УДК 577.151.08.05:591.05

БИОХИМИЯ

ю. г. юровицкий, л. с. мильман

ОСОБЫЙ ТИП РЕГУЛЯЦИИ АКТИВНОСТИ ГЛИКОГЕНСИНТАЗЫ В ООШИТАХ И ЗАРОЛЬШАХ ВЬЮНА

(Представлено академиком А. Е. Браунштейном 28 III 1972)

В большинстве объектов: печени, скелетных мышцах и мозгу млекопитающих (1-4), дрожжах (5) и микроорганизмах (6) гликогенсинтаза (гликоген-1,4-глюкозилтрансфераза, КФ 2.4.1.11) существует в двух взаимопревращающихся формах. Активность одной из этих форм, которая получила название гликогенсинтазы-b или D-формы, может быть обнаружена только в присутствии глюкозо-6-фосфата (Глю-6-Ф); активность другой формы, называемой а-формой или I-формой, от присутствия Глю-6-Ф практически не зависит.

Исследования группы Херса (7, 8), проведенные на печени млекопитающих, установили, что гликогенсинтаза-а является дефосфорилированной формой, а гликогенсинтаза-b — фосфорилированной формой фермента. Одновременно было показано (8, 9), что фосфатаза фосфорилазы (КФ 3.1.3.17) в различных тканях превращает гликогенсинтазу-b в а-форму, т. е. в «активную» форму фермента. Киназа фосфорилазы (КФ 2.7.1.38) обеспечивает обратное превращение. Таким образом, регуляция активности ферментов-антагонистов: гликогенсинтазы п гликогенфосфорилазы (КФ 2.4.1.1) осуществляется системами фосфатазы и киназы фосфорилазы: процесс фосфорилирования приводит к преобладанию «активной» фосфорилазы и «неактивной» гликогенсинтазы, а процесс дефосфорилирования — к обратному соотношению.

Согласно расчетам Мерсмана (2), внутриклеточные концентрации Глю-6-Ф и уридиндифосфоглюкозы (УДФГ) слишком низки для того, чтобы обеспечить функционирование гликогенсинтазы-b в печени. Поэтому, по широко распространенному мнению, превращение гликогенсинтазы-b в а-форму является обязательным условием интенсивного синтеза гликогена. Однако в некоторых объектах группы Ларнера (10) и Кима (11)

обнаружили только b-форму.

В настоящей работе показано, что ооциты и зародыши вьюна (Misgurnus fossilis L.) полностью лишены гликогенсинтазы-а (или І-формы), а ферменты, осуществляющие взаимные превращения двух форм фосфорилазы в этом объекте (12), не оказывают действия на гликогенсинтазу. Контроль внутриклеточной активности последней в этом объекте осуществляется через изменения концентрации УДФГ, Глю-6-Ф, АТФ, некоторых гормонов (инсулин) и через количество фермента.

Определения активности гликогенсинтазы проводили по Лелуару и Гольдемберг (13). Изучение кинетики ингибирования фермента проводили на частично очищенном препарате гликогенсинтазы. В качестве последнего использовали гранулярную фракцию экстракта ооцитов, осаждаемую путем центрифугирования при 144 000 g в течение 1 часа. Последняя содержала, примерно 90% активности фермента экстракта.

Оогенез, созревание ооцита и ранний эмбриогенез сопровождаются значительными изменениями активности гликогенсинтазы. На стадии начала вителлогенеза активность гликогенсинтазы составляет 0,42 Е на 10⁶ ооцитов, в конце вителлогенеза активность возрастает несколько более

Условия определения	Активность глико- генсинтазы в µмол. § на 10° осцитов за 5 мин.		При 1·10−2 <i>М</i> Глю-6-Ф		При 1·10-8 М Глю-6-Ф	
	без Глю-6-Ф	1·10 ⁻² М Глю-6-Ф	$K_{M(УД\Phi\Gamma)}$, M	характер зависимости V от (S)	^(S) 0,5(УДФГ),	характер зависимости V от (S)
Контроль	Нет	2,2	1.10-4	Кинетика Михаэлиса; коэффициент кооперативности $n_{\rm H}=1$		Кооперативная; коэ́рфициент кооперативности $n_{\rm H}{=}1,5$
Инкубация с 0,01 <i>М</i> глюкозой	Нет	2,2	1.10-4	То же	Около 5·10 ⁻⁴	om v _H
60 мин. То же с 0,01 <i>М</i> 2-де- зоксиглюко-	Нет	2,2	1 · 10-4	» »	Около 5·10 ⁻⁴	То же
зой То же с 0,001 <i>М</i> 3,5-цикл.	Нет	2,2	1.10-4	» »	Около 5·10 ⁻⁴	» »
АМФ То же с 0,2 ед. инсу- лина	Нет	3,0	1.10-4		Около 5·10 ⁻⁴	» »

Примечание. Инкубация экстрактов (гомогенатов) ооцитов с глюкозой, 2-дезоксиглюкозой, 3,5-цикл. АМФ $(0.1-1.0\cdot10^{-3}~M)$: АТФ $(1\cdot10^{-3}~M)$ и нонами магния (так же как и изолированных неповрежденных ооцитов) не изменяла активности фермента и величины $(S)_{0,5}$ (удФГ).

