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In the present article, we study the long bifilar helix in which electric currents are quasi-stationary, 

i.e. the wavelength of the electromagnetic field is much longer than the turn of the helix. All 

components of the force acting on a physically small element of one helix from the other helix 

having a big length are calculated. The case when the currents in the two helices have the same 

direction relative to the x axis is considered. The dependence of the radial component of the force 

of interaction between two helices on the pitch angle is determined. At various pitch angles the 

helices can attract and repel each other while the direction of the current does not change. It is 

found the value of pitch angle when two helices do not interact and bifilar helix, formed by them, 

is in equilibrium state.  

  

 

 

1.  Introduction 

Metamaterials are artificially engineered and structured materials to have properties that have not 

yet been found in nature. The properties of metamaterials are derived both from the inherent 

properties of their constituent materials, as well as from the geometrical arrangement of those 

materials. They are made from assemblies of multiple elements fashioned from such materials as 

metals or plastics.  

The metal helices are widely used as elements of metamaterials because at transmission of 

electrical current in them the electric dipole moments and magnetic moments are simultaneously 

generated. Consequently metamaterial based on helical elements displays as dielectric and 

magnetic properties, which enhances its use [1-11] (Fig.1).  

A special place among the helices take bifilar helices consisting of two helical conductors. These 

conductors are arranged mutually symmetrically: the second helix is rotated with respect to the first 

helix on 180 degrees around a common helix axis (x axis). Electric currents in such bifilar helices 

are more balanced than in the case of single helices, which leads to the symmetry of properties of 

metamaterials: some components of the tensors of dielectric susceptibility and magnetic 

susceptibility vanish. At the same time, it raises the question about stability of the bifilar helix, 

since the electrical currents in it are close to each other and can interact strongly [12-15].  
The objective of this article is the search of the value of pitch angle when two helices do not 

interact and bifilar helix, formed by them, is in equilibrium state. The determination of condition of 

equilibrium state can be used for design and manufacture of metamaterials consisting of bifilar 

helices as elements.All components of the force acting on a physically small element in the center 

of one helix from the other helix having a big length are calculated. The integral equation for 

determination of pitch angle is found and numerically solved. It is found the value of pitch angle 

when two helices do not interact and bifilar helix, formed by them, is in equilibrium state. 
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2.  The equilibrium state of bifilar helix 

In this work the long bifilar helix in which electric currents are quasi-stationary, i.e. the wavelength 

of the electromagnetic field is much longer than the turn of the helix is considered. In Fig.2 as a 

sample the two-turn helix and helix in a unfold form are presented. The geometry of the problem is 

presented in Fig.3. 

 

 

 

 

 

 

Fig. 2. Two-turn helix and helix in a unfold form, where r is the radius of the turn, L is the total wire length, 𝛼 

is the pitch angle, ℎ = 2𝜋 |𝑞|⁄  is the helix pitch, q is specific twisting of helix, and 𝑞 > 0 for a right - handed 

helix and vice versa, cot 𝛼 = 𝑞𝑟. 

 

The following notations are used: 𝑅⃗ 0  is radius-vector from element of current 𝐼𝑑𝑙  to the 

beginning of coordinate system, 𝐼1𝑑𝑙 1 is element of current of second helix. 
The relations between the projections of the vector in Cartesian and polar coordinate systems in our 

case are following 

   𝐹𝑥 = 𝐹𝑥  
𝐹𝑦 = 𝐹𝑟 cos𝜑 − 𝐹𝜑 sin𝜑 

𝐹𝑧 = 𝐹𝑟 sin𝜑−𝐹𝜑 cos𝜑 

In the center of helix we obtaine for the point A: 𝜑 = −
𝜋

2
 ⇒       𝐹𝑥 = 𝐹𝑥 ;  𝐹𝑦 =𝐹𝜑 ; 𝐹𝑧 =−𝐹𝑟 . 

