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Н. П. ДОЛБПЛИН, В. А. ЗАЛГАДЛЕР, М. И. ШТОГРИН

О ТРЕХ ПОСЛЕДОВАТЕЛЬНЫХ МИНИМУМАХ ТРЕХМЕРНОЙ 
РЕШЕТКИ

Пусть О А — самый короткий вектор трехмерной решетки А, ОВ — са­
мый короткий вектор Л, не параллельный вектору О А, и ОС — самый ко­
роткий вектор решетки Л, не параллельный плоскости ОАВ. Такие три 
вектора называются тремя последовательными минимумами 
решетки Л, а параллелепипед П, построенный на этих векторах,— 
приведенным.

Теорема 1. Приведенный параллелепипед П примитивный (пу­
стой) .

Впервые эта теорема была геометрически доказана Дирихле в 1848 г. 
Это доказательство, приведенное в (*), всегда казалось кристаллографам 
несколько сложным, и поэтому Н. В. Белов предложил другое доказа­
тельство (2, s). Ниже мы предлагаем доказательство, которое нам кажется 
еще более простым, и решаем вопрос об однозначности приведения к ре­
перу из трех последовательных минимумов, так как, оказывается, в одной 
и той же решетке может быть несколько метрически различных паралле­
лепипедов, построенных на таких реперах, причем даже один может быть 
тупоугольным, а другой остроугольным, что опровергает высказывание ('*), 
стр. 150.

1. Доказательство теоремы 1. Пусть М — любая внутренняя 
точка приведенного параллелепипеда П решетки Л, М'— основание пер­
пендикуляра, опущенного из М на ту из двух плоскостей какой-либо пары 
параллельных граней П, к которой М ближе, М"— основание перпендику­
ляра, опущенного из АГ на ближайшую к М' прямую линейного ряда этой 
плоскости, параллельную какому-либо из ребер этой грани, и D — ближай­
ший к М" узел этого ряда. Из построения следует, что каждый из отрезков 
ММ', М'М", M"D не превосходит половины соответствующего ребра парал­
лелепипеда Г1, а поэтому и половины наибольшего его ребра с, и что все эти 
отрезки попарно взаимно перпендикулярны. По теореме Пифагора полу­
чаем поэтому MD + с]/3 / 2 < с.

Таким образом, никакая внутренняя точка П не может быть точкой Л, 
так как вектор AID решетки Л был бы тогда не параллелен плоскости ОАВ 
н короче вектора с.

То, что никакая внутренняя точка грани или ребра П не может быть 
точкой Л, можно доказывать, как у Н. В. Белова ((5), стр. 6).

2. Другой вариант доказательства теоремы 1.
Лемм а. Ближайшая точка М' границы п-мерного многогранника к 

любой внутренней его точке М есть внутренняя точка некоторой его 
(и — Г)-мерной грани.

Пусть р — ближайшая к М (п — 1) -мерная плоскость (и — 1)-мерной 
грани многогранника и М' — основание перпендикуляра, опущенного на 
нее из точки АТ «-мерный шар с центром в М п радиусом ММ' лежит, 
очевидно, весь по внутреннюю сторону от (« — 1)-мерных плоскостей всех 
других (и — 1)-мерпых граней многогранника (т. е. по ту, по которую ле­
жит точка М), кроме точек границы шара, в которых, может быть, каса­
ются некоторые из этих плоскостей, а именно те, которые столь же уда­
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лены от М, как плоскость р. Поэтому и точка М' лежит по внутреннюю 
сторону от всех этих других плоскостей, и поэтому она есть внутренняя 
точка той (п — 1)-мерной грани, которая лежит в плоскости р.

Теорема 2. Расстояние от любой внутренней точки М любого п-мер- 
ного параллелепипеда Р до ближайшей его вершины не больше половины 
квадратного корня из суммы квадратов всех п попарно непараллельных 
его ребер. ;

Пусть М' — ближайшая к М точка границы Р. По лемме точка М' яв­
ляется внутренней точкой (n— 1)-мерного параллелепипеда Р', являюще­
гося некоторой (п —1)-мерной гранью. Ближайшая к М' точка М" гра­
ницы Р' является внутренней точкой (и — 2)-мерного параллелепипеда Р", 
являющегося некоторой (п — 2) -мерной гранью Р', и т. д. Так получается 
ломаная ММ'М" . . . D, где D — некоторая вершина параллелепипеда Р. 
Все звенья этой ломаной, как легко видеть, попарно взаимно перпенди­
кулярны, и длина каждого из них пе больше половины длины соответ­
ствующего ребра параллелепипеда Р, поэтому для расстояния MD мы по 
теореме Пифагора получаем утверждаемое неравенство.