чем в 10 раз (4,8 E на 10⁴ ооцитов), после чего активность фермента снижается. В периоде вителлогенеза содержание гликогена в ооцитах возрастает в 50 раз. Однако ни на одной из стадий развития мы не обнаружили активности гликогенсинтазы в отсутствие активатора (Глю-6-Ф).

При низких концентрациях активатора Γ лю-6- Φ (1,25·10⁻³ M) зависимость скорости реакции от концентрации субстрата носит сигмоидный характер. Более высокие концентрации Γ лю-6- Φ превращают эту зависимость в гиперболу Михаэлиса (рис. 1). Соответственно этому изменяется и коэффициент Хилла $n_{\rm H}$ (рис. 16). Обнаруженная зависимость напоминает регуляторные свойства гликогенсинтазы-b скедетных мышц (14).

Несмотря на наличие фосфатазы фосфорилазы как в ооцитах, так и в зародышах вьюна (12) нам не удалось наблюдать превращения гликогенсинтазы-в в независимую от Глю-6-Ф форму. Как было показано ранее в аналогичных опытах, фосфорилаза зародыша переходит в неактивную, латентную фосфорилазу, а последняя может быть вновь фосфорилирована посредством тканевой киназы фосфорилазы в присутствии избытка АТФ в активную форму (12).

Однако активация фосфатазы фосфорилазы путем инкубации изолированных ооцитов или гомогенатов с глюкозой, 2-дезоксиглюкозой (15) не оказывала действия на активность гликогенсинтазы и не изменяла величины $K_{\text{м(удфг)}}$ (рис. 2, табл. 1), и, таким образом, не переводит синтазу ооцитов в «активную» форму.

Активация киназы фосфорилазы путем введения 3',5'-цикл.АМФ или путем инкубации с АТФ и ионами магния также не влияла на активность и свойства фермента (табл. 1). Стабильность гликогенсинтазы нельзя объяснить присутствием нуклеотидов или гексозофосфатов,— диализ препаратов против трис-буфера при рН 7,5 также не оказывал действия на активность синтазы или величину $K_{\text{M}(УДФГ)}$.

В связи с этим особый интерес представляет действие инсулина на

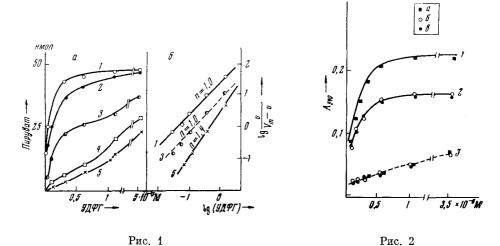


Рис. 1. Зависимость активности гликогенсинтазы ооцитов вьюна от концептрации гликозо-6-фосфата (a); значения коэффициента кооперативности ($n_{\rm H}$) при различных концентрациях глюкозо-6-фосфата (б); $I=2\cdot 10^{-2}~M,~2-1\cdot 10^{-2}~M,~3-5\cdot 10^{-3}~M,~4-2,5\cdot 10^{-3}~M,~5-1,25\cdot 10^{-3}~M$

Рис. 2. Зависимость активности гликогенсинтазы при действии инсулина и фосфатазы фосфорилазы от концентрации субстрата. Активность фермента в изолированных ооцитах после инкубации с инсулином при $1\cdot 10^{-2}~M$ Глю-6-Ф (1), в контрольных партиях ооцитов при $1\cdot 10^{-2}~M$ Глю-6-Ф (2), в опытных и контрольных ооцитах при $1\cdot 10^{-3}~M$ Глю-6-Ф (3). a — ооциты после инкубации с инсулином, b — контрольные ооциты, b — гомогенаты ооцитов, подвергнутые инкубации с глюкозой или a — 4-часовому диализу

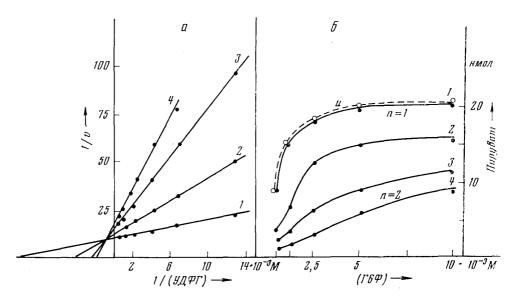


Рис. 3. Ингибирование гликогенсинтазы аденозинтрифосфатом. a — действие АТФ при $2\cdot 10^{-2}$ M Глю-6-Ф в координатах Лайнуивера и Берка; b — при насыщающей концентрации субстрата УДФГ $4\cdot 10^{-3}$ M. Действие АТФ кооперативно по отношению к активатору Глю-6-Ф. Гликогенсинтаза ооцитов, подвергнутых инкубации с инсулином (и), не ингибируется $5\cdot 10^{-3}$ M АТФ. I — контроль; D — D 4 D 4 D 5 D 4 D 6 D 7 D 8 D 6 D 7 D 8 D 9

