УДК 519.21

MATEMATUKA

Ю. Л. ДАЛЕЦКИЙ, С. Н. ПАРАМОНОВА

СТОХАСТИЧЕСКИЕ ИНТЕГРАЛЫ ПО НОРМАЛЬНО РАСПРЕДЕЛЕННОЙ АДДИТИВНОЙ ФУНКЦИИ МНОЖЕСТВ

(Представлено академиком А. Н. Колмогоровым 28 IV 1972)

1. Пусть (T, \mathfrak{A}) — измеримое пространство, \mathfrak{A}_0 — алгебра множеств, порождающая σ -алгебру \mathfrak{A} . Рассмотрим случайную аддитивную функцию множеств μ на \mathfrak{A}_0 , имеющую нормальное распределение, определяемое соотношениями

$$M\mu(\Delta) = 0$$
, $M\mu(\Delta')\mu(\Delta'') = \beta(\Delta' \times \Delta'')$, $\Delta, \Delta', \Delta'' \in \mathfrak{A}_0$.

Предположим, что корреляционная функция множеств $\beta(\Delta' \times \Delta'')$ имеет ограниченную вариацию и счетно аддитивное продолжение на $\mathfrak{A} \times \mathfrak{A}$, которое мы будем обозначать тем же символом β .

Целью настоящей заметки является построение стохастических интегралов вида

$$J(f; \mu) = \int_{\mathcal{R}} f(\mu; t) \mu(dt)$$

и некоторых более общих, когда µ и f — векторные функции. Частным случаем этих интегралов являются интегралы Ито (см., например, (¹)). Однако мы не налагаем на рассматриваемые функции f каких-либо требований типа независимости от будущего, что приводит к усложнению оценок и дополнительным требованиям на гладкость f.

типа независимости от оудущего, что приводит к усложнению оценок и донолнительным требованиям на гладкость f. Пусть $T=\bigcup\limits_{\substack{k=1\\k=1}}^{n}\Delta_k,\ \Delta_k \in \mathfrak{A}_0,\ \Delta_k\cap\Delta_j=\phi,\ k\neq j,$ — какое-либо разбиение пространства $T,\ \chi_{\triangle}(t)$ — индикатор множества Δ .

Для ступенчатой функции $f(\mu;\,t)=\sum_{k=1}^{\infty}f_k(\mu)\chi_{\Delta_k}(t)$ естественно полагаем

$$J(f; \mu) = \sum_{k=1}^{n} f_k(\mu) \mu(\Delta_k).$$

На функции из более широкого класса определение интеграла распространяется, как и обычно, при помощи предельного перехода в смысле среднего квадратичного *.

2. Для получения оценок, пужных при проведении предельного перехода, используем одпу формулу типа интегрирования по частям для средних по гауссовой мере (частные случаи этой формулы (см. $(^{2-4})$).

Пусть v — гауссова мера в гильбертовом пространстве \mathcal{H} , \mathcal{H}_0 — вложенное в \mathcal{H} гильбертово пространство со скалярным произведением $(x, y)_0 = (B^{1/2}x, B^{1/2}y)$, где B — корреляционный оператор меры v. Заметим, что

^{*} Другая конструкция стохастического интеграла для нелинейных функционалов от «белого шума», также не использующая независимости от будущего, излагалась недавно А. В. Скороходом в докладе на семинаре в Институте математики АН УССР.

оператор Гильберта — Шмидта, действующий из $\mathcal{H}_{\scriptscriptstyle 0}$ в какое-нибудь гильбертово пространство \mathfrak{H} , имеет v-измеримое линейное расширение на \mathscr{H} .

 Π емма. Π усть f(x) — v-измеримая на \mathscr{H} функция со значениями в гильбертовом пространстве \mathfrak{S} , дифференцируемая по направлениям из \mathcal{H}_0 . $\varPi y c au b$ далее f'(x) - v-измеримая функция, значениями которой являются операторы Γ ильберта — Шмидта из $\mathscr{H}_{\scriptscriptstyle 0}$ в $\mathfrak{H}, A-$ оператор Γ ильберта — IIIми $\partial \tau a$ из \mathcal{H}_0 в \mathfrak{H} . Предположим, что выполнены условия

$$\int_{\mathcal{H}} |f(x)| \|x\| v(dx) < \infty, \quad \int_{\mathcal{H}} \|f'(x)\| v(dx) < \infty$$

Тогда имеет место соотношение

$$\int_{\mathcal{H}} (f(x), Ax)_{\mathfrak{H}} v(dx) = \int_{\mathcal{H}} \operatorname{Sp} \left[f'(x) A^* \right] v(dx). \tag{1}$$

Формула (1) проверяется для полиномов и конечномерных операторов A и затем доказывается в общем случае при помощи предельного перехода. Эта формула обобщается также и на случай, когда пространства Ж и \mathcal{H}_0 банаховы. Аналогичные формулы межно получить для интегралов от полилинейных функционалов вида f(x) (A_1x, \ldots, A_nx) .