Следствие. Если I —длина наибольшего из ребер п-мерного парал- 
. лелепипеда, то расстояние от любой внутренней его точки до ближайшей 

его вершины не больше I V п / 2.
Из оценки следствия при п = 1, 2, 3 мы, как в п. 1, получаем соответ­

ственно, что ии внутри ребра, пи внутри грани, пи внутри самого приве­
денного параллелепипеда П дополнительных узлов, решетки Л быть не 
может, т. е. верна теорема 1. При и = 4 теорема 1 имеет единственное 
исключение. В кубической объемноцентрированной четырехмерной решет­
ке, хотя ребра куба являются последовательными минимумами решетки, 
сам куб не является примитивным.

3. Алгорифм приведения к пара л л е л е п и п е д у П. Если 
а, Ь, с, а — векторы приведенного четырехсторонника Зеллипга, то после­
довательные минимумы решетки находятся среди 7 векторов a, b. с, d, 
h = b + с, ц = с + a, v = а + Ъ (см. О. стр. 183).

Обратим внимание па тот важный факт, что этот способ разыскания 
репера из последовательных минимумов обладает тем достоинством, что 
позволяет найти все имеющиеся в решетке такие различные реперы, кото­
рых имеется лишь конечное число.

При м е р. Рассмотрим решетку со следующими приведенными пара­
метрами Зеллинга: g = — 7, h = —8, k = —15, I = — 2, m = — 3, n = — 5. 
Квадраты длин 7 векторов, среди которых находятся последовательные 
минимумы, следующие: а2 = 25, Ъ2 = 25, с2 = 20, d2 = 10, V = 31, ц2 = 29, 
v2 = 20. Векторы d, с, v, отвечающие единственной тройке наименьших 
чисел (10, 20, 20), компланарны. Любая тройка векторов {d, с, Ь}, 
{d, с. a}, {d, г, b}, {d, v, а}, отвечающая следующей по величине тройке 
чисел (10, 20, 25), образует репер из последовательных минимумов. Непо­
средственный подсчет показывает, что реперы {—d, v, b} и {—d, v, a} 
остроугольные и метрически различные, а реперы {d, с, 6} и {d, с, а} — 
тупоугольные и метрически различные.

4. Условия однозначного приведения к реперу из 
трех последовательных минимумов. В любой трехмерной ре­
шетке выберем, следуя Минковскому, такой репер из последовательных 
минимумов, чтобы углы между первым и вторым, а также вторым и треть­
им его векторами были пе тупые, что всегда можно сделать, изменяя, если 
нужно, некоторые векторы па обратные. Метрические параметры такого 
репера удовлетворяют следующим независимым неравенствам (неравенст­
вам Минковского):

0 2й12 -А 0 ц -А д22 гД я33,
0 " 2^23 - ^22,

—Яи гД 2а13 ’ Пи,
0 яи + я22 — 2йЧ2 + 2я13 — 2я23.
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Никакие два метрически различных репера, метрические параметры 
которых удовлетворяют всем этим строгим неравенствам приведения, не 
могут принадлежать одной и той же решетке (7). Однако встречаются мет­
рически различные реперы, удовлетворяющие этим нестрогим неравенст­
вам приведения, принадлежащие одной и той же решетке. Для устране­
ния последнего недостатка, в случае выполнения некоторых равенств, на 
параметры репера надо наложить еще связанные с этими равенствами до­
полнительные неравенства, которые можно задавать по-разному, например, 
так, как указано в табл. 1.

Таблица 1

1.

2.
3.
4.

5.

О < 2ai2 <7 ац <4 а22 <2. «зз, 0 <' 2а2з <4 а22, 

— 2<212-4 2(213 — 2а2з.

«12 — 0, «23^-0, Он <с 0-22, (1-12 <2. «33,
о23 = о, 012 Д’ 0, 011 < «22, 022 Озз,

ОЦ — 022, 0<^Оц-Т «22 — 2oi2 -j- 2«13 — 2о2з,

о22 Д» 2о2з; 013 ‘7 а2з, «1з «язТД- О,

О22 = Озз, 023 Д» О, Он <' а22, 011 Д’ 2о12,

4-2ai3 — 2о2з; 012 ^013, 012 + 013 7Д 0.

---- Он <Д 2oi3 <Z Он, 0 <2_ ОЦ + «22 —

022 Д* 2о2з, оц 2о1з; 013 7Д 0.

он Д» 2oi2, он Д> 2о1з; ois 0.
012 > 0, а-22 < Озз, 011 > 2о12,

О22 Д' 2о23, 0 <Д Оц -|- О22 — 2О12 -}-

6. Ац = 2#12, #22 ’"С- #33, #Ц <4 #22, #22 2(123, «и 2а1з', Я1з 0, 2#23 #13.

7. #22 = 2#23, Й12^>0, #11<4#22, #11 4> 2(212, #11 4* 2(113, #22 <С#33’, #12—2#13^0.