активность гликогенсинтазы. Инкубация изолированных ооцитов в растворе Рингера с 0,2 ед. инсулина на 1 мл среды в течение 1 часа повышала активность синтазы с 2,2 до 3 µмол/10³ ооцитов в 5 мин., т. е. по меньшей мере на 35% при избытке Глю-6-Ф (рис. 2). При низких концентрациях $\Gamma_{\text{лю}}$ -6- Φ ($1\cdot 10^{-3}$ M) инсулин не активировал фермента. В обоих вариантах опытов инсулин не изменял величину $(S)_{0.5(Упфг)}$ (табл. 1).

Было обнаружено, что инкубация с инсулином полностью снимает ингибирующее действие АТФ на активность гликогенсинтазы. Подобно ферменту других объектов (16), гликогенсинтаза ооцитов ингибируется $\widehat{\text{AT\Phi}}$ (рис. $\widehat{3}$). Кинетика ингибирования по отношению к субстрату может быть отнесена к смешанному типу ингибирования. Однако по отношению к активатору (Глю-6- Φ) наблюдается кооперативная кинетика (рис. 36). Однако в ооцитах, подвергнутых действию инсулина, активность гликогенсинтазы не зависит от присутствия $AT\Phi$ (рис. 36).

Между тем действие инсулина на гликогенсинтазу печени или скелетных мышц млекопитающих совершенно иное. По данным Ларнера (17) и Голда (18), действие инсулина заключается в превращении гликогенсинтазы-в в форму а, т. е. в форму с большим сродством к субстрату. При этом доля последней увеличивается с 1-2% до 30%, а суммарная активность обеих форм практически не изменяется (17).

В ооцитах же и зародышах вьюна, как мы предполагаем, инсулин переводит гликогенсинтазу в форму, десенсибилизированную к действию АТФ и с большей величиной V_m . Однако обе формы обладают одинаковыми величинами $(S)_{0.5(удФ\Gamma)}$, т. е. $K_{\rm M}$, и $(A)_{0.5(\Gamma_{\Pi E}-6-\Phi)}$.

Институт биологии развития Академии наук СССР Москва

Поступило 28 III 1972

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

1 M. Rosell-Perez, J. Larner, Biochemistry. 1. 763 (1962). 2 H. J. Mersmann, H. J. Segal, Proc. Nat. Acad. Sci. U.S.A., 58, 1688 (1967). 3 R. Traut, F. Lipmann, J. Biol. Chem., 238, 1213 (1963). 4 W. Stalmans, T. de Barsy et al., Metabolic Interconversion of Enzymes, 6 Konferenz Deutsch. Naturforsch. u. Arzte, Rottach-Egern, 1971, p. 12. 5 L. B. Rothman. E. Cabib, Biochemistry, 6, 2107 (1967). 6 M. Telez-Inon, H. Terenzi, H. Torres, Biochim. et biophys. acta, 191, 765 (1969). 7 H. de Wulf, W. Stalmans. H. G. Hers, Europ. J. Biochem., 6, 545, 552 (1968); 15, 1 (1970). 8 H. G. Hers, H. de Wulf, W. Stalmans, FEBS Letters, 12, 73 (1970); 14, 193 (1971). 9 J. Larner, F. Sanger, J. Molec. Biol., 11, 491 (1965). 10 M. Rosell-Perez, J. Larner, Biochemistry, 1, 769 (1962). 11 K. H. Kim, L. M. Blatt, Biochemistry, 8, 3997 (1969). 12 Jl. C. Мильман, 10. Г. Юровицкий, В сборн. Ферменты в эволюции животных, «Наука», 1969, стр. 126. 13 L. Lelour, S. H. Goldemberg, J. Biol. Chem., 235, 916 (1960). 14 C. Villar-Pallasi, M. Rosell-Perez, J. Larner, In: Methods in Enzymology, 8, 374 (1966). 15 O. Søvic, I. Øle, M. Rosell-Perez, Biochim. et biophys. acta, 124, 26 (1966). 16 R. Piras, L. B. Lochman, E. Cabib, Biochemistry, 7, 56 (1967). 17 J. S. Bishop, J. Larner, J. Biol. Chem., 242, 1354 (1967). 18 A. Gold, J. Biol. Chem., 245, 903 (1970).