\text{CH}_3\text{O} - \text{Salen})]_2\text{O} \cdot 2\text{H}_2\text{O}$, $\delta - [\text{Mn} - (3\text{CH}_3\text{O} - \text{Salen})]_2\text{O} \cdot 2\text{H}_2\text{O}$, $\delta - [\text{Mn} - (3\text{CH}_3\text{O} - \text{Salen})]_2\text{O} \cdot 2\text{H}_2\text{O}$, $\delta - [\text{Mn} - (3\text{CH}_3\text{O} - \text{Salen})]_2\text{O} \cdot 2\text{H}_2\text{O}$, $\delta - [\text{Mn} - (3\text{CH}_3\text{O} - \text{Salen})]_2\text{O} \cdot 2\text{H}_3\text{O}$

соединений близки между собой и характеризуются следующими особенмостями: эффективные магнитные моменты значительно ниже только спиновой величины для четырех неспаренных электронов (4,9 м.Б.) и резко уменьшаются с понижением температуры. По-видимому, обнаруженная зависимость ($\mu_{\text{эфф}} - T$) может быть объяснена обменным спин-спиновым взаимодействием, осуществляющимся между атомами Mn (III) в димерных молекулах. Использовав модель изотропного антиферромагнитного обменного взаимодействия для S=2 (12), мы получили хорошее совпадение экспериментальных и теоретических результатов для всех обсуждаемых соединений при значениях обменных интегралов $I = -61 \div -105$ см⁻¹. Ha puc. 1 экспериментальные зависимости $\hat{\mu_{\theta \Phi \Phi}} - T$ сопоставлены с теоретическими для n=2 при g=2; совпадение опытных данных и результатов расчета согласуется с нашим предположением о димерности полученных соединений. Наиболее вероятно, что обменное взаимодействие в этих комилексах осуществляется через кислородный мостик, как это имеет место в комплексах Fe(III) с такими же лигандами (10, 11).

Московский физико-технический институт

Поступило 15 VI 1972

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

¹ A. Earnshaw, E. A. King, L. F. Larkworthy, J. Chem. Soc. A, 1968, 4048.
² I. Lewis, F. E. Mabbs, H. Weigold, J. Chem. Soc. A, 1968, 4699. ³ A. Van Den Bergen, K. S. Murray et al., Austr. J. Chem., 22, 39 (1969). ⁴ B. C. Sharma, C. C. Patel, Indian J. Chem., 8, 747 (1970). ⁵ C. C. Patel, C. P. Prabhakaran, J. Inorg. and Nucl. Chem., 31, 3316 (1969). ⁶ B. C. Sharma, C. C. Patel, Indian J. Chem., 8, 94 (1970). ⁷ B. Das Sarma, R. Roy, et al., J. Am. Chem. Soc., 86, 14 (1964). ⁸ T. Yarino, T. Matsushita et al., J. Chem. Soc. D, 1970, 1317. ⁹ L. H. Vogt, A. Zalkin, D. H. Templeton, Science, 151, № 3710, 569 (1966). ¹⁰ I. Lewis, F. E. Mabbs, A. Richards, J. Chem. Soc. A, 1967, 1014. ¹¹ V. V. Zelentsov, Proc. 10th ICCC, Tokyo — Nikko, 1967, Abstr. Papers, Tokyo, Chem. Soc. Japan, 1967, p. 340. ¹² A. Earnshaw, I. Lewis, B. N. Figgis, J. Chem. Soc. A, 1966, 1656. ¹³ Современная химия координационных соединений, ИЛ, 1963, гл. 6.