8. #Ц=2#13, #11^4#22, #12^-0, #22 <4 #33, #11 4> 2#12, #22 > 2#23', «12—2а2з ДО.

9. 0 = #11 ~ #22 ’— 2(212 ~ 2(113 — 2(223, яп ;> 2ai2 . «и Д «22, я22 <2 «зз, ап -р

4" 2(213 4* 0; #22 — 2(223 4^ #12-

10. #ц = а-22, #22 = <233, (222 2(223,

#12^#23, (212 4“ <^13 0.

0 ап + #22 — 2#12 4“ 2#1з — 2#23i #13 0,

И. #Ц = #22, (222 ~ #33, #22 4> 2#23j «12 «23, #12 >4^ #13, #13 >0.

12. 0 — (2ц 4~ #22 — 2(212 + 2(213 — 2(223, 

а-22 — 2(123 (212.

Я22 = «33, #11 2(112, #11 < #22', #12“Г#13> 0»

13. #22 ~ 2(123, #22 ~':С #33, (112 = 0, ап Д> 2ai3, #11 < 0-22, 0<#13.

14. #11 = 2(113, йц = 2(212, #22 "'С #33, «22 2«23, ЯП < Й22, «12 Д> 0; #12^2#23,

15. 0 = йц 4- а-22 — 2(112 + 2#^ —■ 2d2‘3, ан 4- 2«i3 := 0, #ц #22, #22 < #33, #11>

4> 2(112, (212 д4 0.

16. (211 — #22, (211 = 2(112, #22 <4 #33,

#13 4- #23 0.

0 «и + «22 — 2ai2 Д- 2«1з — 2а2з; #13 0,

17. (212 = 0, #11 = а-22, #22 2(123, «22 <7 «зз; «13<а23, «лТД-О.

18. #23 = 0, #22 — #Ш, #Ц 2(112, #11 <4 #22j оц 7Д «i:i, ais^>0.

19. а-22 = #3*3, 0 ЙЦ 4“ #22 —' 2(112 4“ 2(7-13 — 2(123, «И <С «52, «22 — — «23j #12 4“ #1’3^ 0,

«13 -С о.

20. ЙЦ = 2(212, #11 — #22, #22 — 2(123, а-22 <4 «33, 0 — «и -}—«22—2«1:24“2#13—2#23,

ап Д>2«1з.

В любой решетке существует единственный в смысле метрики репер, 
приведенный по Минковскому, метрические параметры которого удовлет­
воряют одной лз выписанных в табл. 1 20 систем. Так, например, в решет­
ке, рассмотренной в примере предыдущего параграфа, таким единствен­
ным ее репером служит репер {d, —с, &}, метрические параметры кото­
рого удовлетворяют системе № 9.

Таким образом, для осуществления однозначного приведения доста­
точно :

1) найти все метрически различные реперы, построенные на последо­
вательных минимумах решетки (см. п. 3);

2) из этих реперов отобрать те, которые удовлетворяют неравенствам 
Минковского (т. е. те, у которых а12 и а23 неотрицательны);

3) из реперов, удовлетворяющих неравенствам Минковского, отобрать 
тот, который удовлетворяет одной из 20 систем неравенств, приведенных 
в табл. 1.
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Отметим, что в теории приведения обычно выписывались неравенстве 
собственно для замыкания фундаментальной области приведения. Тогда 
любая точка пространства параметров эквивалентна какой-либо точке это­
го замыкания, а различные точки его ядра не эквивалентны друг другу. 
Но различные точки границы могут быть и эквивалентны. Осталось об­
работать и границу, т. е. выделить из нее совокупность таких ее кусков, 
чтобы никакие две точки этой совокупности уже не были эквивалентны 
друг другу, но чтобы любая точка пространства параметров была эквива­
лентна либо внутренней точке этой области, либо точке такого куска. Об­
ласть приведения с так обработанной границей будем называть абсо­
лютной областью приведения; абсолютизацию области приве­
дения Вороного см. (8). В настоящей заметке выписана в виде 20 систем 
неравенств, найденных М. И. Штогриным, абсолютизированная область 
приведения Минковского (табл. 1).

Примечание при корректуре. Любым числам а21, а22, ass, ai2, ai3, агз, удов­
летворяющим какой-либо из 20 систем табл. 1, отвечает положительная 
квадратичная форма / = a^xf + а22х2 + аггх2 + 2a12^1z2 + 2alsXiXs + 
+ 2а23х2.Гз. Таким образом, абсолютизированная область приведения Мин­
ковского, задаваемая этими 20 системами, целиком лежит внутри конуса 
положительности квадратичных форм.

Математический институт им. В. А. Стеклова Поступило
Академии наук СССР 27 XI 1972
Москва
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