3. Рассмотрим гильбертово пространство \mathcal{H}_{β} , состоящее из (кла**сс**ов) вещественных \mathfrak{A} -измеримых функций $\varphi(t),\ t\in T,\ \mathrm{co}\ \mathrm{скалярным}$ произведением

$$\langle \varphi, \psi \rangle = \int_{\mathbf{T} \times \mathbf{T}} \beta (dt \times d\tau) \varphi (t) \psi (\tau).$$

Предполагается, что это скалярное произведение не вырождено.

Для функций $\varphi(t)$ легко определяются понимаемые в среднем квадратичном интегралы $J(\varphi; \mathfrak{u})$ так, что выполняется соотношение

$$MJ(\varphi; \mu)J(\psi; \mu) = \langle \varphi, \psi \rangle.$$

Каждой функции $\varphi \in \mathcal{H}_{\beta}$ сопоставляется σ -аддитивная мера $\mu_{\varphi}(\Delta) = \langle \varphi, \chi_{\Delta} \rangle$ на \mathfrak{A} . Положим $\mu_{\varphi} = S^{-1}\varphi$ и введем при номощи оператора S^{-1} в совокупности \mathcal{L}_{0} мер μ_{φ} структуру гильбертова пространства. Пусть \mathscr{L} — совокупность аддитивных функций на \mathfrak{A}_0 . Случайная функция μ определяет на ${\mathscr L}$ слабое распределение, которое продолжается до гауссовой меры v на некотором линейном расширении $\widetilde{\mathscr{Z}} \supset \mathscr{L}.$ При этом оператор Sпродолжается до v-измеримого линейного оператора из $ilde{\mathscr{Z}}$ в гильбертово пространство \mathcal{H}_{β} , являющееся гильберто-шмидтовским расширением \mathcal{H}_{β} , и вносит в это пространство гауссову меру у₀, корреляционным оператором которой служит тождественный оператор в $\mathscr{H}_{\mathfrak{b}}$.

Будем называть функцию f(x), $x \in \mathcal{H}_{\beta}$, k раз дифференцируемой, если она v_0 -почти везде дифференцируема соответствующее число раз вдоль $\mathscr{H}_{\mathfrak{b}}$, ${f v}_0$ -измерима вместе с производными и эти производные, которые по определению являются полилипейными отображениями пространства \mathcal{H}_{β} , продолжаются до v_0 -измеримых полилинейных отображений пространства $\widehat{\mathcal{H}}_{\mathfrak{p}}$. Отметим, что всеми этими свойствами обладают, в частности, функции, непрерывно дифференцируемые по Фреше на \mathcal{H}_{β} . Ядро, соответствующее производной $f^{(h)}(x)$ (возможно, обобщенное) назовем вариационной производной функции f(x) и обозначим символом $\delta^k f(x) / \delta x(t_1) \dots \delta x(t_k)$. Функцию f(x), $x \in \widetilde{\mathscr{H}}_{\mathfrak{p}}$, отнесем к классу C^{k} , если опа дифференцируема kраз и ее вариационные производные до порядка k включительно явдяются \mathfrak{A} -измеримыми функциями на \mathscr{H}_{β} .

Аналогичные определения можно ввести для функций $f(\mu), \mu \in \mathscr{L}$, понимая под их производными производные вдоль гильбертова пространст-

ва \mathcal{L}_0 . Ядра этих производных мы также будей называть вариационными 2 зак. 1424, т. 208, № 3 БИБЛИОТЕКА 2 Зак. 1424, т. 208, № 3 5 БИБЛИЮТЕКА

производными и обозначать $\delta^h f(\mu) / \delta \mu(t_i) \dots \delta \mu(t_h)$. Нетрудно проверить, что функция $f_s(\mu) = f(S_\mu)$, $\mu \in \mathcal{L}$, принадлежит классу C^k , если f(x) принадлежит этому классу. При этом справедливо равенство

$$\frac{\delta^k f(S_{\mu})}{\delta x(t_1) \dots \delta x(t_k)} = \frac{\delta^k f_s(\mu)}{\delta \mu(t_1) \dots \delta \mu(t_k)}.$$

Из формулы (1) можно вывести соотношения

$$Mf_s(\mu) \mu(\Delta) = \int_T M \frac{\delta f_s(\mu)}{\delta \mu(t)} \beta(dt \times \Delta),$$
 (2)

$$Mf_s(\mu) \mu(\Delta') \mu(\Delta'') =$$

$$= \int_{\mathcal{T}} \int_{\mathcal{T}} M \frac{\delta^{2} f_{s}(\mu)}{\delta \mu(t) \delta \mu(\tau)} \beta(dt \times \Delta') \beta(d\tau \times \Delta'') + M f_{s}(\mu) \beta(\Delta' \times \Delta'')$$
(3)

для функций соответственно классов C^1 и C^2 .

