Академик АН ГрузССР Г. В. ЦИЦИШВИЛИ, В. Я. НИКОЛИНА, Н. А. ОСИПОВА, Ш. Д. САБЕЛАШВИЛИ, Т. Г. АНДРОНИКАШВИЛИ, Е. К. КВАНТАЛИАНИ

ХРОМАТОГРАФИЧЕСКИЕ СВОЙСТВА ЦЕОЛИТОВ ТИПА L

Сравнительно недавно синтезированные цеолиты типа L (¹), как и цеолиты типа X и Y, относятся к алюмосиликатным системам с развитой пористостью. Цеолит L, в отличие от цеолитов типа X и Y, относится к высококремнеземистым, так как для него отношение SiO_2 / Al_2O_3 колеблется в пределах 5,6-6,2. Это является показателем того, что в элементарной ячейке локализовано небольшое число катионов. На элементарную ячейку цеолита L приходится около 9 катионов (², ³), и из них в доступных

(открытых) позициях расположено 3,6 катиона. Эти позиции, или так называемые участки Д(2), расположены в основном канале, и катионы, занимающие эти позиции, характеризуются предпочтительной способностью к обмену. Адсорбционные и каталитические свойства цеолитов типа L в настоящее время изучаются (3-5), но хроматографические особенности этого типа цеолита, по имеющимся у нас сведениям, не исследованы. Представля-

Таблица 1

Количество адсорбированной воды и энергии активации на различных катионобменных формах цеолита типа L

№ обр а з- ца	Радиус катиона	Количество адс. воды, %	Энергия активации, ккал/моль		
2	Na (0,98)	16,3	4,52		
1	K (1,33)	15,2	2,31		
3	Cs (1,67)	12,5	1,83		

ет определенный интерес, как и в цеолитах типа A и X (⁶⁻⁸), исследовать влияние природы катионов этих цеолитов на их хроматографические свойства.

Нами были изучены исходные цеолиты типа L (партия 385—386), а также некоторые их катионобменные модификации, образцы, обогащенные катионами натрия и цезия. Ниже приведен химический состав образцов исследованных цеолитов:

- 1) $K_2O \cdot 0.17Na_2O \cdot Al_2O_3 \cdot 5.29SiO_2 \cdot 3.41H_2O_3$
- 2) $0.37K_2O \cdot 0.49Na_2O \cdot Al_2O_3 \cdot 4.40SiO_2 \cdot 4.1H_2O_3$
- 3) $0.33 \text{K}_2\text{O} \cdot 0.67 (\text{Cs}_2\text{O} + \text{Na}_2\text{O}) \text{Al}_2\text{O}_3 \cdot 5.00 \text{SiO}_2 \cdot 3.13 \text{H}_2\text{O}$.

Формы, обогащенные натрием, получались пятикратной обработкой исходной формы 5N раствором хлористого натра при температуре 90°. Цезийсодержащие цеолиты были получены трехкратной обработкой 0,2N раствором хлористого цезпя исходной формы цеолита. Ионный обмен производился при температуре 90°. Термографические исследования, проведенные на дериватографе системы Паулик, Паулич и Эрдей, показали, что природа катиона в цеолите оказывает влияние на количество равновесно адсорбированной воды. Величина адсорбции уменьшается с увеличением радиуса обменного катиона.

На основании полученных данных были рассчитаны значения энергии активации процесса дегидратации этих цеолитов (⁹, ¹⁰). Из данных табл. 1 видно, что чем меньше раднус катиона цеолита (т. е. чем сильнее силовое поле иона), тем больше энергия активации.

Из цеолитов были получены гранулы зернением 1-0.5 мм, которые после предварительной термической активации при 500° были загружены

в U-образную колонку хроматографа «Цвет-3». В качестве модельной смеси использовались углеводородные газы C_1 — C_4 , окись углерода, кислород и азот. Температура нагрева колонки, при которой изучалась разделительная способность цеолита, была в пределах $25-220^\circ$.

На исходной форме цеолита L, в которой превалирует содержание катионов калия над натрием, метан вымывается позже окиси углерода при всех температурах нагрева колонки, что вообще свойственно цеолитам типа X, богатым катионами калия (7, 8). С другой стороны, как следует из работы (2), в исходной форме цеолита L, в доступных позициях Д, размещены лишь катионы натрия, с фактором заселенности 0,6. Таким образом,

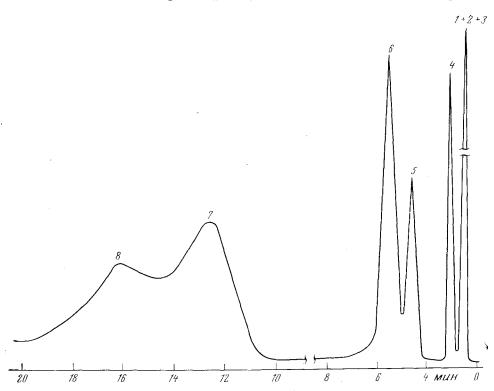


Рис. 1. Хроматограмма смеси воздуха (1), метана (2), окиси углерода (3), этана (4), этилена (5), пропана (6), пропилена (7), бутана (8). Адсорбент — деолит L (образец 1). Длина колонки 100 см, диаметр 0,4 см, температура нагрева колонки 140° С, скорость газа-носителя (гелия) 50 мл/мин, детектор — катарометр

