Доклады Академии наук СССР 1973. Том 209. № 1

УДК 541.20

ФИЗИЧЕСКАЯ ХИМИЯ

Л. П. КАЗАНСКИЙ, Е. А. ТОРЧЕНКОВА, академик В. И. СПИЦЫН

СПЕКТРЫ КОМБИНАЦИОННОГО РАССЕЯНИЯ И И.-К СПЕКТРОСКОПИЯ НЕКОТОРЫХ ГЕТЕРОПОЛИКИСЛОТ

Недавно были получены в кристаллическом виде цери-, тори- и уранмолибденовые кислоты (1), которые, как предполагалось, имеют строение, аналогичное строению апнона в аммонийной соли церимолибденовой кислоты (2). Однако исследование строения этих кислот не было проведено, к тому же практически инчего не известно о состоянии этих кислот в растворах. Использование метода комбинационного рассеяния (к.р.) в принципе может быть хорошим подходом к исследованию строения ГПС как в кристаллическом виде, так и водных растворов. Методом к.р. изучалось образование изополисоединений V, Мо, W (3, 4).

Нами получены спектры к.р. как кристаллических образцов ГПС, так и их растворов (поицентрация порядка 0,1 M). При анализе спектров к.р. гакже использовались и.-к. спектры, полученные для тех же образцов. Спектры к.р. были сияты на приборе к.р. медели РН—О фирмы «Coderg» с Ne — Не-лазерным источником (λ = 6328 Å). Ne — Не-лазерный источник позведил получить спектры к.р. окращенных соединений. Рабсиая мирина щели 8 см⁻¹, напряжение на фотоумпоилителе 900—950 в. И.-к. спектры были получены в вазелиновом масле (таблетки КВг дали одинаковые спектры) на приборе UR-20; У.-ф. спектры поглощения растворов уранмолибденовой кислоты получены на приборе «UV-Specord».

Гетерополняислоты получены по методике, предложенной в работе (1). Рентгеноструктурное исследование соли церимолибденовой кислоты $(NH_4)_2H_6[CeMo_{12}O_{42}]\cdot 12H_2$ (2) показало, что каркае аниона построен из шести нар искаженных октаэдров MoO_6 , причем атомы молибдена образуют икосаэдр вокруг атома церия. Каждая пара октаэдров имеет общую грань, и в каждом октаэдре два атома кислорода O_6 находятся на расстоя-

длинные (2,28 и 1,98 Å), причем один атом кислорода не участвует в образовании связи с церием, а является мостиковым $Mo-O_{\rm M}$ — Мо между двумя спаренными октаэдрами MoO_6 . Для такой структуры можно ожидать характерные колебательные полосы в области частот от 1000 см⁻¹ и инже. Поскольку каждый октаэдр искажен и не обладает центром симметрии, для цис- MoO_2 можно ожидать два сильных валентных колебания ν_1 и ν_3 , которые должны совпадать в спектрах к.р. и и.-к. спектрах (5). Для изогнутого мостика $Mo-O_{\rm M}$ — Мо также должны наблюдаться три основных частоты, причем ν_1 лежит ниже ν_3 .

Связь $Mo = O_{\kappa}$ состоит из σ -гибридной связи, на которую налагается $p_{\pi} \to d_{\pi}$ -перенос неподеленных пар электронов кислорода на 4d-валентную орбиталь молибдена. Это отражается на увеличении частоты валентных колебаний связи $Mo - O_{\kappa}$. Степень $p_{\pi} \to d_{\pi}$ -переноса, конечно, зависит от связи Mo с другими атомами кислорода и, по всей вероятности, в первую очередь с мостиковым.