 

 

 

 

 

 

(a) (b)   (c) 

 

Fig. 1.  a) Photo of the helices array In0.2Ga0.8As/GaAs/Ti/Au (a square grid on a photo is a negative 

photo resist from a polymeric material, thickness is about 1 micron) [4];  

b) SEM image of an array of one-turn InGaAs/GaAs/Ti/Au helices resonant for THz range [5]; 

c) DNA-like helices resonant in microwave range [6-7]. 
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Fig. 3.  The geometry of the problem (Cartesian and polar coordinate systems) 

 

The vector 𝑑𝐵⃗    of induction of a magnetic field at point A (Fig.3), generated by the elements of 

the current 𝐼𝑑𝑙 , calculated by the Biot-Savart formula 

𝑑𝐵⃗ = 

𝜇0

4𝜋

[𝐼𝑑𝑙 𝑅⃗ ]

𝑅3
 

 

Its components in Cartesian coordinate systems are following 

 

𝐵𝑥 =
𝜇0𝐼𝑟 cot𝛼

2𝜋
∫

1 + cos𝑞𝑥

(𝑥2 + 2𝑟2(1 + cos𝑞𝑥))
3 2⁄

𝑑𝑥
+∞

0

 

 

𝐵𝑦 =
𝜇0𝐼

2𝜋
∫

𝑟 (1 + cos𝑞𝑥)+ cot𝛼 ∙ 𝑥 ∙ sin 𝑞𝑥

(𝑥2 + 2𝑟2(1 + cos𝑞𝑥))
3 2⁄

𝑑𝑥
+∞

0

 

 

𝐵𝑧 =
𝜇0𝐼

4𝜋
∫

𝑟 sin𝑞𝑥 − cot𝛼 ∙ 𝑥 ∙ cos𝑞𝑥

(𝑥2 + 2𝑟2(1 + cos𝑞𝑥))
3 2⁄

𝑑𝑥 = 0
+∞

−∞

 

 

since the integrand for 𝐵𝑧 is an odd function. Thus 𝐵𝑧 = 0 is a very important feature. It provides 

a balance of two symmetrically arranged helices, i.e. the absence of forces along the x and y axes in 

the center of helix (see below). 

Suppose that at point A the element 𝑑𝑙 1 of second helix is located. The second helix is disposed 

symmetrically relative to the first helix. They form a bifilar helix. Then  

 

𝑑𝑙1𝑥 = 𝑑𝑙1 sin𝛼 =𝑑𝑥1 

𝑑𝑙1𝑦 = 𝑑𝑙1 cos 𝛼 =
𝑑𝑥1

sin𝛼
cos𝛼 = 𝑑𝑥1 ∙ cot𝛼 

𝑑𝑙1𝑧 = 0 
 

We should note that 𝑑𝑙1𝑥 > 0   and   𝑑𝑙𝑥 > 0 because currents flow in the same direction with 

respect to the x –axis. 𝑑𝑙1𝑦  has opposite sign respect 𝑑𝑙𝑦 .The force acting on element of second 
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helix 𝐼1𝑑𝑙 1 calculated by the Ampere's formula  

 

𝑑𝐹 1 = [𝐼1𝑑𝑙 1𝐵⃗ ]  

 

All components of the force 𝐹  acting on a physically small element of one helix (Fig.1) from the 

other helix having a big length are calculated.  

 
𝑑𝐹1𝑥 = 0 
𝑑𝐹1𝑦 = 0 

𝑑𝐹1𝑧 = 𝐼1𝑑𝑥1

𝜇0𝐼

2𝜋
∫

𝑟(1 + cos𝑞𝑥) + cot𝛼 ∙ 𝑥 ∙ sin𝑞𝑥

(𝑥2 + 2𝑟2(1 + cos𝑞𝑥))
3 2⁄

𝑑𝑥 −
∞

0

− 𝐼1𝑑𝑥1 cot𝛼
𝜇0𝐼𝑟 cot𝛼

2𝜋
∫

1 + cos𝑞𝑥

(𝑥2 + 2𝑟2(1 + cos𝑞𝑥))
3 2⁄

𝑑𝑥
∞

0

 

