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где ω1=ω(q1) соответствует частоте фононов, при которой спин-

фононная связь максимальна, а константа b связана исключительно с 

влиянием внешнего излучения. 

Подобные результаты были получены Букхеддаденым и коллега-

ми [2] феноменологически. 

В данной работе предложено описание взаимодействия внешней 

электромагнитной волны со спин-кроссоверной системой. За основу 

брался Изинго-подобный гамильтониан для двухуровневой системы 

псевдо-спинов спин-активной части, включающий туннельные эффек-

ты, фононы, взаимодействие между фононами и псевдоспинами, а 

также «продольное» взаимодействие с внешним полем. На основе 

предположения о слабости туннельных эффектов было получено ос-

новное кинетическое уравнение Глауберовского типа. Для области 

низких температур было получено выражение для частоты перехода. 
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УСЛОВИЯ, ПРИ КОТОРЫХ ВЫДЕЛЕННАЯ НОРМАЛЬНАЯ 

ПОДГРУППА СОДЕРЖИТСЯ В U-ГИПЕРЦЕНТРЕ  

И UФ-ГИПЕРЦЕНТРЕ ГРУППЫ 

 

Все рассматриваемые в сообщении группы являются конечными.  

Пусть A – подгруппа группы G, K  H  G. Тогда мы говорим, 

что A покрывает пару (K, H), если AH = AK; A изолирует пару (K, H), 

если A ∩ H = A ∩ K [1]. Пара (K, H) из G называется максимальной, 

если K является максимальной подгруппой в H. 

Определение. Пусть A – подгруппа группы G. Мы говорим, что A 

является слабо квазиперестановочной в G, если в группе G существу-
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ют такие подгруппы T и C, что G = AT, T ∩ A  C  A и C покрывает 

или изолирует каждую максимальную пару из G. 

Пусть X – класс групп. Главный фактор H/K группы G называет-

ся фраттиньевым, если H/K ≤ Ф(G/K). Главный фактор H/K группы G 

называется X-центральным [2], если полупрямое произведение H/K и 

G/CG(H/K) принадлежит X. Произведение всех нормальных подгрупп 

из G, у которых G-главные факторы являются X-центральными в G, 

называется X-гиперцентром группы G и обозначается через ZX(G) [3].  

В работе Л. А. Шеметкова и А. Н. Скибы [4] введено следующее 

обобщение X-гиперцентра группы. Пусть ZXФ(G) – произведение всех 

нормальных подгрупп группы G, у которых все их нефраттиньевы G-

главные факторы являются X-центральными в G. Тогда ZXФ(G) назы-

вается XФ-гиперцентром группы G.  

Заметим, что если в группе G существует такая нормальная под-

группа E, что G/E принадлежит X и E ≤ ZXФ(G), то G принадлежит X 

для многих конкретных классов X. Это показывает, что XФ-

гиперцентр группы оказывает существенное влияние на ее строение, и 

поэтому важной задачей является изучение условий, при которых вы-

деленная нормальная подгруппа содержится в XФ-гиперцентре. В 

данном направлении нами доказаны следующие теоремы. 

Теорема 1. Пусть E – нормальная подгруппа группы G. Предпо-

ложим, что для любой силовской подгруппы P из E каждая ее цикли-

ческая подгруппа простого порядка и порядка 4 является слабо квази-

перестановочной в G. Тогда E ≤ ZU(G). 

Теорема 2. Пусть E – нормальная подгруппа группы G. Предпо-

ложим, что для любой силовской подгруппы P из E каждая ее макси-

мальная подгруппа или каждая ее циклическая подгруппа простого 

порядка и порядка 4 является слабо квазиперестановочной в G. Тогда 

E ≤ ZUФ(G). 

В данных теоремах символом U обозначен класс всех сверхраз-

решимых групп.  

Следствие. Пусть F – насыщенная формация, содержащая все 

сверхразрешимые группы, и G – группа с такой нормальной подгруп-

пой E, что G/E принадлежит F. Предположим, что для всякой силов-

ской подгруппы P из E каждая ее максимальная подгруппа или каж-

дая ее циклическая подгруппа простого порядка и порядка 4 (если P 

неабелева 2-группа) слабо квазиперестановочна в G. Тогда G принад-

лежит F. 
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ОБ ОДНОМ ОБОБЩЕНИИ УРАВНЕНИЯ БУССИНЕСКА 

 

Рассмотрим дифференциальное уравнение в частных 

производных четвертого порядка с квадратичной нелинейностью 

относительно неизвестной функции ),(= tx   
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Оно носит название ненормированного уравнения Буссинеска  [1, 

стр. 329]. В связи с тем, что уравнение (1) моделирует процесс 

движение грунтовых вод в пористом грунте, оно широко используется 

как математиками, так и механиками при исследовании задач 

гидродинамики, а также задач мелиоративной отрасли сельского 

хозяйства [2]. Поэтому на сегодняшний день найдено большое 

количество различных точных решений этого уравнения (см., напр., 

[1, с. 327 – 330]). 

Рассмотрим теперь дифференциальное уравнение, «схожее» с 

уравнением (1), в котором вместо члена с квадратичной 
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2  , т.е. уравнение вида  
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Одним из наиболее полных справочников по точным решениям 

нелинейных дифференциальных уравнений в частных производных 

является справочник Полянина и Зайцева [1], где, в частности, 

приведены некоторые классы точных решений уравнения (1). Однако 

в этой книге не только не содержатся точные решения, но и вообще не 

рассматриваются дифференциальные уравнения вида (2). 