В и.-к. и спектрах к.р. всех изученных нами ГПС наблюдаются эти характерные полосы. Полосы в области 1000-900 см⁻¹, несомненно, должны быть отнесены к v_1 и v_3 (причем в и.-к. и спектрах к.р. наблюдаются совпадения этих частот), а полоса при ~350 см⁻¹ — к деформационным колебаниям цис-МоО₂. Кроме этих полос в спектрах к.р. имеются полосы (см⁻¹) v_4 520—570, v_3 700—900 и v_2 290—197, относящиеся к колебаниям Мо—О_м—Мо. В и.-к. спектрах полосы 400-700 см⁻¹ можно отнести к различным колебаниям связи Мо—О или Мо—О_м—Мо. И.-к. спектры ГПК отличаются от и.-к. спектров солей наличием полосы 860 см⁻¹, обусловленной, вероятно, колебанием Мо—ОН или Мо—ОН—Мо. В области 1700-1600 см⁻¹ наблюдаются двойные полосы, указывающие на различно связанную воду в кристаллогидратах ГПС. Слабые полосы при 1150 и 1700 см⁻¹ (плечо) могут быть вызваны колебаниями иона гидроксония H_3O^+ (6).

Поскольку валентные колебания группы МоО2 будут зависеть от степени связи $Mo-O_{\kappa}$ (как и в случае V=O (7)), которая будет изменяться от p_{π} вклада других атомов кислорода (мостикового и общих с другими октаэдрами и с центральным атомом), то можно проследить изменение частот колебаний как в зависимости от центрального атома, так и от внешнего окружения аниона ГПС. Для первого случая полное совпадение частот для ряда кислот с различными центральными атомами Се, U, Th указывает на то, что центральный атом никак пе воздействует через общий атом кислорода на связь Мо=О_к. В случае солей наблюдается смещение валентных колебаний в сторону меньших частот, что указывает на ослабление связи Мо=Ок. Это может происходить вследствие упрочнения связи мостикового кислорода с атомами молибдена, приводящего к увеличению электронной плотности на *d*-орбиталях Мо, что ослабляет связь молибдена с концевыми атомами кислорода. Это усиление связи может происходить в результате удаления протона от мостикового атома кислорода. Если считать, что большим частотам валентных колебаний Мо=Ок соответствуют более короткие расстояния между кислородом и молибденом, можно предположить некоторое искажение аниона ГПК по сравнению с найденной структурой аниона в аммонийной соли. Это косвенно подтверждается тем, что в сильнокислых средах могут отщепиться одна или две пары октаэдров из-за ослабления связи мостикового кислорода с атомами молибде-

Данные, полученные из рассмотрения и.-к. и спектров к.р. подтверждаются также анализом спектров поглощения кислых и щелочных растворов УМК в дальней у.-ф. области. В щелочных средах на у.-ф. спектрах наблюдаются две полосы поглощения при 205 и 247 мм. Интенсивную полосу поглощения при 205 мµ можно объяснить $p_{\pi} \to d_{\pi}$ -переносом от кислорода на орбитали молибдена, а полосу при 247 ми можно отнести к нерепосу электрона со связывающей терхцентровой орбитали, которая характериа для многих изополи и ГПС (9, 10). Полоса при 205 ми должна быть чувствительна к изменению степени $p_{\pi} \to d_{\pi}$ -переноса, и если бы происходило протонирование концевых атомов кислорода группы МоО₂, то эта полоса смещалась бы в сторону меньши: частот за счет ослабления связи Мо-Ов. В нашем случае в кислых растворах этот максимум сдвигается в сторону больших частот к 197 мµ, что указывает на усиление связи Мо=О_в, причем из-за сильного $p_{\pi} \to d_{\pi}$ -переноса электронов с концевых атомов кислорода электронная плотиость на этих атомах кислорода будет понижена, что не благоприятствует присоединению протона Мо=Ок. С другой стороны, полоса при 247 му с увеличением кислотности постепенно исчезает. Это может происходить вследствие участия одной орбитали мостикового кислорода в образовании связи с протоном и эта треждентровая орбиталь разрушается, приводя к ослаблению связи Мо— $O_{\text{\tiny M}}$ —Мо, что в свою очередь приводит к усилению $p_{\pi} \to d_{\pi}$ -переноса $\mathbf{R} \mathbf{Mo} = \mathbf{O}_{\mathbf{K}}$.

