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(Представлено академиком И. М. Виноградовым 27 III 1972)

Пусть /(а?) = 2 — вещественная квадратичная форма с п пере­
менными и N = 1/2«(п + 1). Форме f(x) соответствует точка f с координа­
тами ац, I f, в A-мерном пространстве Ех. Все точки пространства Ея, ко­
торым соответствуют положительные квадратичные формы, в силу усло­
вий Сильвестра заполняют А'-мерный выпуклый конус К.

Линейное целочисленное унпмодулярное преобразование g перемен­
ных Xi, х2,..., хп индуцирует линейное целочисленное унимодулярное пре­
образование G конуса К в себя. Преобразования G образуют дискретную 
группу {G}, которую называют группой эквивалентности. Отыскание в 
конусе К фундаментальной области группы {G} — одна из основных задач 
теории приведения положительных квадратичных форм.

1. Область приведения Вороного (см. (‘), стр. 213; (2)). 
Пусть qh q2,..., q„ пробегают все системы п целых чисел без общего де­
лителя. Точки (7?, q2\ ..., qn2, q^E, q^s,..., ?n-i9n) лежат на границе 
конуса К, а их выпуклая оболочка П принадлежит замыканию К конуса К. 
Границу этой выпуклой оболочки назовем совершенным полиэдром Воро­
ного, или полиэдром П.

Как показал Г. Ф. Вороной, любой луч tf конуса К имеет и притом 
лишь одну точку пересечения с полиэдром П. Все (Аг—1)-мерные грани 
полиэдра П суть обычные выпуклые многогранники с конечным числом 
граней. Каждой (А —1)-мерной грани полиэдра П отвечает так называе­
мая совершенная форма, поэтому и грань назовем совершенной. Полиэдр 
П инвариантен относительно группы {G} п имеет лишь конечное число 
неэквивалентных совершенных граней.

Рассмотрим какой-либо фиксированный полный набор попарно неэкви­
валентных совершенных граней полиэдра П. Г. Ф. Вороной называет по­
ложительную форму f(x) приведенной, если луч tf пересекает какую-либо 
пз совершенных граней рассматриваемого набора.

Область приведения Вороного нефундаментальна. Для получения фун­
даментальной области приведения можно поступить так. Рассмотрим так 
называемое барицентрическое подразделение В(П) полиэдра П. Полиэдр 
В(П) инвариантен относительно группы {G}, и его барицентрические 
симплексы всех измерений при любом преобразовании G могут лишь цели­
ком переходить друг в друга. Вершины одного и того же барицентрическо­
го симплекса попарно неэквивалентны, так как являются внутренними 
точками (центрами тяжести) граней различных измерений полиэдра П. 
Из сказанного выше и из аффинности преобразований G следует, что 
внутренние точки одного и того же барицентрического симплекса попарно 
неэквивалентны.

Рассмотрим полный набор попарно неэквивалентных барицентриче­
ских симплексов всех измерений полиэдра 5(П). Положительную квадра­
тичную форму f(x) назовем приведенной, если луч tf пересекает какой- 
либо из барицентрических симплексов рассматриваемого набора во внут­
ренней точке этого симплекса. Любая положительная квадратичная фор­
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ма, очевидно, эквивалентна одной и только одной такой приведенной фор­
ме и, следовательно, множество всех таких приведенных форм представ­
ляет собой так называемую абсолютную область приведения.

2. ОбластьприведенияВенкова (3). Пусть <р (х) — данная по­
ложительная форма, d — ее дискриминант, Ф (ж) — взаимная ей форма. Все 
точки эквивалентные данной точке ф, расположены на так называемой 
дискриминантной поверхности d. Как известно, дискриминантная поверх­
ность выпукла к началу 0. Во всех точках <рг- (включая и <р) проведем ка­
сательные плоскости (/, Ф,) = nd к дискриминантной поверхности d и рас­
смотрим бесконечный выпуклый многогранник, ограниченный этими плос­
костями и содержащий рассматриваемую дискриминантную поверхность, 
т. е. многогранник, определяемый неравенствами (/, Ф.) nd. Поверх­
ность этого бесконечного многогранника назовем полиэдром Венкова.