можно предполагать, что такое незначительное содержание катионов в открытых позициях элементарной ячейки также должно способствовать инверсионному элюпрованию этих соединений. На этой форме цеолита, как и на калийзамещенных образцах (8) и на водородных формах цеолитов (11), при любой температуре хроматографической колонки, вслед за каждым насыщенным углеводородом вымывается соответствующее ненасыщенное соединение с одинаковым числом атомов углерода в молекуле т. е. окись углерода, метан — этан — этилен — пропан — пропилен — бутан (рис. 1). Разделение такой смеси газов при этом происходит при болеє низких температурах нагрева колонки, чем в случае цеолита типа Х. Это по-видимому, следует принисать более низкой концентрации катионов в элементарной ячейке цеолита L. На цеолитах типа L, обогащенных натрием, имело место довольно значительное возрастание удерживаемых объемов не только ненасыщенных углеводородов и окиси углерода, но и предельных углеводородов (табл. 2), что не наблюдалось при переходе от КХ к NaX цеолитам (7, 8). Последнее, по-видимому, следует связать с тем, что

при вводе катионов натрия в цеолит L они занимают доступные позиции Д. Это в свою очередь вызывает возрастание катионной плотности в цеолите, что должно способствовать возрастанию удерживаемых объемов всех исследованных соединений (12). На этой форме цеолита типа L, как и на NaX (7), метан при любой температуре нагрева колонки вымывается до окиси углерода, а для пары углеводородов пропан — этилен, бутан — про-

Таблица 2 Величина удерживаемых объемов на исходной форме цеолита типа L (образец 1) и на их производных, обогащенных катионами натрия (образец 2) и катионами цезия (образец 3)

Компонент	T-pa, °C	1	2	3
Метап	25	5,28	6,7	3,2
Окись углерода	25	4,7	14,1	1,9
Этап	25	168,7	274,3	98,8
Этилен	60	243,9	501,7	64,3
Пропан	60	300,4	489,0	213,7
Пропилен	420	186,8	319,0	59,6
Бутан	420	236,7	334,0	157,0

пилен характерна инверсионная последовательность вымывания в зависимости от температуры нагрева хроматографической колонки. Так, ниже 80° пропан элюпруется ранее этилена, а выше — последовательность меняется. Для пары бутан — пропилен такое инверсионное элюпрование имеет место при температуре > 120°.

На цезийсодержащих образцах происходит падение удерживаемых объемов ненасыщенных углеводородов и окиси углерода, а также предельных углеводородов (табл. 2), но пе в такой степени, как непредельных. Коэф-

 ${\rm T}\, {\rm a}\, {\rm f}\, {\rm n}\, {\rm n}\, {\rm q}\, {\rm a}\, 3$ Коэффициент селективности K_c бинарных смесей на образцах 1—3

Бинарная смесь	T-pa,	0	бразо 2	эц	Бинарная смесь	T-pa, °C	1)браза 2	эц
Метан — этап Этан — пропан Пропан — бутап	60	$\{0,79\}$	0,79	[0,79]	Окись углерода — метан Этан — этилен Пропан — пропилен	40 60 120	[0,75]	0,80	0,32 0,43 0,33

фициент селективности предельных углеводородов K_c на всех трех катионобменных формах практически одинаков (табл. 3), но для насыщенных — ненасыщенных углеводородов с одинаковым числом атомов углерода в молекуле эти величины растут в последовательности Cs < K < Na, а для метан — окись углерода K < Cs < Na.

Таким образом, из полученных данных ясно видно, какое значительное влияние на хроматографические, а следовательно, и на адсорбционные свойства цеолитов типа L оказывает природа катиона даже при сравнительно незначительной их плотности в элементарной ячейке.

Институт физической и органической химии им. М. Г. Миликишвили Академии наук ГрузССР Тбилиси

Поступило 20 XI 1972

ПИТИРОВАННАЯ ЛИТЕРАТУРА

¹ D. W. Breck, E. M. Flanigen, Molecular Sieves, London, 1968, p. 47. ² R. M. Barrer, H. V. Villiger, Zs. Kristallogr., 128, 352 (1969). ³ C. C. Хво-шев, С. П. Жданов, М. А. Шубаева, ДАН, 196, № 6, 1391 (1971). ⁴ R. М. Barrer, J. A. Lee, Surface Science, 12, 341 (1968). ⁵ Л. П. Ширинская, Н. Ф. Ермоленко и др., ЖФХ, 41, 4, 42 (1972). ⁶ Н. Fürtig, F. Wolf, Ber. Bunsengesellschaft, 69, 9/10, 842 (1965). ¬ T. G. Andronikashvili, G. V. Tsitsishvili, Sh. D. Sabelashvili, J. Chromatogr., 58, 47 (1971). ፆ Г. В. Цицишвили, Т. Г. Андроникашвили и др., Нефтехимия, 7, 2, 305 (1967). ፆ Г. О. Пилоян, Введение в теорию термического анализа, М., 1964, стр. 220. ¹⁰ Г. О. Пилоян, О. С. Новиков, Неорганические материалы, 2, 7, 1298 (1966). ¹¹ Г. В. Цицишвили, Т. Г. Андроникашвили и др., Адсорбщонные, хроматографические и каталитические свойства цеолитов, Тбилиси, 1972, стр. 122. ¹² Т. Г. Андроникашвили, Г. В. Цицишвили, Щ. Д. Сабелашвили, Сообщ. АН ГрузССР, 56, 1, 113 (1969).