Отметим, что к числу функций класса C^{∞} относятся функции вида

$$f(\mu) = \int_{T^n} \varphi_n(t_1, \ldots, t_n) \, \mu(dt_1) \ldots \mu(dt_n),$$

где $\varphi_n(t_1,\ldots,t_n)$ — элемент тензорной степени $\otimes \mathcal{H}_{\beta}^n$ пространства \mathcal{H}_{β} . 4. Используя формулы (2) и (3), можно оценить интегралы от ступенчатых по t функций $f(\mu;t)$ класса C^2 и затем проделать предельный пере-

ход. Это приводит к следующему результату. Теорема. Пусть $f(\mu;t), \mu \in \mathcal{L}, t \in T,$ — функция класса C^2 по μ и *Ч-измерима по t. Пусть выполнены условия*

$$\int_{T_2} |Mf(\mu; t) f(\mu; \tau)| \operatorname{Var} \beta (dt \times d\tau) < \infty,$$

$$\int_{T_2} |M \frac{\delta f(\mu; t)}{\delta \mu(\tau)}| \operatorname{Var} \beta (dt \times d\tau) < \infty,$$

$$\int_{T_2} |M \frac{\delta^2 f(\mu, t) f(\mu, \tau)}{\delta \mu(t_1) \delta \mu(\tau_1)}| \operatorname{Var} \beta (dt \times dt_1) \operatorname{Var} \beta (d\tau \times d\tau_1) < \infty.$$

Тогда интеграл $J(f; \mu)$, понимаемы**й** как предел в среднем квадратичном интегралов от ломаных, аппроксимирующих $f(\mu; t)$ вместе с производными первого и второго порядка по μ , существует и выполняются соотношения

$$MJ(f; \mu) = \int_{T^2} M \frac{\delta f(\mu; t)}{\delta \mu(\tau)} \beta(d\tau \times dt), \qquad (4)$$

$$M|J(f; \mu)|^2 = \int_{T^2} M[f(\mu; t) f(\mu; \tau)] \beta(dt \times d\tau) +$$

$$+ \int_{\tau_4} M \frac{\delta^{2f}(\mu; t) f(\mu; \tau)}{\delta \mu (t_1) \delta \mu (\tau_1)} \times \beta (dt \times dt_1) \beta (d\tau \times d\tau_1). \tag{5}$$

Для сокращения изложения мы рассматривали скалярный случай, однако приведенные выше рассмотрения обобщаются и на тот случай, когда функция $f(\mu;\ t)$ и аддитивная функция множеств μ принимают значения из сепарабельного гильбертова пространства Б. Корреляционное ядро $oldsymbol{eta}(\Delta imes \Delta')$ при этом является ограниченным оператором в $oldsymbol{eta}$, а его вариация рассматривается в следовой норме.

Другое обобщение связано с интегрированием по функции и функции $f(x, \mu; t)$, зависящей от распределенной по нормальному закону пары (x, μ) , где x — элемент некоторого банахова пространства X.

5. Пусть $T = [a, b]^n \subset R^n$, x(t) — гауссово случайное поле в T со скалярными или векторными значениями, корреляционная функция которого имеет ограниченную вариацию. Поле x(t) естественно порождает случайную функцию множеств на прямоугольниках. Изложенные выше результаты применимы к этому случаю. В частности, при n=1 всем требованиям удовлетворяет винеровский процесс. Если интегрируемая функция зависит лишь от прошлого, то оценка (5) превращается в обычную оценку для интеграла Ито. Отметим, что при рассматриваемых нами условнях интеграл не зависит от выбора точек $\tau_k \in [t_{k-1}, t_k]$ в интегральных суммах $\sum f(\mu; \tau_k) [x(t_k) - x(t_{k-1})]$.

Особо отметим случай, когда f(x;t) = F(x(t)) есть функция значения процесса x в точке t. При этом вариационные производные функции f являются обобщенными функциями и условия теоремы парушаются. Тем не менее и в этом случае при помощи описанных выше методов можно показать сходимость интегральных сумм для достаточно гладких функций F, хотя результат на этот раз уже будет зависеть от выбора точек τ_k в интегральной сумме. Один из вариантов такого интеграла, когда функция одной компоненты двумерного гауссова процесса интегрируется по другой компоненте, пругим методом рассматривался в (5).

Авторы выражают благодарность А. В. Скороходову за полезное обсужление.

Киевский политехнический институт им. 50-летия Великой Октябрьской социалистической революции Поступило 27 IV 1972:

ПИТИРОВАННАЯ ЛИТЕРАТУРА

¹ И. И. Гихман, А. В. Скороход, Введение в теорию случайных процессов, 1965. ² Е. А. Новиков, ЖЭТФ, 47, 5 (1964). ³ М. Д. Донскер, Сборн. пер., Математика, 11, 3 (1967). ⁴ К. Furutsu, J. Res. Nat. Bur. Stand., D 67, № 3, 303. (1963). ⁵ Е. А. Беговатов, Теория вероятн. и ее примен., 14, 2 (1969).