Как показал Венков, каждый луч tf конуса К имеет и притом лишь од­
ну точку пересечения с полиэдром Венкова. Все (N — 1) -мерные грани 
полиэдра Венкова суть обычные выпуклые многогранники с конечным 
числом граней, целиком принадлежащие К. Полиэдр Венкова инвариантен 
относительно группы {G} и все его (N — 1) -мерные грани эквивалентны.

Из самого построения полиэдра Венкова следует, что все точки /, при­
надлежащие его (/V — 1)-мерной грани, касающейся дискриминантной по­
верхности d в точке <р, удовлетворяют одному равенству (/, Ф) = nd и 
всем остальным неравенствам (/, Ф;) > nd. Это означает, что все лучи tf, 
пересекающие рассматриваемую (N— 1)-мерную грань, принадлежат об­
ласти приведения Венкова V (<р), которую Венков определял неравенства­
ми (/, Ф) (/, Ф;).

Разбиение конуса К на эквивалентные пирамиды Венкова нормально.
Если форма ср имеет автоморфизмы, то область V (<р) нефундаменталь­

на. Если же ф не имеет автоморфизмов, то область V (<р) фундаментальна, 
причем в случае п> 2 ее можно непрерывно изменять, если надлежащим 
образом изменять исходную форму ф.

Используя барицентрическое подразделение полиэдра Венкова, из об­
ласти V (ф), аналогично предыдущему параграфу, можно выделить абсо­
лютную фундаментальную область приведения.

3. СовпадениеобластейприведенияВороного и Вен­
кова при п — 3. Если ф = ‘/в (За:2 + Зу2 + 3z2 — 2ху — 2xz — 2yz), то по­
лиэдр Венкова совпадает с полиэдром П и, следовательно, разбиение ко­
нуса К на пирамиды приведения Венкова совпадает с разбиением па со­
вершенные пирамиды Вороного. Область V (<р) в этом случае нефундамен­
тальна и она совпадает с известной областью приведения Зеллинга 
(см. С)).

Покажем далее, что на одной и той же дискриминантной поверхности 
существует континуум точек ф таких, что область приведения Венкова 
V (ф) совпадает с фундаментальной областью приведения Вороного (см. 
('), стр. 220). Действительно, положим Ф = у (ж2 + у2 + z2 + аху + frxz + 
+ yz), где а, ₽ и у — фиксированные числа, удовлетворяющие неравенст­
вам 0 < у. 0 < 3 < 2а < 2|j < 2. Рассмотрим матрицы

и пусть Ф, получается из Ф с помощью подстановки *, т. е. Ф; = Ф5( *, 
где 1 = 1,..., 6. Если / = ах2 + by2 + cz2 + 2кху + 2hxz + 2gyz, то неравен­
ства (/, Ф, — Ф) > 0, i = 1,..., 6, после сокращения на положительные 
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множители принимают соответственно вид

—к > О, к — h&z 0, c + k + h + g^O,

b + k + h + g^O, а + к + 2h^ 0, h — g 3s 0.

Эти неравенства задают как область приведения Вороного (*), так и об­
ласть приведения Венкова V (ср) (3), построенную по форме ср, зависящей 
от параметров а, |3 и у, для которой выписанная выше форма Ф является 
взаимной.

4. Абсолютная область приведения Вороного при п = 
= 3. Рассмотрим следующие 16 систем равенств и неравенств между при-
веденными параметрами g, h, к, 1, т, п Зеллинга:

0>А, 0 = к, 0>A- 0>7c, 0>/c, 0>k,
7с >71, k>h, к = h, k^>h, k^> 7i, k>h,
7с >71, к > п, к ^>n, к = n, k '^>n, k>n,
71 > 771, h^>m, n~^m, Zi > m, 7i = m, h^>mr
7i>Z, h>l, h^>l, h^>l, h^l, h = l,
^>g; m~>g', k>g', l>g; l>g; m^g;

0 > 7с, 0 = к, 0 = k, 0 > k, 0 > k, 0 = Zc,.
7c>/i, k = h, к 7i, к = 7i, к = h, к >h,
*>77, к>п, к = n, m~^ и, к > n, к > 7i,

Z > 771, g>m, l^>m, [n^m, g>m,
7i>Z, h>l, g^l, h^>l, h = Z, h = l,
к = g; n>g', 7i>g; 7i==g; h>g;

0>k, 0 = Zc, 0 > k, 0 > k,
k"^h, k~^>h, k^h, к = h,
к = 71, к к = n, к = и,
71 = 771, 7i = 7?i, g>77?, 7i> m,

g>l, 7i> Z, 71 = Z, h > I,
h>g; l>g', h>g', l^g.