í	2	3	4	5	6	7
180 243 285 353 388 488 513 563 863 883(1) 933(3) 957(4) 976(10)	283 343 363 413 463 533 563 854(1) 883(1) 932(4) 953(5) 975(10)	285 346 460 533 563 893 928 941 968(10)	158 173 213 225 236 325 363 533 548 648 628 648 673 885 925(4) 985(4) 1005(10)	158 225 234 363 533 623 653 892 922(4) 983(4) 1005(10)	410 462 480 620 718 860 934 970 1631 1670 1710	420 465 520 592 650 720 921 950 1625 1650

Примечание. 1— спектры к.р. кристаллических образцов $H_4 ext{>} Mo_{12}O_{42} \cdot 18H_2O$ θ = Ce, U. Th (из-за сильного восстановления мо (VI) в уранмолибленовой кислоте можно наблюдать лишь эти, сильно ослабленные полосы); 2— спектры к.р. 0,1 м кислот $H_4 ext{>} Mo_{13}O_{42} \cdot \theta$ = Ce, U. Th; 3— спектр кристаллической соли (NH $_0$), θ = Mo $_{12}O_{42} \cdot 12H_2O$ θ = Ce, Th; 4— спектр к.р. кристаллической $H_4 ext{SiW}_{12}O_{42} \cdot 9H_2O$; 5— спектр водного 0,1 м раствора $H_4 ext{SiW}_{12}O_{42} \cdot \theta$ — и.-к. спектры кристаллических образцов кислот $H_4 \theta$ θ = Mo $_{12}O_{42} \cdot 18H_2O$; 7— и.-к. спектры кристаллических образцов θ = M $_0 \cdot 19O_{42} \cdot 18H_2O$.

Прежде чем рассматривать данные спектров к.р. растворов и делать какие-либо выводы о структуре аниона ГПС в водных растворах, мы получили спектры к.р. кристаллической кремневольфрамовой кислоты и ее раствора, в котором, как было найдено рентгеноструктурным анализом, сохраняется для аниона структура Кеггина. Полное совпадение полос в спектрах к.р. $H_4SiW_{12}O_{42} \cdot 29H_2O$ и ее раствора, наблюдаемое (табл. 1), указывает на сохранение этой структуры.

Анализ и.-к. и спектров к.р. кристаллических образцов ГПС и их растворов ряда церимолибденовой кислоты, а также спектров поглошения растворов этих кислот в у.ф. области разрешает предположить, что эти ГПС имеют одинаковую структуру и эта структура сохраняется в водных растворах и что структура аниона в кислотах несколько искажена по сравнению с анионом в солях одновалентных катионов.

Московский государственный университет им. М. В. Ломоносова

Поступило 2 VĬ 1972

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

1 П. Байдала, Е. А. Торченкова, В. И. Спицын, ДАН, 196, № 6 (1971).
2 D. D. Dexter, T. V. Silverton, J. Am. Chem. Soc., 90, 3589 (1968).
3 J. Aveston, E. W. Anacker, J. S. Johnson, Inorg. Chem., 3, 735 (1964). * W. P. Griffith, P. I. B. Lesniak, J. Chem. Soc. A, 1969, 1066. 5 К. Накамото, ИК-спектры пеорганических соединений, М., 1964. 6 Ю. Юхневич, ЖНХ, 6, 231 (1961).
7 J. Selbein, L. Holms, S. McGlynn, Inorg. and Nucl. Chem., 25, 1359 (1963). 8 Нгуен Дьеу, Е. А. Торченкова, В. И. Спицын, ДАН, 198, 106 (1971). 5 К. Б. Яцимирский, А. И. Алексеева, ЖНХ, 8, 2513 (1963).
10 D. B. Brown, Spectrochim. acta, 19, 1863 (1963).