 

The force is calculated at the center of a long bifilar helix, i.e. when 𝑥 = 0. We can see that the 

following components of force are equal to zero:  𝐹1𝑥 = 0 and  𝐹1𝜑 = 0 where 𝜑 is the polar 

angle. Consequently, in the center of the helix the forces are absent that could rotate helices around 

their axis or move helices along this axis. At the same time the relation 𝐹1𝑟 ≠ 0  is satisfied, i.e. 

the component of force acting along the radius of the loop of helix r  is present. We can see that 

the force 𝐹1𝑟  depends strongly on the pitch angle 𝛼 of bifilar helix.  

The case when the currents in the two helices have the same direction relative to the x  axis is 

considered. At the large pitch angles of helices the relation  𝐹1𝑟 < 0 is satisfied, i.e. helices are 

mutually attracted. In the limiting case when 𝛼 → 𝜋 2, 𝑞 = 0⁄  the well-known classical formula for 

the force of attraction of the same directed long parallel currents is obtained 

 
𝑑𝐹1𝑧

𝑑𝑥1
= 

𝜇0𝐼𝐼1
2𝜋 ∙ 2𝑟

 

 

Here 2r is a distance between long parallel currents. 

At small pitch angles of helices 𝛼 = 0, 𝑞 → ∞  when their loops are in the form close to the flat 

loops, the inequality 𝐹1𝑟 > 0 is satisfied, i.e. helices repel each other.  

We carry out the change of variables 𝑢 = 𝑞𝑥 

 

𝑑𝐹1𝑧 = 0 ⇒  𝐹1𝑟 (𝛼) = 0 ⇒  ∫
(1 − cot2 𝛼) (1 + cos𝑢) + 𝑢 sin𝑢

(𝑢2 + 2 cot2 𝛼 (1 + cos𝑢))
3 2⁄

𝑑𝑢 = 0
∞

0

 

 

We can see that the root of the equation  𝐹1𝑟 (𝛼) = 0 is independent separately from the radius of 

the helix r and of the helix pitch ℎ = 2𝜋 |𝑞|⁄ . The root of the equation  𝐹1𝑟 (𝛼) = 0 is determined 

only by the pitch angle of helix 𝛼, and in this sense the angle 𝛼 = 𝑎𝑟𝑐 cot(𝑞𝑟) is a universal 

characteristic of the bifilar helix. The equation  𝐹1𝑟 (𝛼) = 0  is numerically solved for the 

equilibrium bifilar helix and is shown that its root is 𝛼0 (see Fig 4). 
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(a)       (b) 

 

Fig. 4. Normalized component of force 𝐹1𝑟 versus pitch angle α: a) from 0 to 90 deg; b) from 20 to 50 deg 

 

The equilibrium pitch angle 𝛼0 is the same for all sizes of helices, both small and large, if the 

condition of quasi-stationary current  𝜆 ≫ 𝑃 is satisfied. Here 𝑃 = √(2𝜋𝑟)2 + ℎ2 is the length 

of one turn of the helix, 𝜆 is wavelength of the electromagnetic field. The value of pitch angle 

𝛼0 = 38.4 𝑑𝑒𝑔 is found. At this value the relation  𝐹1𝑟 (𝛼) = 0 is satisfied, i.e. two helices do not 

interact and bifilar helix, formed by them, is in equilibrium state.   

 

3.  Conclusion 

 

We study the long bifilar helix in which electric currents are quasi-stationary. All components of the 

force acting on a physically small element in the center of one helix from the other helix having a big 

length are calculated. It is found the value of pitch angle 𝛼0 = 38.4 𝑑𝑒𝑔 when two helices do not 

interact and bifilar helix, formed by them, is in equilibrium state. The determination of condition of 

equilibrium state can be used for design and manufacture of metamaterials consisting of bifilar 

helices as elements. 
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