Первая из этих систем, состоящая пз одних строгих неравенств между 
параметрами Зеллинга, задает всю внутренность фундаментальной облас­
ти приведения Вороного, а оставшиеся 15 систем задают все попарно не­
эквивалентные точки границы фундаментальной области приведения Во­
роного.

Любая положительная тройнпчная квадратичная форма эквивалентна 
одной и только одной форме / = ах- + by- + cz2 + 2кху + 2hxz + 2gyz, где 
а = —к — h — l, Ъ = —к — g — т, с = —h — g — п, зеллинговы параметры 
g, h, к, I, т, п которой удовлетворяют одной из выписанных выше 16 сис­
тем равенств и неравенств. Заметим, что выписанная здесь форма / поло­
жительна при любых не равных одновременно нулю числах g, h, к, I, т, п. 
удовлетворяющих какой-либо пз рассматриваемых выше 16 систем.

Таким образом, все эти 16 систем задают абсолютную фундаменталь­
ную область приведения Вороного.

При разыскании этих 16 систем были использованы сорта решете ? 
Б. Н. Делоне (см. (3), стр. 176) и их расположение в области приведение 
Вороного (см. (4)).

5. Несовпадение областей приведения Минковског. 
(6) и Венкова (3) при тт > 3. Фундаментальная область М приведения 
Минковского (6) представляет собой выпуклую пирамиду с конечным чи ;- 
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лом граней. Покажем, что при п'^ 3 рабиение {М} конуса К на пирамиды 
Минковского не нормально и, следовательно, оно не может совпадать с 
разбиением на пирамиды Венкова, которое всегда нормально.

Рассмотрим положительные квадратичные формы (ж) = 4х® + 5а;2-г 
+ . . . + (re + 3)х2п, fi(x) = Х^ + X2 + . . . + Х\ + XiXz + Ж2Ж3 + . . . + Xn-iXn, 
t3(x) = X2 + х2+.. ■ + Х^ +■ Х1Хз + Х2Х3 + /4(х) = X2 + X .. + х2п —
— XiX3 + х2х3 + х2х^. Очевидно, минимум форм /2(z), fs(x) и ft.(x) равен 1.

Рассмотрим, далее, две формы f (х) = х% + jt(x) + 2f2(x) + 2f3(x) и 
j"(x) = x% + f^x) + 2f2(x) + 2fi(x). Легко проверить, что коэффициенты 
форм f(x) и f'(x) удовлетворяют одному равенству а22 == а33 и всем ос­
тальным строгим неравенствам приведения Минковского (напомним, что 
независимых неравенств лишь конечное число). Таким образом, точки f 
и /" лежат внутри одной и той же (N — 1)-мерной грани Q (расположен­
ной в плоскости «22 — йзз = 0) пирамиды М.

Автоморфизм (ад, х2, х3, Xi, ..., х„) -> (xt, х3, х2, ад,..., хп) формы 
,/'(х) индуцирует преобразование конуса К, при котором пирамида М 
переходит в эквивалентную ей пирамиду М', имеющую с М общую точку 
а автоморфизм (xi, х2, х3, х^...,хп) -> (—хь х3, ад, xi,...,xn) формы 
j" (х) индуцирует преобразование конуса К, при котором пирамида М 
переходит в другую эквивалентную ей пирамиду М", имеющую с М общую 
точку Следовательно, рассматриваемая грань <2 пирамиды М служит 
примером того, что пирамиды Минковского смежны не по целым (А — 1)- 
мерным граням. Таким образом, разбиение {М} конуса К не нормально, 
а поэтому оно не совпадает с разбиением на пирамиды Венкова. Следова­
тельно, при п 5= 3 фундаментальная область М приведения Минковского- 
ни при каком ср не совпадает с областью V (<р) приведения Венкова.

Математический институт им. В. А. Стеклова Поступило
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